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Abstract: Recent studies on diabetes and metabolic syndrome indicate a common disturbance of 

inorganic phosphate (Pi) metabolism. Pi is an important substrate in the formation of adenosine 

triphosphate (ATP), and many lifestyle diseases and cardiovascular risk factors similarly show 

deficiencies in either 1 or 2 major components of ATP synthesis. Age, male gender, hypertension, 

obesity, hypertriglyceridemia, metabolic syndrome, and diabetes mellitus are all associated 

with hypophosphatemia. In addition, tobacco smoking, hyperchylomicronemia, hypertension, 

and diabetes may involve defects in tissue oxygen delivery. Hypophosphatemia may lead to a 

critical decrease in intracellular Pi and to mitochondrial dysfunction, which might be counter-

acted by the pharmacological use of fructose 1,6-diphosphate.
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Introduction
Inorganic phosphate (Pi) is the ubiquitous anion required for intermediate metabolism 

and energy-transfer mechanisms. Pi is a vital component of DNA and RNA, and it 

is also present in phospholipids in membranes. Pi participates in both glycolysis and 

oxidative phosphorylation, the 2 major sources of adenosine triphosphate (ATP). 

In glycolysis, Pi is a substrate for glyceraldehyde-3-phosphate dehydrogenase and 

stimulates the activity of hexokinase and phosphofructokinase. In oxidative phos-

phorylation, Pi is a putative signaling molecule and takes part in the phosphorylation 

potential ATP/ADP × Pi. Bose et al1 have demonstrated in a multiparameter moni-

toring system applied to heart and skeletal muscle mitochondria that Pi controls the 

oxidative metabolism in a balanced fashion. Optimal amounts of both Pi and oxygen 

are required for a continuous supply of free energy according to the classical equation 

for oxidative metabolism:2 3ADP + 3Pi + 1/2O
2
 + NADH → 3ATP + NAD+ + H

2
O. 

If the production of ATP is interrupted or stopped for any reason, it may have serious 

consequences and may possibly lead to cell injury or cell death.

Plasma Pi is held within narrow limits through a complex interplay between 

intestinal absorption, exchange with intracellular and bone storage pools, and renal 

reabsorption. Intestinal absorption is mediated by sodium-phosphate cotransporter 

protein NaPi-IIb, which can be up-regulated and down-regulated when needed to 

maintain and exchange with intracellular and bone storage pools and renal reabsorption. 

The kidneys are the major regulators of Pi homeostasis, controlled by both hormonal 

and nonhormonal factors, and can increase and decrease Pi reabsorption capacity to 

accommodate the Pi need. The critical regulated step in this process is the transport of 
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Pi across the luminal membrane of the renal proximal tubules 

by the sodium phosphate-dependent cotransporter proteins 

that are bound to the brush border membrane, and the last 

intracellular loop of NaPi-IIa contains sequence information 

that confers parathyroid hormone (PTH) sensitivity.3 Because 

of the extensive literature, it is beyond the scope of this article 

to go further into details in the regulation of Pi homeostasis 

by PTH, vitamin D, phosphocalcins as fibroblast growth 

factor 23, phosphate regulating and Klotho genes, and more, 

but readers are referred to excellent reviews.4,5

Recently, we demonstrated a paradoxical metabolic 

imbalance in Pi from the early onset of diabetes, which may 

lead to a reduction in high energy phosphates and tissue 

hypoxia.6,7 This imbalance may be associated with the risk of 

late diabetic complications including cardiovascular disease. 

Hypophosphatemia, likewise, has been reported in studies 

of large numbers of individuals with metabolic syndrome.8,9 

As metabolic syndrome also has been shown to be closely 

associated with cardiovascular diseases,10,11 we were stimu-

lated to examine through Medline (PubMed), Embase, and 

reference lists whether other lifestyle diseases and risk factors 

may show similar biochemical alterations.

In this article, we will present evidence suggesting that 

many lifestyle diseases and risk factors are interrelated to 

deficiencies in 1 or 2 major components for optimal genera-

tion of ATP, eg, phosphate and/or oxygen.

Increasing age and male gender
More than 80% of deaths from coronary heart disease occur 

in patients of 65 years or older, an age at which female heart 

attack patients are more likely to die than men despite the 

fact that men have a greater risk of heart attack and suffer 

heart attacks earlier in life. Even after menopause, when 

women’s death rate from heart disease increases, it is not 

as great as men.12

The concentration of plasma Pi and the maximal renal 

tubular reabsorption of phosphate (T
mPO4

/GFR) are closely 

related to age and sex, with the highest values occurring in 

childhood. In adults, plasma Pi in men declines with age 

almost linearly, whereas in women under the age of 45, the 

values overlap those of men and then increase between 45 and 

54 years before declining thereafter. The practical implication 

is that phosphate-depleting disorders, such as diabetes and 

metabolic syndrome, might induce hypophosphatemia more 

easily in older persons because of the diminished tubular 

capacity for phosphate reabsorption before the development 

of such disorders.13

Diabetes mellitus
Cardiovascular diseases are the leading cause of diabetes-

related deaths. Substantial clinical and experimental evidence 

suggest that both diabetes and insulin resistance cause 

endothelial dysfunction, which may diminish the antiathero-

genic role of the vascular endothelium. In this respect, it is of 

interest that hypophosphatemia has been shown to increase 

insulin resistance and induce glucose intolerance.14–17 Hypo-

phosphatemia is a common finding in both type 1 and type 

2 diabetes, and several investigators have found decreased 

concentration of Pi in poorly regulated diabetic patients and 

slightly elevated levels when optimally controlled.6

Oxyhemoglobin dissociation is a measure of the ability 

of the red cells to release oxygen as they pass through the 

microcirculation. The position of the oxyhemoglobin disso-

ciation curve (ODC) is often expressed by the P
50

, (oxygen 

tension at 50% oxygen saturation). The position of the ODC 

is dependent of red cell 2, 3-diphosphoglycerate (2, 3-DPG) 

concentration. Oxygen release to tissues can be increased by 

interaction with a number of organic phosphates, primarily 2, 

3-DPG. In a variety of situations where tissue oxygenation is 

impaired, the 2, 3-DPG level rises, producing a proportional 

increase in P
50

 (a right shift of ODC). Such changes have 

been reported in anemia,18,19 cardiac failure,20,21 and cardio-

pulmonary insufficiency.22,23 Conversely, impaired synthesis 

of 2, 3-DPG is associated with a left shift of the ODC leading 

to a decreased delivery of oxygen to the venous end of the 

microvasculature (venous part of capillaries and venules).

In newly diagnosed, nonacidotic, type 1 diabetic patient’s 

plasma, the Pi concentration was normal at admission, lower 

on the day after initial insulin administration, and slightly 

above normal on the day when the best metabolic control is 

achieved. Red cell 2, 3-DPG exhibited the same fluctuating 

pattern, and Pi correlated closely with 2, 3-DPG (r = 0.61, 

P , 0.001). Red cell 2, 3-DPG correlated equally well with 

P
50

 of the ODC.24,25

To clarify the underlying mechanism leading to hypo-

phosphatemia, a study was performed in comparable groups 

of ambulatory, nonacidotic, insulin-dependent diabetic and 

healthy children. The average plasma Pi was significantly 

lower in the 26 children with diabetes compared with 

28 healthy children (1.36 vs 1.48 mmol/L, P , 0.005). In 

children with diabetes, the urinary phosphate excretion rate 

was significantly elevated (1.19 vs 0.43 mmol/h, P , 0.001), 

and phosphate excretion rate positively correlated with 

the urinary excretion rate of glucose (r = 0.53, P , 0.01) 

and with the blood glucose (r = 0.52, P , 0.01). The renal 
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threshold concentration of phosphate (T
mPO4

/GFR) was 

significantly suppressed in the children with diabetes (1.23 

vs 1.73 mmol/L, P , 0.001). This disturbance was related 

neither to changes in serum PTH nor to changes in growth 

hormone, but inversely correlated with the degree of hyper-

glycemia (r = 0.61, P , 0.001). The study demonstrates an 

abnormality in tubular phosphate reabsorption, which is 

related to glycemic regulation.26

However, in ambulatory subjects with juvenile diabetes 

with no evidence of vascular complications, despite an almost 

30% increase in the concentration of 2, 3-DPG at the same 

hemoglobin content, the P
50

 of the ODC was not increased.27 

This may be explained by the fact that hemoglobin A
1c

 has 

increased the oxygen affinity and may react less readily with 

2, 3-DPG compared with regular hemoglobin A.28

Therefore, in patients with both type 1 and type 2 diabetes, 

there is a close correlation between the Pi concentration in 

plasma and improved diabetes control. In order for patients 

with diabetes to achieve optimal oxygen delivery to tis-

sues, the concentration of 2, 3-DPG and Pi must be higher 

than in healthy persons, partly because the red blood cells 

of patients with diabetes contain higher concentrations of 

hemoglobin A
1c

.

Obesity
Obesity is a major risk factor for cardiovascular diseases. 

Lindgärde and Trell29 found an inverse correlation between 

plasma Pi and body weight in 752 men born in 1926. Other 

parameters of minerals with possible relevance to their find-

ings were not found. In 194 subjects with a wide range of 

body mass index (BMI), Lind et al30 found that plasma Pi 

inversely correlated with BMI and fat distribution. PTH was 

not significantly correlated with any obesity parameters. 

Håglin et al8 conducted a large study of 1,272 women in 

whom serum phosphate inversely correlated with BMI.

Dyslipidemia
In apparently healthy persons, total cholesterol and low-

density lipoprotein cholesterol positively correlated with 

increasing Pi levels, and triglyceride concentration negatively 

correlated with plasma Pi levels.9

Hypertriglyceridemia and especially hyperchylomicrone-

mia have been found to interfere with tissue oxygen delivery. 

A marked left shift of the ODC has been demonstrated in 

familial type 1 hyperlipoproteinemia (familial combined 

hyperlipidemia), in diabetic and nondiabetic persons with 

hyperlipoproteinemia type V (mixed hypertriglyceridemia), 

and in blood mixed with lipid emulsions.31–33 The reason 

for this negative effect on tissue oxygen delivery might be 

an abolishment of the pH difference across the erythrocyte 

membrane resulting in a displacement of the ODC to the left 

by the Bohr effect.34

Tobacco smoking
Acute myocardial infarction or sudden death in patients 

with coronary artery disease is among the disorders strongly 

associated with cigarette smoking.35

Cigarette smoking is associated with increased levels of 

carboxyhemoglobin in the blood. This leads to a decrease in 

available hemoglobin for oxygen transport and will shift the 

ODC to the left, decreasing the volume of oxygen that can 

be unloaded to the tissue at any given Po
2
. Carbon monoxide 

also reduces the formation of 2, 3-DPG by inhibiting glyco-

lysis in the erythrocytes. The P
50

 of the ODC was decreased 

4 mmHg in a study of cigarette smoking.36,37 Smoking also 

releases the sympathetic neurotransmitter norepinephrine and 

the adrenomedullary hormone epinephrine and may thereby 

increase tissue oxygen demand.38 The oxygen availability or 

demand ratio will, therefore, decrease and the oxygen deficit 

may participate in adverse changes in the cardiovascular 

system.

Alcohol abuse
The metabolic effects of alcohol in man are complex since 

some are due to the direct action of ethanol or its metabolites, 

whereas some are related to the changes in the redox state 

or to nutritional factors.39 Hypophosphatemia and phos-

phate depletion are well recognized consequences of acute 

and chronic alcohol abuse.40 Hypophosphatemia has been 

suggested to cause myopathy, rhabdomyolysis, and cardio-

myopathy.41 Hypophosphatemia may be caused by a reduced 

renal threshold concentration of phosphate, but this might be 

only a part of a more complex tubular dysfunction.42,43 The 

presence of glycosuria and aminoaciduria with reduced renal 

threshold concentration of phosphate suggests a generalized 

reduction in the reabsorption ability of the proximal tubules. 

These data are supported by experimental studies indicating 

that ethanol interferes with the carrier function of the tubular 

cells by decreasing Na+/K+-ATPase activity.

Red cell 2, 3-DPG has been found to be increased, which 

has been suggested to be caused by a decrease in CO
2
 produc-

tion (cellular oxidation of alcohol produces 33% less CO
2
 

than cellular oxidation of glucose) leading to increased red 

cell glycolysis compensatory to the left shift of the ODC due 
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to the Bohr effect.44 The similarities of alcohol intoxication 

and oxygen deprivation warrant further studies.

Hypertension
Ljunghall and Hedstrand45 conducted a population study 

of more than 2,000 men aged 49–50 years and showed 

that plasma Pi, within normal range, was inversely related 

to blood pressure. The presence of hypophosphatemia in 

hypertension has repeatedly been confirmed.46,47 Interestingly, 

a significant correlation was found between the rise in the 

initially low plasma Pi and the lowering of the initially high 

arterial blood pressure in overweight patients with essential 

hypertension.48

In spontaneous hypertensive rats, it was shown that the 

Pi and ATP in the vascular walls were reduced and that this 

reduced energy availability may contribute to a reduced 

response to vasoconstrictor agonists (noradrenaline and 

angiotensin II).49 Bindels et al50 in their study of hypertensive 

rats found that a disturbance in phosphate metabolism was 

already present at 6 weeks of age and that hypophosphatemia 

and hypophosphaturia were accompanied by an adaptive 

change in the transport capacity of Na+-dependent phosphate 

transport in brush border membranes from renal cortex. Older 

animals, at age 20 week, with marked hypophosphatemia 

showed reduced content of red cell 2, 3-DPG.

Epinephrine is a hypophosphatemic hormone in men,51 

and patients with hypertension have often been found to have 

increased plasma catecholamine concentrations consistent 

with the theory of a pathophysiologic role for increased 

sympathetic activity in this disease.52

Metabolic syndrome
There are different definitions of the metabolic syndrome. 

According to the Adult Treatment Panel III guidelines, 

metabolic syndrome is based on the presence of 3 or more 

of the following criteria: hypertension, impaired glucose 

tolerance, abdominal obesity, and dyslipidemia involving 

hypertriglyceridemia and decreased high-density lipoprotein 

cholesterol values.53

It was recently suggested that a disturbance in Pi metabo-

lism may be a basic and fundamental representative of this 

metabolic syndrome. Håglin54 studied 2,752 consecutive 

patients (1,190 men, 1,562 women) admitted during the 

years 1986–1996 to the patient education centre of Vindeln, 

a small community in northern Sweden. It was found that 

a low plasma Pi was associated with high BMI, high blood 

glucose, high systolic and diastolic blood pressures, but low 

serum high-density lipoprotein and serum magnesium levels. 

Another study by Kalaitzidis et al55 on 254 persons with a 

diagnosis of metabolic syndrome was based on Adult Treat-

ment Panel III guidelines. Subjects with fewer than 3 criteria 

served as controls. Patients with metabolic syndrome showed 

significantly lower plasma Pi and magnesium levels than 

controls. Because the fractional excretion of phosphate was 

similar in both groups, it was assumed that  hypophosphatemia 

in patients with metabolic syndrome was attributable to 

decreased dietary intake and internal redistribution of this 

element.

Discussion
Harden and Young56 in 1906 were the first to note that 

phosphorus played an important role in carbohydrate and 

energy metabolism, and the importance of phosphorus has 

been looming larger ever since. They furthermore found in 

living tissue a sugar-phosphate ester consisting of fructose 

with 2 phosphate groups, fructose diphosphate, also called 

Harden–Young ester.56 Pi is an important substrate for ATP 

formation both by oxidative phosphorylation and by glycoly-

sis. Because phosphate is a component of ATP, it also plays 

a pivotal role in the energy-related processes that take place 

in the endothelium and muscle cells of the cardiovascular 

system.57 Furthermore, without optimal oxygenation to the 

terminal electron acceptor in a reaction that is carried out 

by cytochrome c oxidase in the electron transport chain in 

mitochondria, the consequence of mitochondrial dysfunc-

tion may be endothelial dysfunction, increased endothelial 

permeability, or cell lyses.

Our study indicates that age, gender, hypertension, 

obesity, diabetes, hyperglyceridemia, and the metabolic 

syndrome all are associated with hypophosphatemia and 

increased risk for cardiovascular diseases. In addition, 

tobacco smoking, diabetes, and hyperchylomicronemia show 

defects in tissue oxygen delivery (Figure 1). In hypertension, 

microcirculation plays a critical role in that the increase in 

peripheral resistance underlying the raised blood pressure is 

localized to a narrowing of small arteries and precapillary 

arterioles with rarefaction of capillaries possibly leading to 

ischemic hypoxia. In diabetes, affinity hypoxia may be related 

to the increased levels of glycosylated hemoglobin, relative 

or absolute hypophosphatemia, and red cell 2, 3-DPG con-

tent. In diabetes mellitus, a major disturbance in phosphate 

handling occurs in the kidney tubules, where the excessive 

sodium-dependent glucose reabsorption in patients with 

diabetes depolarizes the electrochemical sodium gradient. 

Since Pi uses the same driving force but has less binding 

ability to sodium than glucose and aminoacids, such as 
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alanine, the Pi reabsorption, particularly in poorly regulated 

patients, become impaired. Sodium-dependent phosphate 

transport has been described in many epithelial cells and 

may be a widespread process.58 It occurs in cells in which the 

entrance of glucose is not controlled by insulin and the result 

of hyperglycemia is increased sodium-dependent glucose 

transport. Besides the renal tubular cells, this may occur in 

the cardiovascular endothelium.59

In a double-blind study over 1 year to assess the effect of 

addition of 2 g of calcium diphosphate to the 3 main meals 

to 43 patients with juvenile diabetes, no increase was seen 

in the concentration of Pi (active = 19, 1.33 mmol/L vs pla-

cebo = 24, 1.42 mmol/L; P = ns). In the treatment group, the 

fasting urinary phosphate excretion significantly increased 

and the threshold concentration of Pi (T
mPO4

/GFR) was sup-

pressed. The threshold concentration was not related to the 

level of PTH or to growth hormone, but inversely correlated 

with the degree of hyperglycemia. Therefore, the normaliza-

tion of blood glucose levels leads to an improved capacity of 

the kidney tubules to reabsorb Pi and a subsequent increase 

in plasma Pi concentrations.6,60

The carbon monoxide, a byproduct of smoking, leads to a 

decrease in oxygen carrying capacity, a left shift (decreased 

P
50

) of the ODC, and a decrease in oxygen availability or 

demand ratio.

The large study by Park et al9 supports the findings of 

Håglin et al8 and that serum phosphate levels showed a 

negative correlation to age, BMI, fasting blood glucose, 

triglyceride levels, and systolic and diastolic blood pressures. 

However, it was also shown that it may be important to main-

tain an appropriate level of phosphate for the prevention of 

cardiovascular events and metabolic syndrome.

Mitochondrial
Dysfunction

Hypertension
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Alcoholism

Obesity
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Figure 1 The present concept indicates that the risk factors to cardiovascular disease lead to mitochondrial dysfunction due to either hypophosphatemia and/or hypoxia 
(see text).
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It is well established that patients and animals with very 

low plasma concentration of Pi have abnormal function of red 

blood cells, kidneys, brain, myocardium, pancreas, muscles, 

and nerves.61,62 The relationship between extracellular and 

intracellular availability of Pi is uncertain because the avail-

ability of Pi in various intracellular compartments is not well 

known. Freeman et al63 used nuclear magnetic resonance to 

provide an estimate of free Pi in intact renal cortex of rats. 

From their data, they calculated the intracellular concentra-

tion of free Pi to be 0.6 mmol/L. Brazy and Mandel64 used 

this estimate in combination with their own data relating 

phosphate dependence with oxidative phosphorylation in 

renal tubules and concluded that the availability of Pi in 

cortical renal tubules may be a factor in regulating rates of 

oxidative phosphorylation. They further showed that tran-

sepithelial phosphate transport provides Pi for use within cells 

and that intracellular metabolic processes compete for Pi. 

Perfusion of proximal convoluted tubules from rabbit kidney 

with phosphate-free medium containing glucose resulted in 

complete inhibition of the fluid absorption. It was suggested 

that as glycolysis increases, there is not enough intracellular 

phosphate for both glycolysis and mitochondrial respiration, 

and the rates of respiration decrease, thereby reducing the 

tissue content of ATP. Thus, these and other studies65,66 indi-

cate that pathways of intracellular metabolism may depend 

on and compete for intracellular phosphate.

Plasma Pi concentration appears to act as a double-edged 

sword. Several epidemiological studies have indicated that 

calcium, phosphate, and calcium–phosphate product may 

also be positively associated with increased risk of cardio-

vascular diseases.67,68 Interestingly, vitamin D levels that are 

directly correlated with plasma Pi have been found to be 

inversely related with the risk of cardiovascular diseases.69 

However, in end-stage renal failure, a U-shaped association 

of Pi and PTH to cardiovascular disease, with high risk in 

both hypophosphatemia and hyperphosphatemia, has been 

demonstrated.70,71 So, although we are dealing with complex 

processes, an explanation could be that hypophosphatemia 

leads to mitochondrial dysfunction and, in diabetes, to affinity 

hypoxia, whereas hyperphosphatemia promotes calcification 

of the vessel walls leading to ischemic hypoxia by narrowing 

or causing mechanical occlusion of both the macrovascula-

ture and the microvasculature.72–74

The negative effect of hypophosphatemia might be abro-

gated by increasing intracellular phosphate, which may be pos-

sible by using the key intermediate fructose 1,6-diphosphate 

(FDP). Natelson et al75 showed that orally administrated FDP 

as calcium salt was absorbed directly by the intestinal tract 

without splitting the phosphate linkage and that 6 g led to an 

increase of plasma Pi averaging 15%, citric acid 10.7%, and 

nonprotein organic phosphate, as much as, 173%. Further 

preclinical and clinical data indicate that FDP can enter cells 

and serve as a metabolizable substrate of glycolysis. FDP acts 

as human bioenergy. It can transport phosphorous intracel-

lularly and can deliver 4 mol of ATP per mole of FDP. FDP 

can be given orally and intravenously in humans and is well 

tolerated at pharmacological doses. Although FDP appears to 

be efficacious, no controlled study has been reported with this 

key intermediate in patients with cardiovascular risk factors.
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