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Abstract: The complexity of orphan diseases, which are those that do not have an effective

treatment, together with the high dimensionality of the genetic data used for their analysis

and the high degree of uncertainty in the understanding of the mechanisms and genetic

pathways which are involved in their development, motivate the use of advanced techniques

of artificial intelligence and in-depth knowledge of molecular biology, which is crucial in

order to find plausible solutions in drug design, including drug repositioning. Particularly, we

show that the use of robust deep sampling methodologies of the altered genetics serves to

obtain meaningful results and dramatically decreases the cost of research and development in

drug design, influencing very positively the use of precision medicine and the outcomes in

patients. The target-centric approach and the use of strong prior hypotheses that are not

matched against reality (disease genetic data) are undoubtedly the cause of the high number

of drug design failures and attrition rates. Sampling and prediction under uncertain condi-

tions cannot be avoided in the development of precision medicine.
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Introduction
As biomedical research has become more data-intensive, with a higher throughput

of studies, cases and assays, technology has advanced in order to create toolkits

capable of analyzing, interpreting, and integrating a vast amount of data.1 This

trend is understood within the medical sector as a paradigm change; since medical

practice in essence relied on making predictions about the patient’s health or

disease with a limited amount of data, levering diagnosis on their experience,

judgement, and personal problem-solving skills.2

This change of paradigm is accompanied by a healthcare industry transforma-

tion, in which disruptive technologies have emerged to accommodate healthcare

“big data” and Artificial Intelligence (AI) techniques in the biomedical sector,

benefiting medical professionals and their patients.3 This change was also provoked

by the fact that looking for solutions of complex diseases relies more on disciplines

such as molecular biology, biochemistry, applied mathematics and computer

science. The clearer example is looking for solutions in cancer, neurodegenerative

and rare diseases, among a vast range of pathologies that currently have no solution.

As the Broad Institute stated on its corporate website:

This generation has a historic opportunity and responsibility to transform medicine by

using systematic approaches in the biological sciences to dramatically accelerate the

understanding and treatment of disease.
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In this process, the advanced interpretation of genomics

through artificial intelligence and machine learning

approaches plays a crucial role in the search for solutions.

The use of these techniques is compulsory since the phy-

sical model that controls these processes is unknown.

The conclusions of “big data” analysis through AI relat-

ing to medicine reveal two major problems:1 the limited

amount of samples with respect to the number of control

variables (genes for example), that provokes high uncer-

tainty in medical decision-making problems. Besides, the

data have an inherent level of noise that falsifies the

predictions.2,5 The great heterogeneity existing in the pro-

cesses that contribute to disease and health, suggests a need

for tailoring medical care.6,7 Consequently, instead of mak-

ing diagnostics according to classical medicine in which

decisions are taken based on disease and patient’s similar

characteristics; precision medicine aims to shift medicine

toward prevention, personalization, and precision through

genomics, AI, and biotechnology. Provided how important

these toolkits are in elucidating appropriate intervention

targets and medical strategies for treating individual patients,

AI can play an important role in the development of perso-

nalized medicines and treatments.7

The definition of Personalized Medicine, according to

the Precision Medicine Initiative, considers it “an emerging

approach for disease treatment and prevention that takes into

account individual variability in genes, environment, and

lifestyle for each person.” Nowadays, there are available

tools that are capable of collecting a large amount of geno-

mic data, alongside with cutting-edge data analytics for

interpretation, which aid in our understanding of genomics,

disease mechanisms, and treatments (Figure 1).8–10

Current Trends in AI and Precision
Medicine
Past research trends were strongly based on evaluating

medical diagnosis based on AI in contrast to human

practitioners,11,12 however, AI should be deemed as an addi-

tional tool to aid in medical care; not to replace medical

doctors. Later research trends intended to use AI techniques

to generate more accurate methods of diagnosis based on the

compilation of standardized hospital data13–15 in order to

improve the detection of diseases such as cancer or cardiovas-

cular diseases.16–19 However, in recent years, AI is generally

used for a variety of purposes in medical care, which ranges

from medical diagnosis, preventive medicine, palliative med-

icine to drug design and development (Figure 2).

The common point to all these problems is that the

mathematical model that serves to relate the input and the

output, L�, is unknown. If we write the system

L� gð Þ, cobs, where cobs are observed class of the samples,

g are the variables of control (genes for instance in a genetic

prediction problem) and L�() is called the forward model,

that serves to achieve the predictions, then it can be con-

cluded that in most of these problems, only the second

member cobs is known: the forward model L� has to be

constructed, and the set of discriminatory variables g (a

subset of Rn) has to be found. The first problem is called

model construction, and the second one, feature selection.

The whole process is called learning or training. Once this

Figure 1 Leading diseases where AI is considered. Despite the vast amount of AI literature in healthcare, the research mainly concentrates around a few disease types:

cancer and neurodegenerative diseases. Reproduced from: Jiang et al. Artificial intelligence in healthcare: past, present and future. Stroke Vascular Neurol. 2017;2:e000101.4
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process has been achieved, the model L� gð Þ has to be

validated, if possible, with an independent cohort.

Summarizing, most of the prediction and decision

problems involved in precision medicine involve solving

a discrete system of equations system L� gð Þ,cobs where

only the second term cobs is known. The dimensions of

the model space (dimension of gÞ and those of the data

space (dimension of cobsÞ will greatly influence the

dimension of the corresponding uncertainty space.

Typically, these problems are highly underdetermined.

Nevertheless, it has to be pointed out that over-

determined problems, where the number of data exceeds

the number of model parameters also have an uncer-

tainty space20,21 that has to be considered in the corre-

sponding decision problem.

Preventive Medicine
One of the highest potentialities of AI in precision medicine is

its use in preventing diseases using techniques that could

assess the risk of disease development. Cardiovascular medi-

cine represents an area in which AI has been vastly influential,

where several studies such as the one carried out by Li et al

assessed the risk of heart attack utilizing an artificial neuron

network.22 Other studies employed machine learning in order

to identify the risk of developing other diseases, such as color-

ectal cancer,23 respiratory virus affinity,24 melanoma,25 mor-

tality in smokers,26 depression1 or HIV transmission,27 among

others.

Palliative Medicine
Not only does AI have a potential use when disease

strikes, but it may also be very useful in palliative applica-

tions by mitigating the disease progression. In this sense,

there are remarkable studies such as the one by Dente

et al28 which employed machine learning approaches to

identify predictive profiles of pneumonia bacteria; Dagliati

et al29 who used AI to tackle diabetes complications or in

predicting focal epilepsy outcomes and ischemic stroke

and thromboembolism.30,31

Monitoring Medical Care
AI appears to be predominantly beneficial in enhancing med-

ical doctors’ work. Several works have been published to

report how diagnosis performance is enhanced with the use

of computer-aided detection of diseases, such as breast cancer

thermography detection using deep neural networks32 or three-

dimensional brainmagnetic resonance.33Other uses inmedical

care monitoring include the assessment of surgery tolerance or

chemotherapy34 or metabolic disorders.35 Some research stu-

dies suggest that reducing the number of false positives in

disease detection is possible through medical imaging,36,37

biopsies,38 by monitoring the disease progression39 and health

status.40

Drug Design and AI
Drug design is considered a very capital-intensive process.

Therefore, it is necessary to re-think the current paradigm

Figure 2 Main applications of AI in healthcare. Reprdoduced from: Jiang et al. Artificial intelligence in healthcare: past, present and future. Stroke Vascular Neurol. 2017;2:
e000101.4
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of one disease – one target – one drug.41 The current under-

standing of drug design is that a drug must be capable of re-

establishing homeostasis; the drug hits the targets causing the

disease by re-establishing the equilibrium. The reason why

most compounds fail in clinical trials is because mechanisms

of action are not fully understood.42 Also, the target-centric

approach is commonly used, and it is not well connected with

an advanced interpretation of the genomic data at disposal.

Bioinformatics and chemo-informatics utilize AI tools in

order to rationalize the development of new compounds to

target diseases. The idea in these fields is to develop multi-

scale models that are capable of considering simultaneously

the activity of the infection agents and the parameters of

absorption, distribution, metabolism, and toxicity (known

as ADMET profile).43,44 Further models utilize large datasets

of chemical compounds with different composition, sizes,

surface activity, in order to generate a meta-structure. This

meta-structure is modeled in order to elucidate the relation-

ships with the disease agents utilizing perturbation models.45

These models have been proven to be very versatile when

applied to infectious diseases,46 immunological disorders,47

neurological pathologies,48 and cancer.49 Furthermore, the

new approach in drug discovery is known as de novo multi-

scale approach in which a drug is designed within the che-

mical subspace where it could be deemed beneficial. Several

studies have been carried out following this paradigm in

order to elucidate the relationships between the drugs and

the targets, alongside the ADMET profile.50,51

Since a target-centric approach is mainly responsible of

the high attrition rates and low productivity in pharmaceu-

tical research and development,52 global models such as

the ones described previously are required. In addition,

network system biology is of utmost importance in order

to understand the impact of genetic and epigenetic factors

on drug actions, where AI plays a crucial role.53,54

AI for Precision Medicine: Data
Quality and Relevance
Despite the recent advances in AI toolkits and their per-

formance in medical studies, there are still some gaps and

margin for improvement, suggesting that AI needs either

more data or better algorithms to improve the precision

medicine accuracy. In general, current trends in AI are

focused on developing an algorithm, which requires large

amounts of data in order to maximize the performance.

This is because current ML approaches are tremendously

data-hungry.55 It was found that vast amounts of data with

simpler algorithms perform better than complex algo-

rithms with less data. This suggests that advanced AI

techniques work well only in low variability problems,

which is not the case in medical care.56 Therefore, deep

sampling approaches, as suggested by Fernández-Martínez

et al,5,57,58 are a plausible alternative.

The relevance and accuracy of data is one of the most

important factors in order to ensure that the trained model

accurately represents the reality. The quality of the predic-

tions made will never exceed the quality of the dataset

utilized to train the machine-learning model.59 While con-

ventional statistical methods could be used to filter the

data bags; removing outliers, these methods have limited

effectiveness. Their lack of effectiveness is due to the fact

that these methods do not assess the quality and relevance

of the data. Therefore, inaccuracy of data points may

influence the trained model by introducing biases.60,61

Consequently, advanced methods in high-dimensional

data analysis,62 sensitivity analysis and feature selection

and model reduction techniques are required63 to tackle

these problems.

As pointed out before, not only data accuracy is impor-

tant, but also data relevance to the disease of interest. Many

recent attempts to use Machine learning techniques rely on

the use of complex machine learning tools which are trained

utilizing a wide range of disease attributes, without per-

forming an analysis in order to elucidate which of them

are predictors. Carrying out this approach, the model is

trained with an excess of attributes, with the associated

excess of noise and inducing biases.64 To be more specific

with regards to healthcare, the majority of precision medi-

cine solutions have been based on large DNA sequence

data,65 however, the majority of common diseases are

believed to be caused by both epigenetic and environmental

factors. Due to this, AI Genomics is the tool required to

elucidate these dependencies by filtering and treating appro-

priately the genetic pathways, since it links DNA sequen-

cing, environmental factors, and disease mechanisms.66

The major drawback of genomics in precision medicine is

the lack of available data from patients that are directly

related to the disease of interest.67

AI in Modern Genomics: Gathering
Data from Large-Scale Genomics
Application of massively parallel or Next Generation

Sequencing (NGS) to large-scale genomics, which has

caused an increasing level of precision and success in the
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medical practice, has been observed over the past 8 years.68

NGS is generally combined with machine learning or any

other analytical approaches in order to better inform the

clinical care of patients. The obtained “big data” in com-

bination with the machine learning analytics could

improve not only the clinical practice but also provide

a deeper understanding of cancer and rare diseases.

However, despite the opportunities that NGS and machine

learning offer, there are several challenges in the clinical

interpretation of data. Every small alteration in samples,

NGS data, variant/mutation would require a different com-

putational approach.

Challenges with Samples
As already pointed out in the previous section, data gath-

ering from samples is one of the major challenges.

Gathering information from tissue samples in order to

provide insight into cancer or rare diseases could be har-

nessed by the introduction of bias from non-malignant

cells (such as immune cells, stromal cells . . .) which

leads to a loss of signal and decreases the detection

sensitivity.69 To avoid these issues, the Cancer Genome

Atlas restricted tissues to large, high-quality, high-purity

and frozen tumor samples.70

Challenges Associated with NGS
Several comprehensive approaches are available in order to

predict the entire range of alterations, such as whole-

genome, whole-exome, and whole-transcriptome.71

However, these approaches typically have higher computa-

tional requirements and longer turnaround times, therefore

also incurring higher costs than their more-targeted alterna-

tives. Among bulk-NGS analyses, hundreds of thousands to

millions of cells are analyzed at once, providing a global

idea of a set of cells. Consequently, the majority of our

knowledge of individual cells comes from the analysis of

bulk-NGS, which does not address the real heterogeneity of

cells. Consequently, advanced methods in high-dimensional

data analysis,61 sensitivity analysis and feature selection and

model reduction techniques are required62 to tackle these

problems. Currently, smaller panels of hundreds of genes are

utilized to infer pathologies; however, this approach is not

robust enough as the discriminatory power of the genes

utilized is not evaluated beforehand.72 By utilizing this

approach, the targeted panels can be used to screen larger

sets of patients who might potentially benefit from the

detection of clinically actionable mutations (the most dis-

criminatory ones). Furthermore, single-cell NGS does

endeavour to address the issues of data generalization of

bulk-NGS and provides information on genetic, transcrip-

tomic and epigene for a given cell.

Challenges in Interpreting Alleles and

Variants
The major limitation in the interpretation of alleles and

variants is the fact that the response of allele variants

whose implications, resulting in protein miss-function or

miss-response to a targeted therapy, have not yet been

identified.

Data sharing is of utmost importance in order to bypass

this issue. It will improve the understanding and dramati-

cally increase patients’ healthcare in the treatment of can-

cer and rare and degenerative diseases. Genomic data are

more important when data are structured and the genes and

variants are linked with clinical data, including the type

and treatments implemented.73

AI Genomics and the Phenotype
Prediction Problem
A ful understanding of patient’s genomics is mandatory in

order to design robust and efficient therapeutics. Phenotype

prediction problems are highly undetermined because the

number of monitored genetic probes are much higher than

the number of observed samples.74 A robust prediction of

phenotypes (diseases) is carried out through a robust sam-

pling of the uncertainty space of the problem. Let us con-

sider a binary classifier L� gð Þ, that is, an application

between the set of genes that serve to discriminate a given

phenotype, for instance, disease and healthy controls, or

cancer metastasis and the absence of it. The discriminatory

signatures are those that minimize the prediction error O gð Þ,
which is the difference in a given norm between the

observed and the predicted classes, or equivalently, max-

imize the predictive accuracy, that is, the number of samples

of the training set that are correctly predicted. As in any

inverse problem, the uncertainty space of the phenotype

prediction problem, Mtol ¼ g : O gð Þ<Etolf g, is composed

by the sets of high predictive networks with similar pre-

dictive accuracy; that is, those sets of genes g that classify

the samples with a prediction error O gð Þ lower than Etol.
6–8

As in any other inverse problem, the cost function

topography in phenotype prediction problems is composed

of several flat curvilinear valleys20,21 where the genetic

signatures are located, all of them with a similar predictive

accuracy of the training set. Nevertheless, in the phenotype
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prediction problem, the size of the high discriminatory

genetic signatures varies, that is, high discriminatory

genetic networks of different complexity exist, and the

optimization of O gð Þ is not always performed in the

same space dimension. This fact complicates the sampling

approach to understand the altered genetic pathways

involved in the disease progression. Besides, due to the

high underdetermined character of the phenotype predic-

tion problems, their associated uncertainty space has

a very high dimension, and the characterization of the

involved biological pathways is very ambiguous because

there exist many equivalent genetic networks that predict

the phenotype with similar accuracies.75–77 The important

working hypothesis is that by sampling the uncertainty

space of the phenotype prediction problems, we are able

to understand the altered genetic pathways of the disease

in order to use this knowledge in precision medicine for

diagnosis, prognosis, and treatment optimization.

Different interesting methods were proposed by Cernea

et al8 and successfully applied in the analysis of Triple

Negative Breast Cancer metastasis, comparing the results

obtained with Bayesian networks.78 Bayesian networks are

utilized to model the genetic signatures' distribution

related to the phenotype prediction, P g=cobs
� �

, according

to Bayes’ rule:79–81

P g=cobs
� �

, P gð ÞP cobs=g
� �

In this expression P gð Þ is the prior distribution used to

model the genetic signatures and P cobs=g
� �

is the prob-

ability of the genetic signature g, that depends on its

predictive accuracy O gð Þ.82–84 Bayesian networks are

computationally much more expensive than the Fisher,

Holdout and Random samplers.6 Besides, the probabilis-

tic parameterization of the uncertainty space is not

unique. Considering all the plausible networks have to

provide similar results in sampling the altered genetic

pathways to other samplers. Different types of algorithms

could be used in tackling precision medicine problems,

such as k-Nearest-Neighbour classifier,85 Extreme

Learning Machines,86 Random Forest,87 Support Vector

Machines88 or Deep Neural Networks.89 Despite the wide

range of classifiers, poor results are generally observed

due to the impact of noise in data, mainly in the observed

class of the samples of the training set, and the use of

irrelevant features in the discrimination.5,64,77

Once the altered genetic pathways are robustly sampled,

the next step consists of performing an optimum selection of

the therapeutics tailored according to the patient’s genetic

profile. This procedure aims to dramatically increase the

success rate and is particularly important to understand the

disease mechanisms in a given individual.

Case Study: Analysis of Metastasis
and Survival in TNBC
Introduction and Methods
We illustrated the importance of genomic robust sampling

in precision medicine and uncertainty analysis with the

analysis of the Triple Negative Breast Cancers (TNBC)

phenotype. The algorithms utilized have been successfully

utilized in the analysis of breast cancer and lymph node

metastasis,8,90 in Sarcopenia,91 Multiple Sclerosis,92

Multiple Myeloma93 and Inclusion Body Myositis.94

More specifically, we performed a robust sampling in

order to find out the altered genetic pathways by the

metastasis events. To do so, we used the microarray ana-

lyzed by Jézéquel et al,95 which is deposited in the Gene

Expression Omnibus (GEO) under the acronym

GSE58812. The dataset covers data from 107 patients

identified with TNBC and controlled for metastasis (44

degenerated and 63 were cured after a monitoring period

of 7 years).

The comparison of different algorithms across different

studies is an objective but challenging way of evaluating the

performance of different methodologies. However, it is rather

difficult to make comparisons, since each algorithm suffers

different bias in the dataset, due to inaccuracies, lack of data or

inconsistencies. Furthermore, it is more important to use the

same independent set of data in order to perform a fair

evaluation.

To make algorithms more robust and less sensitive to bias,

the Fisher’s Ratio Sampler, the Holdout Sampler and the

Random Sampler are trained in different data bags and, after-

wards LOOCVis carried out by consensus. That is, given a set

of decision makers, the decision taken by the majority tends to

be accuratewhen the set of decisionmakers tends to be infinite.

That implies that during the training stage, only the best

performing data bags are selected to make the blind validation.

In this case, we have used the following samplers to

find the set of genes that are involved in the metastasis

and survival in TNBC and compared it to the BNs

(Figure 3).

● Fisher’s Ratio Sampler: this algorithm considers the

discriminatory strength of the differentially expressed
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Figure 3 Algorithm workflow of (A) Fisher’s ratio sampler; (B) Holdout sampler; (C) Random sampler; (D) Bayesian network. Reproduced from: Cernea et al. Robust

pathway sampling in phenotype prediction. Application to triple nagtive cancer. BMC Bioinformatics. In press.96
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genes according to its Fisher’s Ratio in order to induce

a prior sampling distribution of the genetic networks.

The sampled networks are established using this prior

distribution and their likelihood is established via

an LOOCV via a k-NN classifier.
● Holdout Sampler: a set of random 75/25 data bag hold-

outs were generated from the database, where 75%of the

data is used for training and 25% for validation. In our

case study, we have generated 1000 holdouts. In each

holdout, the genes are ranked according to the Fisher’s

ratio, maximizing the distance between the centers of the

gene expression in each class and minimizing the intra-

variance. The Fisher’s ratio was combined with

a previous fold-change analysis to avoid the genes with

high FR and low fold-change due to small dispersions

within each class.
● Random Sampler: this scheme selects genes and

builds gene signatures of variable lengths. The algo-

rithm shares similarities with the Fisher’s Ratio

Sampler, but, in this case, the prior sampling distri-

bution is uniform within the differentially expressed

genes, instead of being proportional to the Fisher’s

Ratio. The sampled networks' likelihood is estab-

lished via an LOOCV via a k-NN classifier.
● Bayesian Networks: the Bayesian Network selects

genes by building genetic signatures prior to distribu-

tion by using an acyclic graph. This algorithm is used

to sample the posterior distribution of the genetic

signatures, P g=cobs
� �

, according to Bayes rule:

P g=cobs
� �

,P gð ÞL cobs=g
� �

, where P gð Þ is the prior

distribution to sample the genetic signatures and

L cobs=g
� �

is the likelihood of the genetic signature

g, that depends on the its predictive accuracy O gð Þ.

Results and Discussion
Tables 1 and 2 show the 15 most frequently sampled genes by

each of these algorithms. Themost frequent gene, LINC00630,

appears in both Fisher’s ratio sampler and Random sampler

algorithms, and Holdout sampler models it with a lower fre-

quency. Other common genes appraised by all algorithmswere

STC1, LOC100506272, BAIAP2-AS1, LOC646482.

We also showed the phenotype centered network obtained

from Bayesian Network algorithm in Figure 4, which illus-

trates the directed graph formed by the 68 genes most asso-

ciated with the survival phenotype. It should be noted that this

graph is not unique, since there exist other plausible probabil-

istic parameterizations of the uncertainty space related to this

phenotype prediction problem, as we have proven by using

other sampling algorithms. Therefore, the conclusions for the

pathway analysis and drug design obtained with just one of

these parameterizations, might be biased.

The most important genes provided by the random

sampler were: 1) HIPK3, which codes a serine/threo-

nine-protein kinase, involved in transcription regulation

Table 1 Metastasis Prediction: List of Most-Frequently Sampled

Genes by the Different Algorithms: Fisher’s Ratio Sampler,

Holdout Sampler, Random Sampler and Bayesian Network

FRS HS RS BN

LINC00630 OTUB2 LINC00630 ZNF597

LOC100506272 STC1 HIPK3 ZDHHC2

STC1 BAIAP2-AS1 CCDC116 YY1

BAIAP2-AS1 KCNS2 EXOC5 SPP1

ARFGAP2 LOC100506272 GHSR SMAD9

LHX9 LOC644135 ZNF540 SHANK1

LOC646482 LINC00630 ATF3 RBMS3

CACNA1S UGT1A1 1557882_at PRICKLE1

AC108056.1 ARFGAP2 220899_at PRDM11

NXF3 CACNA1I ARFGAP2 PML

GIPC3 DCAF8 CXADR NAV1

KCNS2 RP11-799D4.4 AHI1 MASP1

DAZ1 MDM2 KIRREL3-AS3 LOC646482

UGT1A1 RP11-38C18.3 DRP2 LOC101927735

RP5-855D21.1 BFSP2-AS1 207743_at P4HA2

EXOC5 JMJD6 LINC00642

Notes: Reproduced from: Cernea et al. Robust pathway sampling in phenotype

prediction. Application to triple nagtive cancer. BMC Bioinformatics. In press.96

Table 2 Survival Prediction: List of the Most-Frequently Sampled

Genes by the Different Algorithms

FRS HS RS BN

LOC100506272 LOC100506272 ING2 ZNF658

EML3 CHAF1A 220899_at LIMK2

TYR LOC400748 LINC00423 HAPLN2

ABCB8 KCNS2 VSX1 237969_at

GYPA ZNF428 1561100_at LOC644135

C14orf80 DAZ1 1558494_at 240923_at

LILRA2 LOC646482 LOC100507530 ANKRD54

1564841_at LINC00630 LINC01020 UBN2

RP11-440I14.2 233714_at 206909_at 234834_at

LATS2 TNRC18 C2CD3 215828_at

241286_at 1558494_at 1566162_x_at CACNG8

LOC100506411 DNASE1L3 CXADR CTSC

PTPN21 RP11-38C18.3 213777_s_at EPS15P1

UPF3A PCDHB2 PRKCB HCN2

RGSL1 DCAF8 240973_s_at P2RX5-TAX1BP3

232723_at ME1 BTG4 MMP14

Notes: Reproduced from: Cernea et al. Robust pathway sampling in phenotype

prediction. Application to triple nagtive cancer. BMC Bioinformatics. In press.96
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and apoptosis. 2) CCDC116 (coiled-coil domain con-

taining 116), mainly found in the testis and associated

with risk in multiple kinds of cancers.97 3) EXOC5

which is linked to peptide hormone metabolism. 4)

GHSR, Growth Hormone Secretagogue Receptor which

is linked to the CAMP signaling pathway.

Bayesian networks sampled genes are mainly related

to the TGF-beta Receptor Signaling and MTOR

Signaling Pathway: 1) ZNF597 encodes a zinc finger

protein, involved in expression and transcription. 2)

ZDHHC2 is called Palmitoyltransferase or Reduced

expression associated with metastasis protein in

liver.98 3) YY1 is highly expressed in various types of

cancers and regulates tumorigenesis through multiple

pathways, such as in breast cancer.99

Tables 3 and 4 show the top genetic pathways

inferred with the most frequently sampled genes by

each algorithm.

The main conclusions obtained from this analysis are

the following:

Figure 4 Phenotype centered network provided by Bayesian networks in the case of survival.
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1. in the Metastasis prediction most of the samplers

identified the Direct P53 Effectors as the main altered

pathway. Other common pathways found were the

DREAM Repression and Dynorphin Expression and

TGF-beta Signaling Pathway. Besides phagocytosis,

a major mechanism in the immune system defense,

seems to play a crucial role.

2. In the survival prediction the integrin pathway

appears to be crucial. The role of integrins in metas-

tasis has been highlighted by Ganguly et al,100

among others.

3. A robust understanding of diseases from a genomic

point of view is required in order to carry out

Precision Medicine.

Table 3 Metastasis Prediction: Pathways Sampled by Different Algorithms Ranked According to the Scoring Provided by

GeneAnalytics

FRS HS

Score Top Pathways Score Top Pathways

10.3 Direct P53 Effectors 11.2 JNK Signaling in CD4+ TCR Pathway

10.1 DREAM Repression & Dynorphin Exp. 9.7 RhoA Signaling Pathway

9.6 P53 Signaling 8.3 ATM Pathway

8.8 RhoA Signaling Pathway 8.1 FoxO Signaling Pathway

8.4 P53 Pathway 8.0 TGF-beta Signaling Pathway

RS BN

Score Top Pathways Score Top Pathways

15.0 DREAM Repression & Dynorphin Exp. 8.1 Direct P53 Effectors

10.1 Direct P53 Effectors 8.0 Proteolysis Putative SUMO-1 Pathway

10.1 Immune Response Role of DAP12 Receptors in NK Cells 7.1 Creation of C4 and C2 Activators

9.9 JNK Signaling in CD4+ TCR Pathway 6.9 TGF-beta Receptor Signaling

9.8 MAPK Signaling Pathway 6.8 MTOR Signaling Pathway

Notes: Reproduced from: Cernea et al. Robust pathway sampling in phenotype prediction. Application to triple nagtive cancer. BMC Bioinformatics. In press.96

Table 4 Survival Prediction: Pathways Sampled by Different Algorithms Ranked According to the Scoring Provided by GeneAnalytics

FRS HS

Score Top Pathways Score Top Pathways

9.87 Integrin Pathway 13.54 Integrin Pathway

8.96 Fatty Acid Beta-oxidation (peroxisome) 11.30 Sweet Taste Signaling

7.94 DREAM Repression &Dynorphin Expression 11.28 DREAM Repression &Dynorphin Expression

7.88 Signaling Events Mediated By HDAC Class II 11.13 RhoA Signaling Pathway

7.54 Type II Interferon Signaling (IFNG) 9.58 Signaling Events Mediated By HDAC Class II

7.19 Fatty Acid Biosynthesis (KEGG) 9.40 Androgen Receptor Signaling Pathway

6.93 Fatty Acyl-CoA Biosynthesis 9.39 CCR5 Pathway in Macrophages

RS BN

Score Top Pathways Score Top Pathways

9.90 TCR Signaling 7.87 Nucleotide-binding Domain, NLR Signaling

9.79 Androgen Receptor Signaling Pathway 7.39 Apoptosis and Autophagy

9.48 Presenilin-Mediated Signaling 7.20 C-MYC Transcriptional Repression

8.57 Ovarian Infertility Genes 6.82 NF-kB (NFkB) Pathway

8.34 DNA Damage Response (ATM Dependent) 6.19 Apoptosis Modulation and Signaling

8.14 Apoptotic Pathways in Synovial Fibroblasts 6.13 Apoptosis and Survival Caspase Cascade

8.02 Sweet Taste Signaling 5.69 Senescence and Autophagy in Cancer

Notes: Reproduced from: Cernea et al. Robust pathway sampling in phenotype prediction. Application to triple nagtive cancer. BMC Bioinformatics. In press.96
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4. In all the cases, the pathways are involved in cancer and

in immune response. Consequently, this study confirms

the vision that the altered pathways should be indepen-

dent from the sampling approach and the classifier

utilized.

Application to Drug Design
The previous analysis can be used to perform drug selec-

tion and repositioning via CMAP methodologies.101–103

The main drugs found that can revert the genes that are

deregulated in TNBC metastasis:

1. Geldanamycin HL60 (1e-06), which is an antitumor

antibiotic that inhibits the function of Heat Shock

Protein 90 (HSP90), which plays important roles in

the regulation of cell cycle, cell growth, cell survival,

apoptosis, angiogenesis and oncogenesis. This drug

has been repositioned in leukaemia cell lines (HL60).

2. LY-294002 HL60 and MCF7 (1e-05) are potent

inhibitors of Phosphatidylinositol 3-Kinases. PI3K

inhibitors are effective in inhibiting tumor progression

(Yang et al, 2019). LY294002 is also a BET inhibitor

having both anti-inflammatories and anti-cancer prop-

erties. It has been found that the expression of the

growth promoting transcription factor Myc is blocked

by BET inhibitors (eg, Alderton, 2011). This drug has

been repositioned in Leukaemia (HL60) and Breast

Cancer cell lines.104

3. Trichostatin A (TSA) is a potent and specific inhibitor

of HDAC class I/II. Histone deacetylase inhibitors

(HDAC inhibitors, HDACi, HDIs) are chemical com-

pounds that inhibit histone deacetylases. By removing

acetyl groups, HDACs reverse chromatin acetylation

and alter transcription of oncogenes and tumor suppres-

sor genes.105,106

Therefore, the use of deep sampling approaches combined

with ConnectivityMap technologies (CMAP) allows fast find-

ing of possible compounds and the design of new drugs that

maximize the mechanisms of action needed to counteract the

progression of the disease. The results obtained in this case

study back the introduction of AI in Precision Medicine, since

the drugs obtained are also currently being tested in TNBC.107

Expert Opinion
Precision medicine is on the forefront of new paradigms in

medical care. Since understanding a patient’s health

mechanisms is an arduous task, the use of Artificial

Intelligence has become a crucial tool in understanding

patients’ genomics in order to generate tailored therapeutics.

In this sense, Biological Invariance has arisen as a new para-

digm in genomics, proteomics, metabolomics or precision

medicine, which states that the analysis of genomics and

potential therapeutics should be independent of the sampling

methodology and the classifier utilized for their inference.

Predominantly, phenotype prediction and the analysis of

altered pathways have become an important discipline in

drug discovery and precision medicine, that is, finding a set

of genes that prospectively differentiates a specified phenotype

disease with respect to a control sample. The problem is highly

undetermined since the number of monitored genetic probes

exceeds the number of samples; therefore, this creates ambi-

guity in the identification that must be solved with the aid of

Artificial Intelligence and Deep sampling techniques.

Independently of the methods, robust AI schemes are

necessary to integrate information from different sources and

to reduce the inherent uncertainty spaces existing in this kind of

analysis. Furthermore, Artificial Intelligence shall be

employed to elucidate complex genetic data and all the

research information available on the current and future health

status of patients in order to improve patients’ quality of life

and reduce medical costs. This process is supposed to be, such

as in the sampling of altered pathways, independent from the

methodology.

We believe that any AI protocol to boost Precision

Medicine should be iterative and learn from experience.

Algorithms and methodologies should be kept simple and

fast, since they would yield to statistically the same results

and statistically with the same accuracy.

However, the utilization of AI in Precision Medicine,

despite being promising, still has some limitations and chal-

lenges. Precision medicine, such as Drug Design, Palliative

Medicine, Healthcare monitoring, and Preventive medicine

could be considered problems of high variability. This means

that ML approaches have a wide range of learning and

boundary conditions in order to be trained properly. As ML

is extremely data-hungry, the requirement algorithms are

very complex, and its training is extremely demanding. We

require the development of hybrid machine learning techni-

ques that are capable of sampling different classifiers, bound-

ary conditions, attributes in the training stage, while

optimization of the ML architecture is carried out. In this

sense, it would be interesting to develop new hybrid optimi-

zation-ML techniques, such as Stochastic Gradient Descent

with Momentum108 or Adam optimizer.109
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