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Abstract: Nanogels are robust nanoparticles that could be used to deliver active drug  compounds 

in controlled drug delivery applications. This review discusses the design, synthesis, loading, 

and release of local anesthetics using polymeric nanoparticles produced via various types of 

polymerization techniques. The strategy of using layer-by-layer approach to control the burst 

release of procaine hydrochloride (PrHy; a local anesthetic drug of the amino ester group) is 

described and discussed.
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Introduction
One of the top priorities in therapeutics is pain control and in spite of the recent advances 

in clinical investigation of new therapeutic agents, pain relief is still a significant 

 challenge. The reasons include difficulties of correctly evaluating pain,  underestimation 

of patients’ pain, misconceptions about analgesic use and side effects, gaps in pain 

management process, and lack of acute pain service.1 Local anesthetics (LAs) are 

among the different classes of pharmacological compounds used to eliminate pain. 

LAs are small molecules that could be easily eluted from the site of administration, 

thus limiting the analgesic property.

Cocaine is the first compound that was used as a “numbing agent” in the early 1500s. 

However, it is usually associated with the central nervous system and cardiovascular 

system toxicity. Presently, most of the synthetic LAs are structurally related to cocaine 

but with reduced toxicity. LA works by cutting the signal of nerve impulses in nerve cell 

membranes through the shutting of voltage-gated Na+ channels. The degree of  numbness 

from a certain concentration will depend on how the nerve is stimulated and the  resting 

membrane potential.2 Clinical LAs belong to one of the two classes: amino esters 

(Figure 1A) and amino amide (Figure 1B). Amino ester LAs were developed in early 

1900s. Ester-based LAs are hydrolyzed and inactivated by plasma esterase,  primarily 

plasma cholinesterase. Therefore, they are always associated with low potency, slow 

onset, and short therapeutic duration.2 Amino amide LAs became popular and many 

of this class of drugs were developed by 1970s. Amide-based LAs are degraded by 

hepatic endoplasmic reticulum, leading to a slower removal from the body and higher 

concentration in the plasma. With the introduction of bupivacaine, accidental overdose 

was often fatal and responded poorly to conventional resuscitation.2,3 This had led to 

a search for long-acting LAs with improved therapeutic margins and reduced toxicity. 
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Trachez et al and Zapata-Sudo et al demonstrated that S(−) 

enantiomer of bupivacine is more potent4 and less toxic5 than 

R(+) enantiomer  leading to the selection of S(−) enantiom-

ers of ropivacine and levobupivacine as safer alternatives to 

bupivacine.

High toxicity of LA due to over dosage and strong clini-

cal requirements have triggered the interest in the field on 

controlled release of LA. One of the primary objectives in 

the design of a controlled release system is the controlled 

delivery of therapeutics to the site with an optimal release 

rate. From here, two major areas have evolved: (1) design 

of good carriers to protect and deliver the therapeutics to 

the site of action and (2) development of a sustained drug 

formulation for a slow and long lasting effect.6 The release 

of these drugs will be controlled by desorption, diffusion, 

erosion, or a combination of these factors.7 One approach to 

prolong the effect of analgesia is to complex the LA with 

drug delivery vehicles. The larger carriers will remain at the 

injection site for a longer period of time with a gradual release 

of the LA. Liposomes,8–11 cyclodextrins,12 microspheres,13–15 

hydrogels,16 and nanospheres6,17–20 could encapsulate the 

LA for controlled delivery, prolonged anesthetic effect, and 

reduced toxicity. From these various types of controlled 

delivery systems, depending on the end-use requirements, 

the most popular choice is nanospheres followed by micro-

spheres and hydrogels.21

In this review, different methods of nanogel synthesis and 

an overview of drug release from nanogel-based delivery 

vehicles will be described and discussed.

Synthesis technique
Current approaches used for the preparation of nanogels can 

be classified into four categories: (1)  polymerization of mono-

mers in a homogeneous phase or in a microscale or nanoscale 

 heterogeneous environment; (2)  physical  self-assembly of 

interactive polymers; (3) cross- linking of  preformed  polymers; 

and (4) template-assisted  nanofabrication of nanogel 

particles. In this section, we will discuss these methods, 

where the synthesis technique being employed is typically 

dictated by the desired application and types of study being 

performed.

Surfactant-free emulsion polymerization or  precipitation 

polymerization is a versatile technique for synthesizing 

stimuli-responsive nanogels. Nanogels synthesized by 

this method are formed by homogeneous nucleation of 

 water-soluble monomers, which results in the formation 

of a colloidal suspension of the growing polymer, and the 

charge imparted by the initiator stabilizes the gels. This 

method is versatile from the standpoint of particle size 

control. To synthesize smaller nanogels, the precursor 

particles must be  stabilized earlier in the reaction, where an 

ionic  surfactant can be added to impart colloidal stability. 

Similarly, larger particles can be obtained by decreasing 

the surfactant  concentration.22 Peppas and coworkers23 

synthesized a  suspension of nanospheres composed of poly 

( ethylene glycol) (PEG)-grafted poly (methacrylic acid) 

(PMA) in water using the precipitation polymerization 

method.  Thermoresponsive poly (N-isopropylacrylamide) 

(PNIPAM) nanogels with narrow size distribution were 

first synthesized by Pelton and Chibante,24,25 where all the 

monomers and cross-linker are dissolved in water.

Precipitation polymerization is best for materials that are 

hydrophobic, so that they can readily attach to the  collapsed 

precursor particle and is useful only for materials that are 

stable at high temperatures, and hence it cannot be used to 

incorporate biological macromolecules. Thus, if a  hydrophilic 

comonomer is to be copolymerized, only a  certain weight per-

centage can be incorporated.22 To overcome these drawbacks, 

inverse microemulsion polymerization is used, where an aque-

ous solution of all the monomers is added to an appropriate 

amount of oil and surfactant to produce a thermodynamically 

stable microemulsion. Various drugs, DNA, and cells are 

physically incorporated into these aqueous microemulsions, 

which are then cross-linked with appropriate cross-linking 

agents. The resulting cross-linked nanogels are prepared by 

dispersion in organic solvents, and then purified by precipita-

tion, centrifugation,  washing (usually with organic solvents, 

such as isopropanol), and  lyophilization. Several reports have 
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Figure 1 Chemical structure for (A) amino ester and (B) amino amide.
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demonstrated the  synthesis of hydrophilic or water-soluble 

particles  comprising of poly (2-hydroxyethyl methacrylate) 

(PHEMA),26 polyacrylic acid (PAA),27  polyacrylamide 

(PAAm),26 PNIPAM,28–30 and polyaniline.31 These nanopar-

ticles can be either hollow and zwitterionic or core–shell 

nanocapsules with hydrophobic shell and hydrophilic  interior. 

Labile bonds are frequently introduced into the nanogels 

 during polymerization to make them degradable and  facilitate 

drug release.32–36 Matyjaszewski and coworkers35,36 used the 

atom transfer radical polymerization (ATRP) performed in 

an inverse microemulsion system to synthesize stable bio-

degradable nanogels comprising of water-soluble polymers 

with a disulfide-functionalized cross-linker.

Nanogels can also be formed using the physical self-

assembly of polymers involving a mixture of amphiphilic 

copolymer and a therapeutic agent in an organic solvent via 

membrane dialysis or from direct complexation between 

cationic copolymers and genes or proteins in an aqueous solu-

tion through noncovalent interactions, such as Van der Waals, 

hydrogen bonding, stereocomplexation, charge transfer, 

and polyelectrolyte complexation. During the self-assembly 

process, small molecular drugs and macromolecular thera-

peutics, such as genes and proteins, can be incorporated into 

the micellar nanostructures. The most widely used self-

associating polymers are amphiphilic block copolymers 

that possess hydrophobic and hydrophilic blocks that can 

self-assemble in selective solvents to form submicron-size 

micelles (nanogels). These amphiphilic polymers can be syn-

thesized via living radical polymerization (LRP) techniques 

(eg, ATRP, reversible addition – fragmentation chain transfer 

[RAFT], and nitroxide-mediated polymerization [NMP]). 

The micellization of amphiphilic block copolymers can be 

tailored by changing the block nature, block lengths, compo-

sition, or architecture.37–39 In addition, external parameters, 

ie, change in temperature or solvent or addition of additives, 

such as electrolytes and cosolvents, provide extra degrees 

of freedom to tune the micellar behavior of the amphiphilic 

block copolymers.40–44 Moreover, the chemistry of the surface 

can be manipulated for the conjugation of a targeting signal 

that can recognize specific tissues or cells. The function-

alities of the core of nanogels can be tuned using specific 

chemical approaches to improve the drug-loading capacity. 

The molecular compositions of the copolymers used to form 

the nanogels can be controlled through LRP approaches to 

achieve nanostructures with narrow size distribution.

In addition to the above two polymerization methods, 

covalent cross-linking of preformed polymer chains pro-

vides  excellent opportunities for producing functional 

 nanogels with large pore sizes for drug delivery.45 In  particular, 

it was used to synthesize the first cross-linked cationic 

nanogel for  polynucleotide delivery.46 In this case, a doubly 

activated PEG was conjugated to a branched  polyethylenimine 

(PEI) in an oil in water emulsion (dichloromethane in 

water)  followed by evaporation of the solvent in vacuo and 

maturation of the nanogel in an aqueous solution. Cationic 

PEI containing nanogels of 80–200 nm diameter were also 

obtained by the photo-Fenton reaction in aqueous media.47,48 

Small (40–45 nm), nontoxic cross-linked pullulan nanogels 

were prepared in the reverse micellar system (aerosol OT/

hexane).49,50 The cross-links that connect the polymeric chains 

in such nanogels can be made degradable to reduce their toxic-

ity. For example, a biodegradable segmented PEI connected 

by disulfide linkers was used to prepare cationic nanogels for 

polynucleotide delivery,51 and hyaluronic acid (HA) nanogels 

containing biodegradable disulfide linkages were prepared by 

the inverse water in oil emulsion method.52 An interesting type 

of cross-linked nanogels containing DNA was obtained by 

mixing thiol-functionalized 6-arm-branched PEG and DNA 

in dimethyl sulfoxide, which produced particles of 100 nm 

diameter and subsequently cross-linked by oxidation to obtain 

DNA-loaded biodegradable nanogels.53

Combining the controlled self-assembly of polymeric 

micelles and cross-linking techniques provided opportuni-

ties for the control of the spatial distribution of polymeric 

chains at the nanolength scale. For example, Wooley and 

coworkers54–58 have chemically cross-linked the shell layers 

of polymeric micelles to obtain various shell-cross-linked 

nanoparticles with morphologies, such as spheres, rods, 

and even toroids. In another study, PEI was cross-linked to 

micelles of doubly activated Pluronic® triblock copolymer 

in aqueous solution to produce nanogels with a hydropho-

bic poly (p-phenylene oxide) (PPO) core surrounded by 

a swollen cross-linked PEI and a PEG shell.59 Lee et al60 

photo-cross-linked the polymeric micelles of poly(D,L-

lactic acid)-b-PEG-b-poly(D,L-lactic acid) with acrylate end 

groups, resulting in the formation of nanogels containing self-

assembled hydrophobic domains of micelles with insoluble 

poly(D,L-lactic acid) cores, which could be loaded with a 

hydrophobic anticancer drug.

Finally, DeSimone and coworkers61 developed a novel 

imprint photolithographic technique, particle replication 

in nonwetting templates (PRINT), for the fabrication of 

nanogels. They used nonwetting elastomeric molds of a 

low-surface-energy perfluoropolyether network prepared on 

patterned silicon templates by photochemical  cross-linking 

of dimethacrylate-functionalized perfluoropolyether 
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 oligomers. The nonwetting molds eliminate the formation 

of a residual interconnecting film between the molded 

objects, thus  producing monodispersed, shape-specific 

nanoparticles from an extensive array of organic precursors. 

This method enables strict control over the particle size, 

shape,  composition, and surface functionality and permits 

the loading of delicate cargos, including pharmaceutical 

drugs and biomacromolecules. For example, monodis-

persed 200-nm-diameter  PEG-based swellable particles 

were fabricated with the PRINT method by UV-induced 

copolymerization of several vinyl  monomers, such as PEG 

triacrylate, PEG monomethyl ether monomethacrylate, and 

p-hydroxystyrene.62

Nanogel systems as carriers
Parenteral route is the only approach to administer drugs, 

as this will ensure the quickest onset of the therapeutic 

product. From the work of Lee et al,63 injections made with 

nanogels are less painful when compared with cosolvent-

based formulation. High blood circulation time could be 

achieved due to the size of the nanogels, which is very 

important to extend the therapeutic efficacy of the LA. 

Nanogels exhibit excellent thermodynamic stability, high 

solubilization capacity, low viscosity, and ability to with-

stand sterilization techniques, and these properties make 

nanogels as interesting delivery systems.64 Most impor-

tantly, after the encapsulation of LA into the nanospheres, 

the toxicity effect is greatly reduced as shown by the 

work of Moraes et al using poly(DL-lactide-co-glycolide) 

nanospheres encapsulated with either bupivacaine17 or 

ropivacaine.18 In both the cases, after encapsulation of the 

LA, there was a significant improvement in the viability 

of 3T3 cells (Figure 2).

Drug – nanogel interactions
There are 2 goals that should be satisfied in the design of 

a delivery system:65 (1) efficient binding of drugs to the 

 polymeric matrix and release of the drugs in a controlled 

manner and (2) ability to release through a local or externally 

applied trigger by changing the binding affinity between the 

drug and the polymeric matrix. Since most of the LAs  possess 

 secondary or tertiary amines, electrostatic interaction is the 

dominant driving force, depending on the pH of the  solution 

and pKa of the LA. Therefore, a clear understanding on the 

interaction between the LA and the nanogel is critical for the 

development of an efficient drug delivery system. Procaine 

 hydrochloride (PrHy; a LA drug of the amino ester group) 

loaded into methacrylic acid–ethyl acrylate (MAA–EA) 

 nanogels through hydrophobic and hydrogen bonding 

(Figure 3) showed a higher release at a higher pH (Figure 4).66 

At a higher pH, the acid on the nanogels will be deprotonated, 

thus increasing the osmotic pressure and swelling the nanogels. 

This will promote the release of PrHy through the increase in 

porosity.20 Different kinds of  interactions will result in a dif-

ferent release profile, which will be important for the design 

of a delivery carrier, where drug release can be triggered by 

changing the pH. First, the results demonstrated the viability 

of tuning the release profiles of drug from a pH-responsive 

nanogel system. The proportion of drug released can be con-

trolled by manipulating the pH of the environment. Hence, it 

is possible to design a pH-dependent gradient release drug 

delivery system, such that the active drugs could be released 

from the carrier in different regions of the physiological 

environment that possess different pH conditions. This will 

extend the therapeutic range of active drugs and ensure that 

the targeted areas receive the right  dosage of drugs. Second, 

the interaction between the drug and delivery carriers controls 
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Figure 2 (A) Cytotoxic effects of bupivacaine (BVC), poly(DL-lactide-co-glycolide) nanospheres (PLGA-NSs), and PLGA-NS:bupivacaine at 0.25% and 1.25% on Balb/c 
3T3 cells incubated for 24 hours at 37°C and 5% CO2, as evaluated by MTT reduction test17 and (B) cytotoxic effects of ropivacaine (RVC), PLGA-NS, and PLGA-
NS:ropivacaine at 0.25 and 1.25 mg/mL on Balb/c 3T3 cells incubated for 24 hours at 37°C and 5% CO2, as evaluated by MTT reduction test.18
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α = 0.5 (∆), and α = 1 (◊) and (B) differential enthalpy curves for titrating 600 mM PrHy into fully neutralized (α = 1) 0.1 wt% HASE 20–80–1 at varying temperatures:  
25oC (◊), 40oC (), and 50oC (∆).20

the release profiles and the effective therapeutic range of drug 

carriers. Therefore, it is possible to design a drug delivery 

system with enhanced interaction in order to have a better 

control of release behavior.20

Size effect on the release of drugs
Histological studies showed that particles with a size of 

100 nm could diffuse through the submucosal layers, 

whereas larger-sized particles (500 nm–10 µm) were found 

to  concentrate within the epithelial tissue linings.67 Due 

to the high surface area-to-volume ratio, the release of 

 hydrophilic LA will be rapid, that is indicated by the initial 

burst release. High initial burst release has been observed 

for poly(DL- lactide-co-glycolide) nanopaticles,19,68 chitosan 

nanoparticles,69 and PNIPAM-co-acrylic acid hydrogels in 

the submicron range.70 A simple approach in addressing the 

problem of initial burst of nanogels was proposed by our group 

using the layer-by-layer (LBL) technique.71 LBL is a simple 

technique of  coating alternating layers of oppositely charged 

polyelectrolyte onto a surface. However, the coating must not 

be too stable, as this will impact the effectiveness of the coated 

particles as a vehicle for drug delivery.  Permeability will be 

reduced if the coating is too stable, resulting in a continuous 

slow release of the drugs.71 With more polyelectrolyte layers, 

the more accessible PrHy molecules have to diffuse through 

the polyethylene (PE) layers, therefore mitigating the burst 

release phenomenon (Figure 5).71

Effect of drug-loading content  
on drug release
From the work of Görner et al,6 it is shown that size and drug load-

ing do have an effect on the mass of drugs released per milligram 
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of nanospheres and the time to attain equilibrium release. Larger 

particles will result in higher mass of drugs released and longer 

time to achieve equilibrium. Tan et al66 have also shown that with 

a higher drug loading content of PrHy, the rate and amount of 

drugs released will be greatly affected (Figure 6). As a result, we 

have learned that the drug release rate of the encapsulated drugs 

is highly dependent on the state (crystalline or dispersed).

Conclusion
The use of LA could be limited by the relatively short thera-

peutic action and systemic toxicity related to high drug plasma 

concentration as a result of fast systemic uptake. Improvement 

of regional administration of LAs could be achieved by incor-

porating them into drug delivery systems. Nanogels are prob-

ably one of the better candidates due to the lesser pain during 

injection and longer blood circulation time. However, design-

ing a perfect candidate would require one to have a thorough 

knowledge of the interaction between the drug and the carrier 

and the effect of size and drug  loading on drug release.

Disclosure
The authors report no conflict of interest in this work.
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