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Abstract: Oncolytic viruses (OVs) are replication competent agents that selectively target

cancer cells. After penetrating the tumor cell, viruses replicate and eventually trigger cell

lysis, releasing the new viral progeny, which at their turn will attack and kill neighbouring

cells. The ability of OVs to self-amplify within the tumor while sparing normal cells can

provide several advantages including the capacity to encode and locally produce therapeutic

protein payloads, and to prime the host immune system. OVs targeting of cancer cells is

mediated by host factors that are differentially expressed between normal tissue and tumors,

including viral receptors and internalization factors. In this review article, we will discuss the

evolution of oncolytic viruses that have reached the stage of clinical trials, their mechanisms

of oncolysis, cellular receptors, strategies for targeting cancers, viral neutralization and

developments to bypass virus neutralization.
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Introduction
Cancer remains one of the most prevalent non-communicable diseases worldwide.1

While traditional cancer therapies including chemotherapy, radiotherapy, surgery

and radiosurgery can result in a beneficial outcome, they often cause severe off-

target cytotoxicity. The necessity to specifically aim at cancer cells, while sparing

healthy cells, has encouraged the development of targeted cancer treatment para-

digms. In recent years significant progress has been made in developing viruses as

a therapeutic strategy against cancer.2 Oncolytic viruses (OVs) are replication

competent viral strains that specifically infect and lyse cancer cells. Many of the

advantages of using OVs for cancer therapy arise from the fact they can be

considered self-amplifying anti-cancer agents. Following tumor cell entry, OVs

replicate and eventually trigger cell lysis, releasing new viral progeny, which in

turn will invade and kill neighboring cells. The fact that viral amplification occurs

within the tumour is likely to play an important role in tumor control through cell-

cell spread.3 Additionally, viruses released from lysed cells can be transported by

the circulatory system to tumors residing remotely from the original site.

The first documented case of using viruses as a potential cancer treatment dates back

to 1910s, when a patient diagnosed with cervical carcinoma experienced remission after

vaccinationwith a live-attenuated rabies vaccine.4 This incident prompted further clinical

studies using rabies vaccine as an anti-cancer agent and exploitation of many other
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oncolytic viral strains such as Egypt 101 virus,5 adenoidal-

pharyngeal-conjunctival virus,6 Newcastle disease virus7,8 and

mumps virus.9 However, it should be noted that these initial

trials were fraught with unethical practices. In recent years,

there has been a resurgence of studies focused on possible

roles for viruses in killing cancer cells. At the moment, more

than 570 clinical trials using OVs are either active or recruiting

patients,10 while many other viruses are in pre-clinical trials.

This interest was ignited in part by the approval of Talimogene

Laherparepvec (T-VEC), a modified oncolytic herpes simplex

virus-111 for clinical use in USA, Europe and Australia,12

along with the clinical use of adenovirus derived Oncorine

for head and neck cancers treatment in China13 and native

Echovirus 7 under the name of Rigvir14 for the treatment of

melanoma in several European countries.15

This review is focused on the evolution of oncolytic

viruses that have reached the stage of clinical trials, their

mechanisms of oncolysis and interactions with cellular

receptors. In addition, limitations associated with oncovir-

otherapy such as antiviral immune response (viral neutra-

lization) will be discussed along with recent developments

towards overcoming such obstacles.

Mechanisms of Oncolysis
Most oncolytic viruses exert anti-tumor activity by penetrat-

ing the tumor cells, establishing a lytic cycle and ultimately

causing the activation of cell death pathways. While some

OVs have the natural capacity to infect specific tumors

through receptor-mediated internalization,14,16-18 most OVs

have been engineered to enhance their tumor selectivity and

to reduce virulence in normal cells.12,13,19,20 Even though

natural receptors responsible for oncolytic viral entry are

expressed on non-malignant cells thereby allowing

a successful infection,21–23 OVs often require a defect in

innate immunity to successfully infect and propagate,

which is only present in tumor cells but not in healthy

cells.24 Alterations in transcriptional and cell signaling path-

ways, such as increased expression of B-cell lymphoma-

extra-large (Bcl-xL) and activation of mitogen-activated pro-

tein kinases (MAPK) signaling can lead cancer cells to be

more susceptible to OVs.25,26 In addition to direct cell lysis,

OV infection and subsequent cell lysis trigger the release of

danger-associated molecular patterns (DAMPs) that contri-

bute to a long-lasting adaptive antitumor immune

response.27–29 In fact, substantial effort has been made to

develop OVs that encode transgenes designed to induce an

immunogenic cell death (ICD) with the goal of priming the

immune system against tumors.30–33 ICD releases DAMPs,

which are recognized by antigen-presenting cells (APCs)

such as macrophages and dendritic cells in the tumor micro-

environment to elicit an innate immune response.34 As viral

replication and tumor lysis progress, APCs produce cyto-

kines, eventually recruiting other immune cells. The ultimate

goal of this immune priming process is to activate

T lymphocytes against specific tumor antigens in order to

establish an adaptive immunity.35 Evidence for OV-induced

innate and adaptive immune responses comes from several

clinical trials. For instance, increased abundance of CD8+

andCD4+ Tcells has been reported in patients with advanced

melanoma, who received T-VEC or coxsackievirus in sepa-

rate clinical trials.31,36-38 Patients with metastatic pancreatic

adenocarcinoma showed increased B cells and natural killer

cells when treated with a combination of reovirus and pacli-

taxel/carboplatin and these responses were linked to an

increased disease control rate (DCR) in responding

patients.33 Furthermore, increased expression of anti–inflam-

matory cytokines such as interleukin (IL) 6, IL 10 and tumor

necrosis factor-α (TNF-α) was reported in patients with

refractory primary or metastatic liver cancer treated with

poxvirus strain JX-594,32 with some patients showing

a durable objective response according to response evalua-

tion criteria in solid tumors. In addition, OVs have also been

reported to directly interfere with tumor perfusion.

Engineered forms of adenoviruses39 and vaccinia virus40

have been shown to elicit antiangiogenic effects in mouse

models. While not yet clinically documented, the possibility

of a single OV to employ all three mechanisms of oncolysis

in ongoing trials or in future developments holds promise.

Architecture of Oncolytic Viruses
The nature of the genome and the morphology of OVs are

two essential factors that influence their amenability for

cancer treatment development. First, oncolytic viruses

pose different advantages for oncovirotherapy depending

on their DNA or RNA genome. The structural stability of

DNA combined with the precision of the DNA polymerase

allows double-stranded DNA (dsDNA) viruses to encode

a large number of proteins. The dsDNA viruses have the

advantage of a stable genome that can be engineered to

attenuate a pathogenic viral strain, to increase tumor speci-

ficity, to avoid anti-viral immune response or to code for

proteins that can act synergistically with existing inflamma-

tory host responses to establish a stronger anti-tumor

immune response.2 A classic example is T-VEC, which

has been modified to attain reduced neurovirulence41 and

to stimulate the immune response.42

Jayawardena et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Oncolytic Virotherapy 2020:92

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


On the other hand, oncolytic RNA viruses possess the

advantages of tumor specificity and a low off-target cyto-

toxicity dependent on the affinity to specific receptor usage.

Paramyxoviruses and picornaviruses are two virus families

that have been extensively studied for their oncolytic poten-

tial. Newcastle disease virus and measles virus from

Paramyxoviridae family feature a negative-sense, non-

segmented single-stranded RNA, which requires conversion

into a positive-sense RNA before translation.43 In picorna-

viruses, the positive-sense single-stranded RNA (ssRNA)

genome acts as a messenger RNA (mRNA) and it is trans-

lated into the viral polyprotein shortly after penetrating the

host cells. This provides a mechanism for oncolytic picor-

naviruses to replicate and propagate faster.44,45 RNA viruses

inherit a high error rate in genome replication and therefore

are genetically unstable.46 From an evolutionary point of

view, such mechanisms allow them to outmaneuver the

host’s antiviral response due to viral diversity but can

raise challenges for oncovirotherapy, especially when the

virus is pathogenic in nature.

In addition to the classification of oncolytic viruses based

on their genetic materials, they can be further sub-divided

into two groups depending on virion architecture. Herpes

simplex virus, vaccinia virus and rhabdoviruses fall into the

enveloped DNA virus group, whereas adenovirus and reo-

virus belong to the non-enveloped DNA virus group. In the

oncolytic RNA virus group, paramyxoviruses such as

Newcastle disease virus and measles virus are enveloped,

whereas picornaviruses are in the non-enveloped group. In

terms of viral morphology, enveloped viruses are easily

amenable to modification for use as OVs. Their morphology

implies a relatively direct mode of infection in which the

viral and cellular membranes fuse in order to deliver the

nucleocapsid to the cytoplasmic space.47 The mechanism is

mediated by the presence of fusion proteins evolved to

recognize specific cellular receptors (Figure 1). Triggered

by special cues, either changes in pH or the binding of co-

receptors, fusion proteins undergo major conformational

changes to bring the two membranes in close proximity and

eventually causing them to merge.47 Non-enveloped virus

architecture consists of a protein cage with icosahedral or

helical symmetry harbouring the genome. Their mechanisms

of cell entry are less understood, but it is known to involve

the binding of a specific cellular receptor (Figure 1) that

could trigger a signaling process leading to capsid

endocytosis.48 Alternatively, receptor binding could function

just as an attachment strategy to be followed by entry.49 The

requirement of a specific receptor for tumor recognition and

infection has been intensively investigated in picornaviruses

and adenoviruses (Figure 1).

The virion size and morphology are two important

factors controlling OVs applicability. In order to spread

and elicit their antitumor effect, oncolytic viruses must be

able to overcome numerous physical barriers in the tumor

microenvironment such as tight cell-cell junctions, extra-

cellular matrix deposits, stromal cells and interstitial fluid

pressure.50 Some oncolytic viruses, such as picornaviruses,

have a small size (~30 nm) and can overcome such phy-

sical barriers.51,52

A serious obstacle for both enveloped and non-

enveloped oncolytic viruses is to pass the genome across

the cellular membrane. This can be done either by disrupt-

ing the membrane continuity or by using a channel formed

by viral and/or cellular proteins.48

Strategies for Targeting Cancer Cells and

Reducing off-Target Cytotoxicity
Selective targeting of tumors is of utmost importance and

perhaps the most frequently discussed topic in the field of

oncovirotherapy due to the use of human pathogenic

viruses to treat cancers.53 These strategies could either

involve exploiting inherent properties of a wild-type onco-

lytic virus such as specific receptor/dis-regulated cellular

mechanisms usage and/or manipulating specific viral

genes and surface properties to render tumor specificity.

Utilizing the Natural Tropism of OVs

Natural tropism is the capacity of a population of viruses to

exploit extracellular markers expressed in cancer cells or to

utilize intracellular pathways or immune-avoidance mechan-

isms to target tumors. Receptors responsible for oncoviral

permissivity in tumors often play an essential role in tumor

growth and progression or in providing protection from anti-

tumor immune mechanisms.24 For instance, cluster of differ-

entiation (CD) 155, CD46, and integrin α2β1 overexpressed in
tumors, providing innate immunity for cancer cells, serve as

entry ports for oncolytic poliovirus, measles virus and echo-

virus, respectively.54–56 On the other hand, herpes virus entry

mediator (HVEM) and nectin-1, anthrax toxin receptor 1

(ANTXR1), laminin receptor, intracellular adhesion mole-

cule-1 (ICAM1) and decay-accelerating factor (DAF), which

all have a functional role in tumor growth and progression,

have been identified as the cellular receptors for herpes sim-

plex virus, Seneca Valley virus-001, Sindbis virus and

coxsackievirus.17,57-61 In addition, numerous oncogenic path-

ways involved in carcinogenesis overlapwith requirements for
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a successful infection and replication in some native oncolytic

viruses. For example, tumor selectivity of Reolysin is depen-

dent on a number of endogenous tumor factors such as RAS

activation, downregulation of interferon (IFN) antiviral

response and p53 pathway.26,62,63 Furthermore, Newcastle

disease virus has been shown to target cancer cells overexpres-

sing an anti-apoptotic protein Bcl-xL,25 while the high

specificity of vesicular stomatitis virus for cancer cells is

governed by its high sensitivity to type I IFNs, a system

defective in most cancer types.64

Engineered Tropism

There are several strategies dictated by their viral archi-

tecture for modifying OVs to specifically target cancer

Figure 1 Targeting of receptors overexpressed in cancers with oncolytic viruses. Enveloped DNA viruses utilize their surface glycoproteins to bind receptors over-

expressed in cancers. Herpes simplex virus glycoprotein D binds herpes virus entry mediator (HVEM) or nectin-1 prior to initiation of host membrane fusion by HSV

glycoprotein B. Vaccinia virus and vesicular stomatitis virus bind cell surface glycosaminoglycans (GAGs) and low-density lipoprotein (LDLR) receptor, respectively.

Enveloped, RNA viruses Newcastle disease virus and measles virus interact with cell surface sialic acid (SA) and CD46 or nectin-4, respectively, to facilitate entry into

host cells. Sialic acid or poly-sialic acid (PolySA) serves as an attachment receptor for non-enveloped DNA viruses such as reovirus and human adenovirus. Junction adhesion

molecule-A (JAM-A) acts as the entry receptor for reovirus, whereas coxsackievirus-adenovirus receptor (CAR), CD46, desmoglein-2 (DSG) have been shown to be the

entry receptors for adenoviruses. Parvovirus (ssDNA) exploits cell surface transferrin receptor 1 as the entry receptor. Among the non-enveloped RNA viruses Seneca

Valley virus, poliovirus, coxsackievirus bind anthrax toxin receptor-1 (ANTXR1), CD155, intercellular adhesion molecule-1 (ICAM-1) or CAR, respectively.
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cells. For enveloped viruses, a direct method is the inser-

tion of glycoproteins from other viruses that recognize the

targeted receptor (Figure 2). For instance, it was shown

that a modified lentiviral vector, that possesses E2 glyco-

protein in the envelope, can target a P-glycoprotein in

melanoma.65 The neurotoxicity of vesicular stomatitis

virus (VSV) has been abrogated by the substitution of its

glycoprotein G with a glycoprotein variant of the lympho-

cytic choriomeningitis virus (LMCV-GP).66 Similarly, coat

proteins can be modified with peptide ligands or antibody

fragments recognized by the desired receptors.24,67

Adenovirus capsid fibers have been modified with an

insertion of arginine-glycine-aspartic acid (RGD) moiety

acting as the binding site of integrin receptors overex-

pressed in tumors (Figure 2).68 An alternative retargeting

approach that does not involve the modification of the

virus is the use of bispecific soluble adapters designed to

bind both the OV and any given targeted antigen on cell

membrane, mimicking a bona fide virus-receptor engage-

ment (Figure 2). This strategy was employed to redirect

herpes simplex virus-1 binding from nectin-1 to epidermal

growth factor receptor (EGFR) by using a soluble adaptor

protein P-V528LH that harbors a gD-binding domain of

nectin-1 fused to virus and a single-chain antibody with

affinity to EGFR.69

Several genetic modifications have been introduced in

some oncolytic viruses to warrant tumor selectivity and to

monitor the biodistribution of such viruses after adminis-

tration (Table 1). Mutations introduced into herpes simplex

virus-1 (HSV-1), vaccinia virus (VV), adenovirus (HAdV)

Figure 2 Strategies for retargeting cancers with oncolytic viruses. Oncolytic viral architecture can be modified primarily in three different ways to target cancer-specific

receptors. Pseudotyping of lentiviral (LV) envelope glycoproteins with a variant of Sindbis virus envelope protein has enabled successful targeting of P-glycoprotein expressed

on melanoma cells. Substitution of vesicular stomatitis virus envelope glycoprotein with a variant glycoprotein from lymphocytic choriomeningitis virus glycoprotein (LCMV-

GP) has enhanced the tumor specificity of the recombinant vesicular stomatitis virus (rVSV). Recombinant adenovirus strains have been developed (Ad5lucRGD) by

incorporating an RGD moiety required for interaction with integrin receptors overexpressed in cancers. Finally, bispecific soluble adaptors (P-V528LH) have been used in

the case of herpes simplex virus (HSV), that includes gD-binding domain of nectin-1 fused to virus and a single-chain antibody with affinity to epidermal growth factor

receptor (EGFR).
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Table 1 Modified Oncolytic Viruses in Clinical Trials

Oncolytic Virus Modifications Development

Status

Examples for Phase Studies

Herpes simplex virus-1

(HSV-1)

Replacement of ICP34.5 and 47

genes with granulocyte-

macrophage colony-stimulating

factor (Talimogene

Laherparepvec or T-VEC)

US FDA

approved

Phase II/III

● Patients with unresectable Stage IIIb, IIIc and IV melanoma

(completed, NCT00769704 and NCT00289016)

● In combination with pembrolizumab (MK-3475) for treat-

ment of unresectable Stage IIIb-IVM1c melanoma (active,

NCT02263508)

● T-VEC as a neoadjuvant treatment after surgery against

unresectable Stage IIIb-IVM1a melanoma (active,

NCT02211131)

● Treatment for unresectable recurrent breast cancer (active,

NCT02658812)

Adenovirus (Ad) Deletion of E1B55K and E3B

genes (Oncorine or H101)

Approved in

China

Phase III

● Treatment of malignant pleural effusions in non-small cell

lung carcinoma in combination with recombinant human

endostatin injections (status unknown, NCT02579564)

● Hepatic artery infusion chemotherapy in combination with

Oncorine for the treatment of hepatocellular carcinoma

(recruiting, NCT03780049)

Deletion of E1B55K, E3B and

E1ACR2 regions. Addition of

Arginine-Glycine-Aspartic acid

motif in capsid fibers (Delta-24-

RGD)

Phase I/II clinical

trials

Phase I/II

● Safety study in patients with recurrent glioblastoma (com-

pleted, NCT01582516)

● Treatment for recurrent glioblastoma and gliosarcoma, fol-

lowed by administration of pembrolizumab (active,

NCT02798406)

Vaccinia virus (VV) Deletion of thymidine kinase

gene, vaccinia growth factor

gene and expressing

granulocyte-macrophage colony-

stimulating factor (JX594 or

Pexa-Vec)

Phase II/III clinical

trials

Phase II/III

● Combination therapy with metronomic cyclophosphamide

against advanced breast cancer and advanced soft-tissue

sarcoma (recruiting, NCT02630368)

● Treatment for patients with advanced hepatocellular carci-

noma unresponsive to sorafenib (completed,

NCT01387555)

● In combination with Durvalumab and Tremelimumab for

treatment of refractory colorectal cancer (recruiting,

NCT03206073)

● Treatment for hepatocellular carcinoma in conjunction with

sorafenib administration (active, NCT02562755)

Vesicular stomatitis

virus (VSV)

Expressing interferon-β

and sodium iodide symporter

(VSV–IFNβ-NIS)

Phase I clinical

trials

Phase I

● Treatment for refractory liver cancer or advanced solid

tumors (active, NCT01628640)

● As a monotherapy and in combination with avelumab against

refractory solid tumors (recruiting, NCT02923466)

● Combination therapy with pembrolizumab in refractory non-

small cell lung cancer and head and neck squamous cell

carcinoma (recruiting, NCT03647163)

Expressing interferon-β

and tyrosinase-related protein1

genes (VSV–IFNβ-TYRP1)

Phase I clinical

trials

Phase I

● Treatment for stage III–IVmelanoma (recruiting, NCT03865212)

(Continued)
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and poliovirus (PV) strains have been shown to restrict the

replication of these viruses to cancer cells and to reduce

the toxicity associated with wild-type strains. The selec-

tivity of T-VEC, a modified HSV-1 strain, for tumors is

regulated by inherently low expression of protein kinase

R (PKR) in cancers, that otherwise serves as an upstream

target in normal cells to phosphorylate eukaryotic transla-

tion initiation factor 2 (eIF2) to terminate host cell protein

synthesis.70 However, HSV infected cell protein (ICP)

34.5 has the capacity to reverse this mechanism by depho-

sphorylating eIF2.71 In addition, HSV ICP47 can inhibit

the transporter associated with antigen presentation (TAP),

ultimately reducing the expression levels of the antigen-

major histocompatibility complex (MHC) type I.72

Therefore, both ICP34.5 and 47 genomic sites have been

deleted in T-VEC and replaced with two copies of hema-

topoietic granulocyte-macrophage colony-stimulating fac-

tor (GM-CSF), that promotes the recruitment of dendritic

cells and antigen-presenting cells (APC) to the tumor

site.73 The deletion of ICP47 also serves in translocating

the herpes virus protein US11 to decrease the activity of

PKR in cancer cells.41

Numerous HAdV strains have been genetically engi-

neered to overcome healthy tissue damage and to selec-

tively target tumors. ONYX-015, one of the first strains of

genetically engineered HAdV, was designed to target p53

gene-deficient tumors. A deletion in E1B region prevents

the expression of E1B55K protein, that inactivates p53-

dependent apoptosis in normal cells.74 In the absence of

E1B55K protein, normal cells undergo p53-dependent

apoptosis, thereby halting the viral life cycle. By contrast,

ONYX-015 has the capacity to replicate in tumors with p53

deficiency, given the function of E1B55K can be compen-

sated by other mechanisms in tumor cells. An in vivo study

suggested that ONYX-015 can exert greater antitumor

activity when combined with radiotherapy.75 Furthermore,

in a Phase II clinical trial in patients with recurrent squa-

mous cell cancer of the head and neck, intratumoral admin-

istration of ONYX-015 in conjunction with 5-fluorouracil

and cisplatin showed a more significant effect when com-

pared to monotherapy.76 H101, a successor of ONYX-015,

has been further modified with a deletion in E3B gene.

H101 was the first HAdV to be approved for cancer treat-

ment in China in 2006 under the name of Oncorine.13 Next

Table 1 (Continued).

Oncolytic Virus Modifications Development

Status

Examples for Phase Studies

Measles virus (MV) Encoding sodium iodide

symporter (MV-NIS)

Phase II clinical

trials

Phase II

● Vaccine therapy for recurrent or refractory multiple mye-

loma with or without cyclophosphamide (active,

NCT00450814)

● In combination with cyclophosphamide for treating patients

with relapsed/refractory myeloma (recruiting,

NCT02192775)

● MV-NIS infected mesenchymal stem cells in treating recur-

rent ovarian cancer (recruiting, NCT02068794)

● Comparative study for the effectiveness of MV-NIS vs pacli-

taxel/topotecan hydrochloride/gemcitabine hydrochloride/

pegylated liposomal doxorubicin hydrochloride in treating

fallopian, ovarian and peritoneal cancer (recruiting,

NCT02364713)

Poliovirus (PV) Internal ribosome entry site

(IRES) of poliovirus replaced

with that of human rhinovirus 2

(PVSRIPO)

Phase II clinical

trials

Phase II

● Combination therapy of atezolizumab and PVSRIPO for

treatment of patients with recurrent malignant glioma (not

yet recruiting, NCT03973879)

● Stand-alone treatment for patients with grade IV malignant

glioma (recruiting, NCT02986178)

Notes: Clinical trials as registered at https://clinicaltrials.gov. Clinical trial status and National Clinical Trial (NCT) identifier number are given within parentheses at the end

of each clinical trial description.
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generation modified adenoviral strains harbor small dele-

tions in E1A gene (E1ACR2 mutants) to suppress the

release of E2F transcription factor by ablating the interac-

tions between retinoblastoma protein (pRb) and E1A.77

This modification further restricts adenoviral replication

only in tumor cells with activated E2F expression.

In order to make vaccinia virus safer for cancer ther-

apy, two deletions have been made: thymidine kinase gene

(TK) and vaccinia growth factor gene (VGF).78 Further

attenuated viral strains have been developed by introdu-

cing mutations in F14.5L and A56R genes.20 These genes

are responsible for encoding a secretory signal peptide and

hemagglutinin, respectively. JX-594, a TK-mutant, expres-

sing GM-CSF has been tested in Phase I and Phase II

clinical studies in hepatocellular carcinoma and liver can-

cer as stand-alone treatment or in combination with sor-

afenib. Collectively, these studies showed a safe yet

profound anti-tumor response in JX-594 monotherapy

and combination treatment groups in comparison to sora-

fenib alone.79–81

Several strategies have been tested in reducing PV neu-

rotoxicity: (1) use of live-attenuated poliovirus vaccines,82

(2) delivery of engineered PV genome deficient of P1 cod-

ing region (replicons), thereby preventing the formation of

new viral progenies and spread,83 (3) A133G mutation in

cis-acting replication element (CRE) and relocation of CRE

to a spacer region,84 (4) replacement of internal ribosome

entry site (IRES) of PV (PVSRIPO) with that of human

rhinovirus 2 (HRV2).85 Ribonucleoprotein complex formed

in PVSRIPO is incompatible with HRV2 IRES-mediated

translation in normal human central nervous system, there-

fore, rendering the neuronal incompetence of PVSRIPO.86

PVSRIPO has completed a Phase I dose-finding clinical

study in patients with grade IV malignant glioma with no

neurotoxicity reported.87

Virus Neutralization
A major limitation of the extensive use of OVs in cancer

treatment is the rapid neutralization by the immune system,

which can restrain the viral spread and reduce the efficacy

of repeat administrations.88 Antiviral immune response

could hinder viral infection or replication at several

stages: 1) Neutralization, opsonization and sequestration

prior to cell entry, 2) Inhibition of virus replication by

induction of antiviral responses such as type I interferons

in infected cells, and 3) Lysis of infected cells by innate

immune cells prior to viral-induced lysis of cells. Many of

the viruses used in cancer therapy are human pathogens and

pre-existing antiviral antibodies obstruct the systemic deliv-

ery to the tumor, limiting the potential routes for viral

delivery to intratumoral injection. Various pre-clinical and

Phase I clinical studies have shown decreased oncolytic

viral replication, viral clearance and reduced anti-tumor

activity in immunocompetent hosts.89–96

Evidence for pre-existing immunity against oncolytic

viruses has been well documented for vaccinia virus due

to its use in eradicating the smallpox and also for reovirus,

that is universally abundant in the environment.97 In vacci-

nia virus, neutralizing antibodies have been shown to target

H3L envelope protein, that plays an essential role in viral-

host cell membrane fusion.98 Structural insights into anti-

body neutralization of reovirus suggested that neutralizing

antibodies sterically hinder the JAM-A receptor binding to

reovirus.99 Pre-clinical studies on prostate-specific attenu-

ated replication competent adenovirus (ARCA) showed

a decreased antitumor activity in the presence of pre-

existing antibodies.92 In the case of measles virus (MV),

pre-existing antibodies act as a major limitation in treating

cancers in previously vaccinated patients.100 Therefore, MV

oncovirotherapy may only be limited for patients with cer-

tain cancers such as advanced multiple myeloma, where the

immunosuppressed patients have a low level of anti-

measles antibodies.101 Furthermore, the administration of

T-VEC is limited to intralesional injections for melanoma

treatment due to high prevalence of anti-HSV1 antibodies in

humans.102 Even in the absence of pre-existing antibodies,

the immune system will eventually mount a response and

severely reduce the period of virus efficacy to between

a few days and couple of weeks, requiring multiple/

increased doses of the virus.97,103,104 Even more trouble-

some is the induction of primary antibody response or

augmentation of a low pre-existing antiviral response upon

initial administration of low seroprevalence viruses.105,106

Such evidence arises from neutralization of low human

seroprevalence viruses such as vesicular stomatitis virus

(VSV) in non-immune human serum as early as one hour

after exposure.107,108

On the other hand, a major advantage of the stimulating

effect raised by OVs on immune system against viruses is

that it could enhance epitope spread to tumor antigens. One

pre-clinical study on recombinant measles virus VLPs

expressing the tumor-specific antigen claudin-6 triggered

claudin-6-specific immune responses in melanoma mouse

models, ultimately inhibiting tumor metastasis.109 While

generally pre-existing immunity for oncolytic viruses

reduces their efficacy, a contrary finding was reported in
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the case of Newcastle disease viruses (NDV) where an

augmented therapeutic effect was observed in melanoma

mouse models in the presence of NDV-specific antibodies

through potentiation of systemic anti-tumor immunity.110

Solutions to Virus Neutralization
The presence of pre-existing anti–viral immunity or the

development of neutralizing antibodies upon systemic

administration of oncolytic viruses highlights the importance

of developing novel strategies to prolong their availability to

access tumors. At proof-of-concept level, novel OV delivery

methods have been proposed and can be categorized into four

distinct groups (Figure 3 and Table 2).

Cell Carriers
Encapsulation of virus particles in a carrier is a logical

approach as a strategy to conceal the antigenicity of native

virions. Several molecular and cellular carriers have been

investigated. Murine colon carcinoma cells infected with

vesicular stomatitis virus (VSV) homed to cancer cells but

not to normal cells, when delivered intravenously in

a mouse lung tumor model.111 Reovirus incorporated into

dendritic cells and T cells can efficiently deliver the virus

into cancer cells in the presence of neutralizing antibodies

in vitro112 and in vivo.113 Furthermore, antibody-

neutralized reovirus complex can be introduced into

human monocytes, where internalized complexes were

processed to release infectious particles, ultimately target-

ing cancer cells.114 Mesenchymal stem cells (MSCs) have

been used as a delivery system for chimeric human ade-

novirus5/3 (HAdV5/3) with the primary purpose of mask-

ing the virus from immune attack.115 The cellular receptor

for HAdV5 entry, coxsackievirus and adenovirus receptor

(CAR) is poorly expressed in MSCs.116 This has been

circumvented by swapping the receptor binding fiber

knob domain of HAdV5 with that of HAdV3, allowing

a CAR-independent cell binding.115

Liposomes
Liposomes are large hydrophilic spherical vesicles, which

have been widely used for encapsulation and delivery of

diverse range of drugs since they act as a shield from cellular

and humoral responses.117,118 In a pre-clinical study, lipo-

somes were used to encapsulate oncolytic alphavirus strain

Figure 3 Strategies to avoid virus neutralization. (A) Cell carriers such as monocytes (Reovirus-neutralizing antibody complex), dendritic cells (reovirus), endothelial cells

(measles virus), stromal cells (adenovirus) and killer cells (vaccinia virus) remain as most extensively researched solutions to bypass the recognition by neutralizing

antibodies. (B) Liposomes have been used to incorporate plasmids of oncolytic viruses such as Telomerase-specific oncolytic adenovirus (pTS). (C) Anti-CD20 and

cyclophosphamide (immunomodulators) aid in suppressing the antiviral immune response associated with adenovirus and reovirus treatment. (D) Other solutions to virus

neutralization include the use of different serotypes of adenovirus strains, sequestration of pre-existing antibodies using UV–inactivated measles virus (decoy virus), and

shielding of vesicular stomatitis virus and adenovirus with coadministration of DNA aptamers and bifunctional protein DE1scFv-pSia, respectively.
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M1 (M-LPO) with anti-tumor efficacy in vitro and a reduced

immunogenicity in mice when administered intravenously.119

A similar approach was used to encapsulate a replication-

competent, ONYX-015-based plasmid in liposomes.120

Liposomes harboring the plasmids were resistant to antibodies

neutralizing the parent strain, while the plasmids could only

transfect tumor cells which are p53 deficient.

Immunomodulators
With the aid of conventional immunosuppressants used in the

treatment of autoimmune disorders, the host immune response

can be partially reduced to favor the targeted delivery of

oncolytic viruses to tumors. Combination therapy of cyclopho-

sphamide and reovirus has been shown to rescue reovirus

when administered intravenously in mice.121 Currently, there

are seven clinical trials that are either completed, active or in

recruiting stage for combination or neoadjuvant therapy of

metronomic cyclophosphamide with oncolytic viruses such

as ONCOS-102 (adenovirus), rQNestin34.5v.2 and T-VEC

(HSV-1), MV-NIS (measles virus), and JX-594 (vaccinia

virus).122 In a non-cancer related study, T cells and B cells

activated by repeated administration of adenovirus have been

inhibited by anti-CD 20 en route to assist a successful immu-

nosuppressive regime of liver gene transfer.123

Other Strategies
The use of DNA aptamers to shield viruses from neutraliz-

ing antibodies has been shown as a proof-of-concept

in vitro study with vesicular stomatitis virus (VSV).124 In

this study, aptamers were developed to bind virus surface

as well as the antigen-binding fragment (Fab) of anti-VSV

antibodies, providing a dual protection mechanism when

used concurrently with VSV. Another example for use of

bifunctional adapters arises from a recent study on onco-

lytic adenovirus hTert-Ad treatment in combination with

DE1scFv-pSia protein containing a DE1 domain of ade-

novirus hexon and a polysialic acid-specific single-chain

variable fragment (scFv) to capture neutralizing antibodies

and for tumor cell recognition, respectively.125

Table 2 Strategies to Avoid Oncolytic Virus Neutralization

Strategy to

Avoid Virus

Neutralization

Oncolytic Virus and Modifications Development Status and Treated Cancer(s)

Cell carriers ● Vesicular stomatitis virus-infected murine colon carcinoma cells

● Reovirus incorporated in T cells and dendritic cells

● Reovirus-antibody complex loaded into human monocytes

● Chimeric adenovirus type 5/3 capsid (OAd)-infected mesench-

ymal stromal cells

● Measles virus-infected endothelial, monocytic or stimulated

peripheral blood cells

● Vaccinia virus introduced into cytokine-induced killer cells

● In vivo study against lung cancer111

● In vivo study against metastatic melanoma112,113

● In vivo study against melanoma114

● In vitro study against pancreatic cancer115

● In vivo study against ovarian cancer131

● In vivo study against ovarian cancer91

Liposomes ● Alphavirus strain M1 encapsulated into liposomes (M-LPO)

● Modified adenovirus, ONYX-015 plasmid encapsulated into

liposomes

● Telomerase-specific oncolytic adenovirus plasmid DNA

encapsulated into liposomes (Lipo-pTS)

● In vitro study against human colon carcinoma and epider-

moid-carcinoma119

● In vivo study against non-small cell lung cancer120

● In vivo study against colon cancer132

Immunomodulators ● Reovirus therapy in combination with cyclophosphamide

● Adenovirus administration after anti-CD20 treatment

● In vivo study against melanoma121

● Gene transfer study unrelated to cancer therapy123

Other strategies ● Vesicular stomatitis virus (VSV) shielded by dual-function DNA

aptamers

● Oncolytic adenovirus, hTert-Ad fused with bifunctional pro-

tein DE1scFv-pSia

● UV–inactivated Measles virus as a decoy virus

● Different serotypes of adenovirus

● Immune-evasive particle forms (extracellular enveloped par-

ticles or EEV) of vaccinia virus

● Efficacy study to evaluate the infectivity of VSV in the

presence of neutralizing antibodies124

● In vivo study against murine colon adenocarcinoma125

● In vitro study against T cell leukemia126

● In vivo study against breast cancer bone metastasis127

● Efficacy study to show the resistance of EEV to vaccina

virus-specific antibodies128
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In a different approach, prior treatment of cancer cells

with UV–inactivated measles virus prevented the neutraliza-

tion of the active virus, suggesting the possibility of using

a “decoy virus” to sequester pre-existing antibodies.126

Another strategy to counteract host anti-viral immunity is

to use different serotypes of the virus (native or modified) or

immune-evasive particle forms of the same virus. The feasi-

bility of using different serotypes of adenovirus has been

shown in a pre-clinical study, where intravenous administra-

tion inhibited the formation of bone metastases.127 Vaccinia

virus produces extracellular enveloped particles (EEV) that

possess a cell-derived envelope capable of evading neutraliz-

ing antibodies.128 Therefore, high EVV-producing strains of

vaccinia virus can be engineered to improve the spread of the

virus upon systemic delivery.129 In the case of measles virus,

N-linked glycosylation of hemagglutinin resulted in strain

resistance to a mixture of monoclonal antibodies.130

Conclusion
Oncolytic virotherapy is a promising field of cancer treat-

ment with selective targeting of tumors. However, the

antiviral immune response is still a limiting factor hin-

dering the outcome of the treatment. While many OVs

have a rapid replication in tumors and direct oncolysis, it

is often the antitumor immunity induced by oncolytic

activity that contributes to preventing the disease pro-

gression and recurrence. When OVs are originally patho-

genic to humans, specific targeting of tumors has been

achieved either through the manipulation of viral genome

to exploit de-regulated signaling pathways in tumors or

by modifying viral coat proteins to bind receptors over-

expressed in cancer cells. However, the expression levels

of attachment/entry receptors specific to OVs differ

depending on the type of cancer and/or patient, high-

lighting the importance of understanding of OV-receptor

interactions to modify capsid architecture and re-target

cancers. The systemic administration still remains a less

effective mean of OV delivery due to the existence of

pre-existing neutralizing antibodies or rapid anti-viral

immune response after initial treatments. To address this

issue, novel treatment strategies have been developed and

showed promise in various proof-of-concept and pre-

clinical studies: encapsulation of OV in carriers, modifi-

cation of capsid or envelope proteins, the use of decoy

viruses to sequester pre-existing antibodies, multiple

administration of different viral serotypes and adjuvant

therapy with immunomodulators.
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