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Abstract: Neurologic and neuropsychiatric diseases are associated with great morbidity and

mortality. Prostaglandins (PGs) are formed by sequential oxygenation of arachidonic acid in

physiologic and pathologic conditions. For the production of PGs cyclooxygenase is

a necessary enzyme that has two isoforms, that are named COX-1 and COX-2. COX-1

produces type 1 prostaglandins and on the other hand, COX-2 produces type 2 prostaglan-

dins. Recent studies suggest PGs abnormalities are present in a variety of neurologic and

psychiatric disorders. In a disease state, type 2 prostaglandins are mostly responsible and

type 1 PGs are not so important in the disease state. In this review, the importance of

prostaglandins especially type 2 in brain diseases has been discussed and their possible role

in the initiation and outcome of brain diseases has been assessed. Overall the studies suggest

prostaglandins are the agents that modulate the course of brain diseases in a positive or

negative manner. Here in this review article, the various aspects of PGs in the disease state

have discussed. It appears more studies must be done to understand the exact role of these

agents in the pathophysiology of brain diseases. However, the suppression of prostaglandin

production may confer the alleviation of some brain diseases.

Keywords: prostaglandins, depression, Alzheimer, addiction, Parkinson and multiple

sclerosis

Introduction
Neuropsychiatric diseases have a wide array of symptoms and related behaviors

that have a high prevalence in human societies.1 A great fraction of them occurs in

a subset of people that are suffering from other medical diseases.2–5 Many studies

have been performed to confirm the basic mechanisms that produce such diseases.

Prostaglandins are lipid-derived small molecules that are produced from arachido-

nic acid by sequential enzymatic reactions.6 Recently it has been given great

importance to these small molecules in the occurrence of neuropsychiatric

disorders.7 Recently it has been proposed that other than physiologic functions,

certain prostaglandins are associated with neuropsychiatric and neurologic

disorders.8 New studies aim to establish a relationship between certain types of

prostaglandins with a specific disease. Here in this review article, we are going to

discuss the important aspects of prostaglandins in the occurrence of brain diseases.

Prostaglandins
Prostaglandins are lipid derives molecules that have important functions in our body.

All prostaglandins have 20 carbons but they have different structures that account for
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diverse physiologic functions.9 The difference in the recep-

tor is responsible for the diverse functions of one prosta-

glandin that can be inhibitory or stimulatory.10 The

synthesis of prostaglandins is a multistep process that

begins with the formation of arachidonic acid from diacyl-

glycerol and phospholipase A2. Arachidonic acid can

choose the cyclooxygenase pathway or lipoxygenase

pathways.11 Prostaglandins are formed by sequential oxy-

genation of arachidonic acid. Cyclooxygenase has two iso-

forms COX-1 and COX-2. Recently it has been suggested

that a variant of COX-1 can be considered as COX-3.12

Constant production of COX-1 that results in the production

of type 1 prostaglandins. On the other hand, COX-2 is

activated in certain conditions such as inflammation and

growth.13

Prostaglandins Receptors
Eight subtypes of membrane prostanoid receptors have

already been discovered: the PGD receptor (DP), four

subtypes of the PGE receptor (EP1, EP2, EP3, and EP4),

the PGF receptor (FP), the PGI receptor (IP), and the TxA

receptor (TP)14 (Table 1). All are G protein-coupled rho-

dopsin-type receptors with seven transmembrane domains,

and each domain is encoded by a different gene. In Table 1

we have summarized the various prostaglandin receptors

that are present in the body.15 Cyclooxygenase enzyme

releases prostaglandins from arachidonic acid in mem-

brane lipids (Figure 1). There are multiple steps that even-

tually all types of prostaglandins are produced. The

structural difference is to account for their different

biological properties. Also different kind of receptors

also may account for such differences. One prostaglandin

may have a stimulatory effect in a given context and in

another context have an inhibitory function. They act as

paracrine substances and usually targeted tissue in the

vicinity of the site of their production.

Prostaglandins and Cytokines
Cytokines are small protein molecules released by differ-

ent inflammatory cell types. Based on the cell type that

secretes cytokines, cytokines can be assigned different

names such as lymphokines that secrets from lympho-

cytes and monokines that release from monocytes. Also,

they have other names based on their specific activities

such as chemokines (chemotactic activities) and interleu-

kins (cytokines that interact with other leukocytes).

Cytokines can act as autocrine, paracrine and endocrine.

They can mediate inflammatory or anti-inflammatory pro-

cesses and therefore that can be harmful or not harmful.16

Different cell types produce cytokines but mainly T cells

and macrophages secrete cytokines. Pieces of evidence

support the role of prostaglandins such as PGEs in the

production of certain cytokines.17 The produced cytokines

can be inflammatory or anti-inflammatory. However, most

studies support the theory that prostaglandins promote

cytokine production and the produced cytokines are harm-

ful to neurons.18 In other diseases such as diabetes19 and

atopic dermatitis20 also it has been documented the

inflammatory role of prostaglandins and increased pro-

duction of cytokines. In a recent article, the role of

Table 1 Different Prostaglandin Receptors and Their Potencies for a Specific Type

Name of Related

Prostaglandin

The Potency of Related Prostaglandin

to Activate the Related Receptor

G Protein

Linkage

Signaling Pathway

Prostaglandin DP1 receptor PGD2≫PGE2>PGF2α>PGI2=TXA2 Gs alpha subunit Activates AC, increases cAMP, raises Ca2+

Prostaglandin DP2 receptor PGD2≫PGF2α=PGE2>PGI2=TXA2 Gi alpha subunit Inhibits AC to depress cAMP levels

Prostaglandin EP1 receptor PGE2>PGF2α=PGI2>PGD2=TXA2 Gq alpha subunit Stimulates PLC, IP3, PKC, ERK, p38 Mpk, and CREB

Prostaglandin EP2 receptor PGE2>PGF2α=PGI2>PGD2=TXA2 Gs alpha subunit Stimulates AC, raises cAMP, stimulates beta-catenin and Glycogen

synthase kinase 3

Prostaglandin EP3 receptor PGE2>PGF2α,PGI2>PGD2=TXA2 Gi & G12 subunit Inhibits AC, decreases cAMP, stimulates PLC & IP3, raises Ca2+

Prostaglandin EP4 receptor PGE2>PGF2α=PGI2>PGD2=TXA2 Gs alpha subunit Stimulates AC, PKA, PI3K, AKT, ERK, p38 Mpk, & CREB; raises cAMP

Prostaglandin F2α receptor PGF2α>PGD2>PGE2>PGI2=TXA2 Gq alpha subunit Stimulates PLC, IP3, & PKC; raises Ca2+

Prostacyclin I2 receptor PGI2≫PGD2=PGE2=PGF2α>TXA2 Gs alpha subunit Stimulates AC & PKA; raises cAMP

Thromboxane A2 receptor TXA=PGH2≫PGD2=PGE2=PGF2α=PGI2 Gq alpha subunit Stimulates PLC & IP3; raises Ca2+

Note: It can be seen that every prostaglandin has its own receptors. However, one prostaglandin may react with other types of receptors. The difference in subtypes of

receptors may account for the different effects of prostaglandins in a different situation. They generally act through G-proteins. The G-proteins may be stimulatory or

inhibitory, but prostaglandins usually act through stimulatory G-proteins. Recently for one new receptor for F2a and I2 have been introduced and more research should be

done to be included in the table but in the text, some information has been given.
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cytokines in the production of chronic inflammation has

been well discussed and these shreds of evidence support

the role of prostaglandins in the pathophysiology of

neurodegenerative diseases.21 However other studies sup-

port the fact that prostaglandins via production of cyto-

kines may be inflammatory or anti-inflammatory agents.22

)dicacinodihcarA(

                                                                                             Cyclooxygenase 

GGP( 2) 

                                                                                             Hydroxyperoxidase 

(Thromboxane A2)         Isomerase                   (PGH2)                        Isomerase                       (PGI2) 

                                                  PGD2                                                                      PGE2

                                                         Peroxidase                                                            Reductase 

                                15-deoxy-delta 12, 14-PGJ2       PGF2α

Figure 1 Metabolic cascade of the arachidonic acid pathway that leads to prostaglandin production. The cyclooxygenase pathway has been illustrated in the figure.

Thromboxane A2 and prostaglandin I2 are synthesized by synthase enzymes.
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Prostaglandins in Inflammation
Prostaglandins are considered as the agents that most

commonly secreted in inflammation states. Here, we are

going to explain the possible role of PGs in neuroinflam-

mation that eventually leads to neurodegeneration.23

However, it is noteworthy to remember that prostaglandins

are not always considered as agents that may cause neu-

rodegeneration and will be discussed later. Gilas and neu-

rons are in close talk with each other. Astrocyte

development is associated with the development of synap-

tic structures. Enough level of neuroplasticity can be

achieved by the proper function of astrocytes.24 Also in

later stages of life astrocytes play an important role in

neurotransmitter metabolism.25 Another important type of

glial cell is microglia cells that can act in two different

ways. They can be destructive to neurons and also they

can help to repair neurons. In this sense activation of

microglial cells after neuronal destruction can alleviate

the severity of disease.26 Prostaglandins as the agents

that are mostly produced in inflammation state, can disturb

the neuro-glial interaction and eventually disturb the neu-

ronal network. Also, they can impair the microglial func-

tion in later stages of the disease.27 The lack of studies

about this subject prevents us from further discussion

about this issue. However, in different studies, it has

been shown that prostaglandins are the cause of inflamma-

tion. This is important because prostaglandins are the

cause of many abnormalities independent of any media-

tors. Here we are going to discuss the important aspect of

prostaglandins in this context.

Prostaglandin E2 and Inflammation
It is one of the most abundant prostaglandins in the body.

It has diverse functions but in inflammation, it mediates

the emergence of all classical signs of inflammation such

as redness, swelling, and pain.28 The importance of PGE2

in the inflammation process mainly comes from mPGES-1.

mPGES-1 is a member of the MAPEG (membrane-

associated proteins involved in eicosanoid and glutathione

metabolism) superfamily that needs glutathione as

a cofactor for PGE2 production.29 In mPGES-1 deficient

mice, there was a reduction in severity and incident of

rheumatoid arthritis (RA).30,31 Complementary studies

revealed that mPGES-1 can cause angiogenesis and for-

mation of granulation tissue.31 Other studies about pain

showed similar effects.32 PGE2 acts locally through four

different receptors (EP1-EP4). EP3 and EP4 have the

highest affinity for PGE2 and almost are found in all

tissues and in contrast to EP1 are found in some restricted

organs and EP2 is the least abundant.33 EP3 and EP4 are

associated with swelling that are one of the symptoms of

inflammation34 and EP2 and EP3 causes exudates

formation.35 Also, EP4 deficient mice showed an attenu-

ated response in antibody-induced RA.36 In contrast to

these effects, anti-inflammatory action can be considered

for this type of prostaglandins especially in allergic

asthma.37 More studies revealed that this prostaglandin

has both inflammatory and anti-inflammatory actions and

this is because of the presence of different types of recep-

tors and different kinds of actions of PGE2 on different

cell types.38–41 During neuroinflammation also these con-

trasting roles can be seen.42,43

Prostaglandin I2 and Inflammation
PGI2 is one of the most important regulators of circulation.44

However, besides this important role, PGI2 also is a mediator

of edema and pain that is seen in acute inflammation and also

mediates extravasations of cells through vessels.45,46

Complementary studies about the PGI2 receptor confirm

that this prostaglandin has a pivotal role in acute inflamma-

tion and most acute inflammation signs are associated with

the emergence of this prostaglandin.47 Furthermore, PGI2 has

an important role in pain perception.48 In other animal mod-

els of pain assessment, PGI2 was the origin of pain perception

that is a symptom of most neurologic diseases.49,50 This

prostaglandin also has a selective role through its action on

CD4-Th2.
51

Prostaglandin D2 and inflammation
PGD2 is found in the brain and also in peripheral tissues.52

In the central nervous system, this prostaglandin regulates

pain and also causes pain.53,54 PGD2 is synthesized in the

leptomeninges, choroid plexus and oligodendrocytes in the

brain and secreted to cerebrospinal fluid (CSF).54 In

the peripheral tissues it is mostly secreted by mast cells

and other cells also produce PGD2.
55,56 This prostaglandin

has two types of receptor: DP1 and DP2 (CRTH2).

Besides its role in inflammation especially in allergic

asthma, this prostaglandin can act to inhibit

inflammation.57 However, in contrast to the proinflamma-

tory role, PGD2 may take a role to inhibit inflammation in

other areas. This anti-inflammatory role has been reported

through the DP1 receptor that is present in dendritic

cells.58–60 PGD2 as the precursor of 15d-PGJ2, through

this prostaglandin, can suppress inflammation.61–63
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Prostaglandin F2α and Inflammation
This is an inflammatory prostaglandin64 that has two

receptors: FPA and FPB. This prostaglandin mainly plays

an important role in the female reproductive system65,66

but also has a variety of roles in other parts of the body

such as brain injury and pain.67,68

Thromboxane and Inflammation
TXA2 normally derived from platelet but also another cell

with a half-life of the 30s.69 It reacts mainly through TP

(thromboxane/endoperoxide receptor) but also two other

isoforms have been reported.70 Besides platelet aggrega-

tion and smooth muscle contraction, they have an impor-

tant role in inflammation.71 TP receptor also is activated

with PGH2 and HETEs.72,73 This prostaglandin has a role

in inflammation because TP deficient mice will not

develop full manifestation of septic shock syndrome.74,75

Prostaglandins in Neuropsychiatric
Disease
Neuropsychiatric disease encompasses a wide variety of

diseases. Schizophrenia, depression, bipolar disorder, anxi-

ety and addiction to drug abuse and many others are

classified as neuropsychiatric disorders. Recently it has

been given much interest to find a biomarker for neurop-

sychiatric diseases.76 Recent studies suggest that prosta-

glandins can have a role in the occurrence of

neuropsychiatric diseases. However because of the lack

of enough studies that cover all types of neuropsychiatric

disorders, here we cannot discuss all types of neuropsy-

chiatric diseases (Table 2).

Schizophrenia
Schizophrenia is a mental health illness that globally

affects about 15.23/100,000 persons of all adults.77

Schizophrenia is a chronic, severe mental disorder that

affects thinking, feelings and behavior. Schizophrenic

patients often lose touch with reality.78 Schizophrenic

patients come to the clinician with different symptoms.

They may have negative or positive symptoms, or have

acute symptoms and maybe with exacerbation of preex-

istent disease.79,80 The evidence that supports prosta-

glandins plays an important role in schizophrenia

comes back to the 70s and 80s. Some studies proposed

that prostaglandin deficiency is present in this disease.81

In one study replacement therapy with prostaglandins

diminished negative and positive symptoms in

schizophrenic patients.82 However, some studies support

the increased activity of prostaglandins in schizophrenic

patients.83 Thus it can be considered that the reduction of

prostaglandins can have a useful effect. Recent studies

suggest that treatment with drugs that inhibit prostaglan-

dins may have a palliative role for this disease. In recent

years, antipsychotic drugs are administered along with

anti-inflammatory such as aspirin to increase the efficacy

of treatment in schizophrenic patients.84 The increased

inflammatory activity in the prefrontal cortex has been

associated with the severity of the disease.85

Depression
Major depressive disorder (MDD), also known simply as

depression, is a mental disorder characterized by at least

two weeks of low mood state that is present across most

situations. It is often accompanied by low self-esteem,

loss of interest in normally enjoyable activities, low

energy, and pain without a clear cause.86 The lifetime

prevalence of depression in the United States is about

15% to 20%.87 This disease affects women more than

Table 2 Protective Roles of NSAIDs and COX Inhibitors in Brain

Diseases

Postulated Prostaglandins

and Related Therapies

Brain Diseases

COX-1 and COX-2 inhibitors Schizophrenia

Depression

Alzheimer’s disease

Parkinson’s disease

Huntington disease

TXA2 inhibitors Alzheimer’s disease

PGA1 inhibitors Huntington disease

PGF2α inhibitors Addiction

Huntington disease

PGE2 inhibitors Addiction

Alzheimer’s disease

Parkinson’s disease

Huntington disease

Amyotrophic lateral sclerosis (ALS)

PGD2 inhibitors Multiple Sclerosis

Parkinson’s disease

PGJ2 inhibitors Multiple Sclerosis

Parkinson’s disease

Note: Likewise, by application of selective prostaglandins receptor inhibitors also

some certain diseases alleviate. Meanwhile, it should be noted that some prosta-

glandins selectively react with certain receptors in some cases.
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men.88 It is the leading risk factor for suicide.89 Recent

studies suggest that prostaglandins can play a role in

depression diagnosis and treatment. Overall all studies

support the theory that an increase in prostaglandins and

their activity are associated with depression. The existing

literature is not so rich about this subject. Based on a few

studies, increases in prostaglandins in salivary90 and in

serum91 have been associated with this disease. Also,

treatment with cyclooxygenase-2 inhibitor celecoxib had

a therapeutic effect in major depression.92 However, in

one study treatment with ethyl-eicosapentaenoic at

a dosage of 1 g/d was effective in treating depression in

patients who remained depressed despite adequate stan-

dard therapy.93

Addiction
Addiction to drug abuse is a devastating state that has

severe harmful effects on all aspects of life from school,

workplace city and families to many other areas.94 It is

mostly considered as a reward system dysfunction.95,96

Unrestricted abuse of a drug that is rewarding in nature

is considered as addiction despite the adverse effects.95

Preoccupation with good memories of the desired effects

of the drugs is mostly responsible for relapse to drug

abuse.97 The 12-month prevalence of drug addiction in

the United States is about 15% to 61%.98 Also, alcohol

addiction is another type of addiction that has a high

prevalence in western countries.99 The high rates of mor-

bidity and mortality mandate performing different experi-

ments to understand the basic mechanisms that help to

control the uncontrolled behaviors. Alcohol consumption

increases the production of prostaglandins. Animal studies

propose that alcohol consumption increase brain levels of

PGE, and PGF.100 Blocking PG production attenuates the

behavioral effects of alcohol, and it can be inferred that

PGs have a role in the development of alcohol

addiction.101 Chronic alcohol consumption also is asso-

ciated with paradoxical regulation of PGE1 and PGE2.
102

In another study overproduction of PGE1 has been asso-

ciated with cocaine abuse.103 It has been proposed that

PGE is mainly involved in the reinstatement of self-

administration. It should be noted that prostaglandin

receptors are found in the cerebral cortex, hippocampus,

and midbrain.104 The reinstatement to drug abuse is

mainly mediated by the synergistic effect of the cannabi-

noid system and arachidonic acid by-products.105 From

this view, prostaglandins have an important role in drug

addiction.

Prostaglandins and Neurologic
Diseases
Neurological disorders are increasingly recognized as one

of the most prevalent disorders with a high burden to the

patients, their families, and society. Statistics showed that

globally, in 2016, neurological disorders were the leading

cause of DALYs (Years Lived with Disability) (276 [95%

UI 247–308] million) and the second leading cause of

deaths (9.0 [8.8–9.4] million). So this is very important

to introduce new mechanisms that are responsible for the

occurrence of these diseases and also introduce new hopes

for the treatment of such disorders (Table 2).106

Multiple Sclerosis
Multiple sclerosis (MS) is considered a disabling condition

that mainly involves the brain and spinal cord.107 The symp-

toms of the disease are different and miscellaneous such as

numbness or weakness, loss of vision, pain, tremor, slurred

speech, fatigue, dizziness and bowel and bladder

dysfunction.108 The reaction of the immune system to mye-

lin causes the production of autoantibody and loss of myelin

which in turn causes loss of the brain connection to the rest

of the body. MS has four types 1) relapsing-remitting (the

most common type) 2) primary progressive MS 3) second-

ary progressive MS 4) progressive relapsing.109 Since the

neuroinflammation plays an important role in this disease,

new studies have been focused on the assessment of various

neuroregulators that causes inflammation. Animal studies

bring evidence that prostaglandins can interfere with the

disease process. The evidence to support this theory comes

from the alleviation of MS by systemic injection of 15d-

PGJ2 in animal studies.110 Other evidence support that

anti-inflammatory agents such as peroxisome proliferator-

activated receptor (PPAR)-γ agonists, including thiazolidi-

nediones (TZDs) and 15-deoxy-Δ 12, 14 prostaglandin J 2

(15d-PGJ 2), have been shown to be effective in the treat-

ment of experimental autoimmune encephalomyelitis

(EAE).111 So, it has been suggested that glial cells especially

astrocytes have a vital role in controlling autoimmune

encephalitis.112,113 15d-PGJ2 a metabolite of PGD2 sup-

presses the immune response and it is useful for the treat-

ment of MS. Also, the overproduction of this prostaglandin

in disease states suggests that this prostaglandin is

a necessary factor that controls the progression of the dis-

ease. On the other hand, prostaglandin E has a protective

role by activating oligodendrocytes that produce myelin.114

Experiments have suggested that prostaglandins are not the
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same in all types of MS. A more recent study showed that

PGD2, PGI2 and 5-lipoxygenase pathways are suppressed in

the acute phase of EAE and return to constitutive levels in

the chronic phase,114 but in a relapsing-remitting MS, PGD2

does not change.115

Alzheimer’s Disease
Alzheimer’s disease is a neurodegenerative disorder that is

defined as the most prevalent cause of dementia (60% to

80%).116 Sever memory loss occurs in this disease that

interferes with normal daily life.117 This disease is asso-

ciated with the accumulation of Amyloidal plaques and Tau

tangles in the brain.118 In most cases, it begins in individuals

over 65 years old. Different mechanisms have been pro-

posed for Alzheimer’s disease. The first evidence that sup-

ports the role of inflammation derives from the reduction of

the occurrence of Alzheimer’s disease in the subset of

patients that take NSAIDs for rheumatoid arthritis.119

Further experiments showed the overproduction of PGE2

in a subset of patients and NSAID therapy was useful in

these patients.120 Astrocyte and microglia interplay plays an

important role in the pathophysiology of Alzheimer’s dis-

ease and PGE2 is present in some subset of patients. Indeed,

PGE2 is a necessary factor that mediates the negative con-

sequence of amyloid-beta and glial cell interaction.

Emerging data support the benefit of the application of

NSAIDs rather that cox-2 selective inhibitors in controlling

Alzheimer’s disease.121 In the later course of Alzheimer’s

disease, the negative effect of amyloid-beta aggregation is

mediated by PGE2 that its receptor is present in microglial

cells that play an important role in Alzheimer’s

pathophysiology.122 Recent studies suggest that suppres-

sing prostaglandin’s action on neuronal metabolism is asso-

ciated with less neuronal injury and lower secretion of

proinflammatory cytokines, TNFα, and IL-6.123,124 Also,

it seems that prostaglandins may be an agent that alleviates

the severity of ischemia-induced dementia.124 The adverse

effect of prostaglandins in Alzheimer’s disease is mainly

mediated through disturbance that occurs as the conse-

quence of oxidative stress125 and microglia function med-

iates immune clearance of unwanted by-product

materials.126 All these studies suggest that prostaglandins

are the agents that may interfere with all the stages that may

necessary for both progression and initiation of dementia.

Based on these reasons, prostaglandins antagonist have

used successfully for the alleviation of Alzheimer’s

disease.127 Prostaglandins have been shown to cause the

formation and disappearance of APP holoprotein that has

a toxic effect on the proteins.128 The positive effect of this

treatment is mainly mediated through the selective antago-

nist of the PGE2 receptor.129 Also, the PGE3 receptor

antagonist has a protective role in dementia that is caused

by disturbed oxidative stress that eventually leads to amy-

loid-beta plaque formation (Ikeda-Matsuo). PGE4 antago-

nist also is an effective treatment for alleviating the

cognitive deficit of patients.130 Other prostaglandins such as

PGD2 have related to Alzheimer’s disease131 but about

PGF2α and TXA2 studies are not confirmatory.

Parkinson’s Disease
Parkinson’s disease is a long-term progressive brain dis-

ease that affects movements. The disease usually pro-

gresses over time.132 The most prevalent symptoms at

the onset of the disease are shaking, rigidity, slowness of

movement and difficulty in walking.133 Destruction of

dopaminergic neurons in substantial nigra is necessary

for the occurrence of the symptoms of the disease.

Different treatments have been proposed for this

disease.134 An experiment that supports inflammation has

a role in this disease is derived from microglial activation.

However, prostaglandins in this disease have a negative

role. Dopamine is the main target for the treatment of

Parkinson’s disease can be considered for prostaglandin-

related treatment. A recent study suggests that prostaglan-

dins can cause unfolding and aggregation of Parkinson’s

disease associated with UCHL1.
135 Also, COX-2 overpro-

duction can cause PGE2 overexpression that results in the

death of dopaminergic neurons.136 COX-2 overproduction

has been confirmed in another study in this disease.137

NSAID (nonsteroidal anti-inflammatory drugs) intake has

been well substantially reduced the severity of Parkinson’s

disease by increasing the survival of dopaminergic

neurons.138 However, in some studies, this positive effect

did not observe. In different experiments, PGE has been

shown that is the most putative prostaglandin that inter-

feres with Parkinson’s disease.139 Other prostaglandins

such as PGD2 and PGJ2 have been shown to interfere

with normal protein metabolism but strong evidence that

supports the involvement of such prostaglandins in

Parkinson disease is not confirmatory.140

Huntington's Disease
Huntington’s disease is a progressive brain disease that

mainly affects individuals in their thirties and forties. It

manifests itself through uncontrolled movements, emo-

tional problems, and loss of cognition.141 Many people
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with Huntington’s disease develop involuntary jerking or

twitching movements known as chorea. Also, juvenile

Huntington’s disease that is less common than adult-onset

tends to progress more quickly than adult form.142

Huntington’s disease affects an estimated 3 to 7 per

100,000 people. Mutations with an autosomal dominant

pattern in the HTT gene cause Huntington’s disease.143

COX-2 inhibitors overall improved the outcome of motor

function in Huntington’s diseases.144–146 This positive

effect was not observed in transgenic animals.147

Enhancement of prostaglandin levels such as PGE2, PGf2α
by injection has a negative effect of motor function and

neuronal markers and restoration of the normal level of

prostaglandins by COX-2 inhibitors had a positive outcome

in the treatment of Huntington’s disease.148,149 PGA1 has

also suggested having a role in Huntington Disease but

further experiments are needed to establish its role.150

Amyotrophic Lateral Sclerosis (ALS)
ALS is a rare neurologic disorder that is characterized by

the loss of neurons that are necessary for voluntary

movements.151 ALS manifests by stiff muscles, muscle

twitching, and muscle weakening. In 90% to 95% of the

case, no definite cause is identified.152 The patient has

difficulty in all actions that movement of voluntary mus-

cles is necessary such as walking, swallowing and finally

breathing. In this disease, prostaglandin alternations also

have been observed. In ALS prostaglandins are elevated

and have a negative effect on neuronal function. Elevated

prostaglandins especially PGE2 has been associated with

an increased rate of neuronal death and disability.153 Also,

another study confirms that prostaglandin production can

cause the disease to progress.154 For this reason, NSAID

therapy has been proposed for the alleviation of this

disease.155,156

Conclusion
In this review article, the importance of prostaglandins in

brain diseases was discussed. Prostaglandins in some dis-

eases act as a protective role and in some diseases act in

a negative manner. So NSAID therapy is not recommended

in all patients. So, more studies should be done to understand

the precise pathophysiology that is responsible for the initia-

tion and progression of brain diseases. Overall these studies

suggest prostaglandins are the agents that have an important

role in brain disorders’ pathophysiology and these agents

modulate the course of the diseases.
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