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Abstract: Precision medicine is increasingly recognized as a promising approach to

improve disease treatment, taking into consideration the individual clinical and biological

characteristics shared by specific subgroups of patients. In specific fields such as oncology

and hematology, precision medicine has already started to be implemented in the clinical

setting and molecular testing is routinely used to select treatments with higher efficacy and

reduced adverse effects. The application of precision medicine in psychiatry is still in its

early phases. However, there are already examples of predictive models based on clinical

data or combinations of clinical, neuroimaging and biological data. While the power of

single clinical predictors would remain inadequate if analyzed only with traditional statistical

approaches, these predictors are now increasingly used to impute machine learning models

that can have adequate accuracy even in the presence of relatively small sample size. These

models have started to be applied to disentangle relevant clinical questions that could lead to

a more effective management of psychiatric disorders, such as prediction of response to the

mood stabilizer lithium, resistance to antidepressants in major depressive disorder or strati-

fication of the risk and outcome prediction in schizophrenia. In this narrative review, we

summarized the most important findings in precision medicine in psychiatry based on studies

that constructed machine learning models using clinical, neuroimaging and/or biological

data. Limitations and barriers to the implementation of precision psychiatry in the clinical

setting, as well as possible solutions and future perspectives, will be presented.

Keywords: machine learning, pharmacogenomics, predictive models, risk stratification,

personalized therapy

Introduction
Coinciding with the sequencing of the human genome, and the resulting delineation

of the genetic architectures of many complex diseases, precision medicine has

emerged as a novel player in healthcare.1,2 Although its popularity among provi-

ders, users, and public and private stakeholders has increased constantly in the last

decade, the adequate comprehension of its characteristics (and of its exact defini-

tion), as well as of the complex operational approaches accompanying its imple-

mentation, remains limited. For instance, there is consensus that precision medicine

is changing the paradigm of clinical care from the traditional evidence-based

approach (founded on data gathered in large populations of patients), to an indivi-

dual-based deep knowledge of clinical (phenotypic) and biological characteristics.3

Yet, accurate descriptions of the potential impact of precision medicine on health-

care, even in economic terms, remain scant. In general, precision medicine “prior-

itizes the individualization of care and focuses attention on unique characteristics of
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a particular patient”.3 This is clearly in line with the

traditional, clinically oriented approach that has histori-

cally permeated medicine, where physicians base their

intervention on an accurate dissection of the signs and

the symptoms manifested by each individual. Psychiatry,

in this regard, is a perfect testament of the potential of

a personalized clinical approach. Its foundations are based

on descriptive psychopathology and phenomenology,

which in turn originate from the accurate analysis and

understanding of the internal abnormal processes

expressed by each individual.4 However, even if psychia-

try is deeply rooted in a personalized approach, the transi-

tion toward precision medicine, which needs other sources

of information such as neuroimaging and/or biological

measures, is still lagging behind compared to other fields

of medicine.5 For instance, cancer and haematology have

experienced tremendous advancement in this area.6,7 In

oncology, the SHIVA trial assessed whether histology-

agnostic use of marketed molecularly targeted agents out-

side their indications based on tumour molecular profiling

could improve outcomes for patients with any kind of

cancer for whom standard of care had failed, compared

with treatment at the physician’s choice.6 Although the

trial did not show a significant difference in progression-

free survival between molecularly targeted agents com-

pared with treatment at physician’s choice, it did show

the potential for a precision medicine approach in

oncology.6 Concerning haematology, in 2018 the US

Food and Drug Administration (FDA) approved the chi-

meric antigen receptor T cell (CAR T) for treatment of

refractory pre-B cell acute lymphoblastic leukaemia and

diffuse large B cell lymphoma.7 This treatment is based on

the application of sophisticated ex vivo culture and cellular

engineering approaches to autologous T cells that can then

express a CAR specific for the CD19 B lymphocyte

molecule.7 Thus, CAR T is the perfect exemplification of

an intervention designed according to individual biological

characteristics.

These are more optimistic scenarios than the one obser-

vable in psychiatry. However, it was not so long ago that

psychiatry saw attempts to implement precision medicine

approaches. One of the examples was the dexamethasone

suppression test, which showed a moderate sensitivity

(50–65%) but a high specificity (96%) in the prediction,

not only of future episodes of depression, but also of

response to antidepressant treatment.8 However, the pre-

sence of an altered function of the hypothalamus–pitui-

tary–adrenal (HPA) axis is a feature shared by almost all

severe psychiatric disorders, limiting the clinical utility of

these findings in terms of precision medicine.

One additional introductory remark should be made before

starting our exposition. This concerns the need to use proper

terminology, and methodology, in precision medicine in gen-

eral, and even more so in psychiatry. Although a detailed

review of these aspects lies outside the scope of this paper,

we believe that a general overview of the terms might help the

reader in familiarizing with the concepts of precision psychia-

try. A list of the main terms is outlined in Table 1. Of particular

relevance here is the concept of clinical significance. This is

strictly related to, but somewhat independent, from statistical

significance. Indeed, a statistically significant finding can or

cannot be clinically relevant.9 Conversely, clinical significance

relates precisely to its own impact and importance for a patient

population.10 Findings with clinical significance are starting to

being applied to dosing recommendations for psychotropic

drugs, including selective serotonin reuptake inhibitors

(SSRI),11 tricyclic antidepressants (TCAs),12 atomoxetine,13

and carbamazepine,14 based on genetic information.

Table 1 Glossary of Relevant Terms in Precision Psychiatry

Term Definition

Accuracy Metric used to evaluate the classification

performance of a machine learning model defined

by the ratio of the number of correct predictions

over the total number of predictions.

Precision Ability of an algorithm to return substantially more

relevant results than irrelevant ones

AUC Measure of how well a binary classifier system can

distinguish between two groups

Sensitivity Proportion of actual positives that are correctly

identified as such

Specificity Proportion of actual negatives that are correctly

identified as such

PPV Proportions of positive results in statistics that are

true positive

NPV Proportions of negative results in statistics and true

negative results

Statistical

significance

Expresses whether an observed difference is more

likely to be a real difference rather than a chance

occurrence

Clinical

significance

Expresses the impact and importance of a finding

for a patient population

Abbreviations: AUC, area under the curve; PPV, positive predictive value; NPV,

negative predictive value.
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Specifically, information on genotypes of CYP2D6 (atomox-

etine) and/or CYP2C19 (SSRIs and TCAs), two genes encod-

ing enzymes that contribute to the metabolism of several

antidepressants, can be used to adjust the dosage or select an

alternative treatment based on the recommendations made by

the Clinical Pharmacogenetics Implementation Consortium

(CPIC)15 or the Dutch Pharmacogenetics Working Group

(DPWG).16 Although translation of CYP2D6 genotype to

metabolizing phenotypes is not standardized across labora-

tories, CPIC and DPWG have recently started to adopt

a standardized system in order to develop more consistent

dosing guidelines.17 In the case of carbamazepine, recommen-

dations based on HLA genotypes were formulated on the basis

of a large body of evidence supporting an association between

specific alleles and the risk of severe adverse drug reactions.14

These initiatives represent a precious effort to overcome one of

the barriers to precision psychiatry, ie, the difficulty in translat-

ing pharmacogenetic results into actionable treatment

decisions.

However, despite the aforementioned examples, while

there is a general consensus on the definition of statistical

significance, clinical significance remains a vague concept,

relying heavily on the subjective interpretations and

assumptions made by the researchers.10 This quandary

has started to be resolved with the implementation of

data analysis methods, such as machine learning, that

allow to make inferences even in the presence of non-

linear correlations between the independent variables of

a specific outcome, and of relatively small sample sizes,

using supervised and unsupervised methods.18 Indeed,

machine learning deals with the creation and evaluation

of algorithms that facilitate pattern recognition, classifica-

tion, and prediction, based on models derived from exist-

ing data.19 Two main approaches, supervised and

unsupervised learning, can be used when applying this

analytical method.19 While in supervised learning, specific

set of attributes are used to classify data, unsupervised

learning discovers the similarity patterns existing in the

datasets allowing to identify distinct clusters of objects.19

Although there are challenges, including reproducibility,

management of missing data, and overfitting,20,21 that

might dampen the enthusiasm for machine learning

approaches, these have shown their utility in building

clinically relevant predictive models. The classification

performance of these models is typically measured using

area under the receiver operating characteristic curve

(ROC-AUC), accuracy, sensitivity, specificity, positive

predictive value (PPV), and negative predictive value

(NPV). As we will show in the following sections, preci-

sion medicine, including precision psychiatry, is increas-

ingly relying on the application of this methodology.

In this context, we reckon timely a narrative review of

the most significant findings in precision psychiatry on

predictive models based on clinical (and partly neuroima-

ging) data, and on biological measures. We will then

discuss the barriers that are still present in the implemen-

tation of precision psychiatry, concluding with its potential

and future perspectives.

Clinical Predictive Models in
Precision Psychiatry
Precision medicine in psychiatry can be enriched by deep

knowledge of the biological characteristics of each indivi-

dual. Yet, there have been several attempts, partly success-

ful, to implement predictive models of specific outcomes

(for instance treatment response) based purely on clinical

data (Table 2). These studies have mainly focused on: 1)

response to lithium,22–24 the mainstay of treatment of

bipolar disorder (BD), a recurrent mood disorder charac-

terized by alternating episodes of depression and mania; 2)

prediction of resistance to antidepressants in major depres-

sive disorder;25,26 and 3) stratification of the risk27 and

outcome prediction28–30 in schizophrenia.

The prediction of response to lithium therapy is a clear

example of the significance of precision psychiatry. One-

third of lithium-treated patients shows a pattern of com-

plete clinical response, with absence of mood recurrences

and, importantly, return to normal levels of functioning as

well as to good quality of life.31,32 Thus, lithium modifies

substantially the trajectory of illness in BD patients,

a characteristic that makes this drug a unique therapeutic

tool in the field of psychiatry. The identification of reliable

clinical predictors of lithium response has therefore gained

attention. Quantitative data synthesis has pointed to sev-

eral clinical factors as possible predictors.33,34 Among

these are the presence of an episodic clinical course, the

absence of psychotic symptoms, a positive family history

of BD and later age of onset.33,34 However, the predictive

power of these variables, either singularly or cumulatively,

remains inadequate if based only on standard univariate

statistical approaches. Proper analytical methods, such as

machine learning, could be instrumental in determining,

even in the presence of relatively small sample sizes, the

accuracy of predictive models and their eventual clinical

significance. In this context, Kim et al used data from
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Table 2 Clinical Predictive Models in Precision Psychiatry

Outcome Sample Classification

Methods

Best

Performance

Most Relevant Predictors Reference

BD

Response to

lithium (CGI-BP

for overall BD

illness at 6

months)

240 outpatients with BD-I or BD-

II receiving adjunctive

personalized treatment plus

either lithium or quetiapine

ENR Accuracy: 17% Non-suicidal self-injurious

behaviour, ADHD, high levels of

mania, of social phobia/anxiety

disorder, suicide risk

Kim et al

(2019)22

Long-term

lithium response

(minimum

duration of

treatment:

1 year)

1266 patients with BD from seven

international specialist clinics

RF Sensitivity:

0.53

Specificity:

0.90

Episodic clinical course Nunes et al

(2020)23

Short-term

lithium response

(8 weeks)

20 patients with first-episode

bipolar mania

Genetic fuzzy

tree

Accuracy: 80% fMRI and 1H-MRS scans Fleck et al

(2017)24

MDD

Treatment-

resistant

depression

2555 patients with MDD included

in the STAR*D study

Naïve Bayes

classifier, RF,

SVM

ROC AUC:

0.71

QIDS score, demographic

variables, comorbidity with PTSD,

recurrent episodes, psychosis

screen positive

Perlis

(2013)25

Treatment-

resistant

depression

2782 patients with MDD included

in the STAR*D study; 225 patients

with MDD included in the RIS-

INT-93 study

K-means

clustering,

penalized LR RF,

GBDT,

XGBoost ENR

Accuracy: 0.70 Items from QIDS, SHFS, PDSQ,

PRISE and WSAS

Nie et al

(2018)26

SCZ

Subgroups of

patients with

homogeneous

characteristics

104 patients with SCZ Hierarchical

clustering, LR,

SVM, RM

ROC AUC:

0.81

T1-weighted MRI data, items from

SAPS/SANS

Talpalaru

et al (2019)27

First episode

psychosis or

conversion to

psychosis within

12 months

347 participants from eight early

psychosis clinics

Spectral

clustering

analysis, SVM

PPV: 76.5% Items from EPSI and SIPS Brodey et al

(2019)28

Psychotic

relapse

315 patients included in the

included in the FondaMental

Expert Centers for Schizophrenia

network and followed up for two

years

Classification

and regression

trees

Sensitivity:

0.71

Specificity:

0.45

High anger (Buss&Perry subscore),

high physical aggressiveness (Buss

&Perry scale subscore), high

lifetime number of hospitalizations

in psychiatry, low education level,

PANSS positive subscore at

baseline

Fond et al

(2019)29

(Continued)
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a randomized clinical trial of outpatients with BD type I or

II who received adjunctive personalized treatment plus

either lithium or quetiapine.22 In the analysis of lithium

response data, the authors split the total sample (n = 240)

in a training set (n = 192) and a test set (n = 48), finding

that the predictive accuracy of the model was around

17%.22 The most significant predictors of lithium response

were the presence of non-suicidal self-injurious behavior,

of attention-deficit/hyperactivity disorder, of high level of

mania, of social phobia/social anxiety disorder, and of

suicide risk.22 Although potentially clinically relevant,

these findings were based on a clinical outcome (response

to lithium with a concomitant evidence-based stabilizing

treatment) different from monotherapy efficacy, making

the comparison with previous literature difficult. In addi-

tion, the model was based on data collected in a trial with

a limited duration, which differs from the classical pheno-

typic definition of long-term lithium response and included

also nonclinical features such as serum levels of laboratory

markers (creatinine, sodium, potassium, and so on). More

recently, a collaborative initiative led by Canadian

investigators,23 made use of data from seven international

specialist clinics, with a minimum duration of lithium

treatment of 1 year, using a validated scale for the assess-

ment of clinical response to lithium.35 This study sug-

gested that lithium response could be predicted with

a low rate of false positives (specificity 0.9), although

the sensitivity was comparatively less strong (0.53).23

Importantly, even considering the substantial between-site

heterogeneity, completely episodic clinical course was the

most informative feature in the prediction model of lithium

response,23 in line with prior evidence.33,34 It should be

noted that attempts of predicting lithium response have

been made also using neuroimaging data.24 The proof of

concept study of Fleck et al showed that a machine learn-

ing system applied to functional magnetic resonance ima-

ging (fMRI) and proton magnetic resonance spectroscopy

(1H-MRS) inputs were able to predict post-treatment

symptom reductions at 8 weeks of lithium treatment with

at least 88% accuracy in training and 80% accuracy in

validation.24 However, the outcome chosen for the analy-

sis (short-term lithium response) was again different from

the one typically used in clinical and genetic studies.

Another set of findings concerns the testing of predictive

algorithms of treatment resistance to antidepressants.25,26

Treatment-resistant depression is a common clinical phe-

nomenon, with about 30% of patients with major depressive

disorder showing lack of clinical improvement.36 In addition,

a much larger proportion of antidepressant-treated patients

show suboptimal responses.36 Predictingwith adequate accu-

racy treatment-resistant depression could translate into

a more effective management of the disorder, with a more

expedite relief of the symptoms, and a reduction of the costs

determined by long-term disability. Using data drawn from

the Sequenced Treatment Alternatives to Relieve Depression

(STAR*D) study, Perlis applied different analytical

approaches (logistic regression and machine learning algo-

rithms) to test the predictive power of a series of clinical

variables selected on the basis of manual and automated

approaches.25 Both approaches led to a comparable perfor-

mance in the prediction of treatment resistance depression

with an area under the curve (AUC) of 0.7 in training, testing,

and validation datasets.25 Specifically, several variables, such

as years of education, presence of recurrent illness, presence

Table 2 (Continued).

Outcome Sample Classification

Methods

Best

Performance

Most Relevant Predictors Reference

Treatment

outcome (GAF

score) at 4

weeks and

1 year

334 patients included in the

European First Episode

Schizophrenia Trial

Cross

validation, SVM

Accuracy: 75% Unemployment, poor education,

functional deficits, unmet

psychosocial needs predicted both

endpoints; previous depressive

episodes, male sex, and suicidality

predicted poor 1-year outcomes

Koutsouleris

et al (2016)30

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; BD, bipolar disorder; BD-I, BD type I; BD-II, BD type 2; CGI-BP, Clinical global impressions scale-bipolar

version; ENR, Elastic net regularization; EPSI, Early Psychosis Screener for Internet; fMRI, functional magnetic resonance imaging; GAF, Global Assessment of Functioning; LR,

logistic regression; MDD, major depressive disorder; MRS, magnetic resonance spectroscopy; PANSS, Positive and Negative Syndrome Scale; PDSQ, Psychiatric Diagnostic

Screening Questionnaire; PPV, positive predictive value; PRISE, The Patient Rated Inventory of Side Effects; QIDS, Quick Inventory of Depressive Symptomatology; Ref,

reference; RF, random forest; ROC AUC, area under the receiver operating characteristic curve; SANS, Scale for the Assessment of Negative Symptoms; SAPS, Scale for the

Assessment of Positive Symptoms; SCZ, schizophrenia; SFHS, Short Form Health Survey; SIPS, Structured Interview for Psychosis-Risk Syndromes; STAR*D, Sequenced

Treatment Alternatives to Relieve Depression; SVM, support vector machine; WSAS, The Work and Social Adjustment Scale.
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of psychosis, African-American ethnicity, presence of Post-

Traumatic Stress Disorder, and higher total score at the Quick

Inventory of Depressive Symptoms, increased the risk of

treatment-resistant depression.25 These findings suggest that

it is possible to rely solely on patient self-reported measures

to identify at least a subset of individuals at greatest risk for

treatment resistance.25 More recently, Nie and coauthors

applied five different machine learning approaches to clinical

and socio-demographic data from the STAR*D cohort and an

independent cohort, the latter used as an external test dataset

to predict treatment-resistant depression after two trials of

treatment regimens.26 The authors found that, using the top

30 clinical predictors, the gradient boosting decision tree

(GBDT) model was able to predict both treatment resistance

and non-treatment resistance with comparable accuracy

(about 0.7).26 Several variables, including more severe 16-

item Quick Inventory of Depressive Symptomatology, clin-

ician-rated (QIDS-C16) symptom severity total score at week

2, presence of anxiety/chronicity as identified with the

Psychiatric Diagnostic Screening Questionnaire (PDSQ)

questions, lower levels of Physical Health Composite

Scores (PCS), presence of nervous system symptom

(PRISE question) and Work and Social Adjustment Scale

(WSAS) total score were associated with increased odds of

being treatment resistant to antidepressants.26

Finally, a few studies focused 1) on the ability of

machine learning algorithms to identify subgroups of

patients affected by schizophrenia with more homogenous

characteristics, that could be targeted by ad hoc interven-

tions, either pharmacological or non-pharmacological,

and 2) on the predictive accuracy of diagnostic conversion

in at-risk subjects or of symptomatic recurrences.27–30 The

implementation of accurate deep phenotyping is a necessary

condition to reduce the impact of heterogeneity on predic-

tion accuracy.37 But this might not be sufficient if adequate

analytical approaches are not implemented. The work of

Talpalaru et al used different classifiers, logistic regression,

random forest and support vector machine (SVM), to iden-

tify subgroups of schizophrenic patients on the basis of

symptomatic and magnetic resonance imaging (MRI) data

of 167 subjects were used.27 The subgroups included

patients at 1) high symptom burden, 2) predominantly posi-

tive symptom burden, and 3) mild symptom burden. These

authors found that all three classifiers predicted the high

symptom burden group with an AUC higher than the case–

control comparison. Additionally, the RF classifier also out-

performed the case–control study in predicting the mild

symptom burden group.27 Even if not including solely

clinical information, these findings show the ability of

machine learning algorithms to perform clinical prediction.

Furthermore, they demonstrate how the integration of dif-

ferent types of data can increase the performance of pre-

dictive algorithms even with relatively small sample sizes.

The study of Brodey et al28 tested whether machine learning

analysis of data from a self-report screener for early psy-

chosis was able to predict with accuracy the diagnostic

conversion to psychosis. The SVM algorithm applied on

data from 353 participants showed that this assessment tool

had cross-validated PPVof 76.5% at separating individuals

who would not convert to psychosis within 12 months from

those who either would convert within 12 months or who

had already experienced a first-episode psychosis.28 Fond

et al showed the ability of a classification and regression

tree to predict psychotic relapse in a cohort of 315 patients

followed up for 2 years.29 Several clinical characteristics,

such as high anger and/or physical aggressiveness, the

number of lifetime hospitalizations in psychiatry, low edu-

cation level, and high positive symptoms at baseline were

found to be the best predictors of psychotic relapse at

2 years.29 The work of Koutsouleris et al applied non-

linear SVM machine learning to clinical data from 334

patients in the European First-Episode Schizophrenia Trial

to predict outcome after 4 weeks and 52 weeks of

treatment.30 The accuracy of the predictive models was

adequate (75% for 4-week outcomes and 73.8% for

52-week outcomes), showing the feasibility of generaliz-

able, individual-patient prediction of treatment outcomes in

first-episode psychosis using pre-treatment clinical

information.30 Importantly, the most useful predictors of

poor 4-week and 52-week treatment outcome were unem-

ployment, unmet needs in the Camberwell Assessment of

Needs (CAN) questionnaire about relationships, daytime

activities, and psychological distress.30 Educational

difficulties were predictive at 52-week, and low educational

status of the patient and the patient’s mother at 4-weeks.30

Poor 1-year outcome was predicted by a series of variables

including the Mini-International Neuropsychiatric

Interview (MINI) diagnostic items [recurrent major depres-

sion, schizophrenia (present and lifetime)], suicidality, male

sex, and lower baseline scores on the PANSS positive sub-

scale, presence of conceptual disorganization and hyperac-

tivity (P2 and P4 items of PANSS, respectively).30 Poor

4-week outcome was predicted by higher clinical global

impression (CGI) and lower global assessment of function-

ing (GAF) score at baseline, haloperidol treatment, and
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unmet needs in the CAN’s accommodation, information,

money, and sexual expression domains.30

In summary, these findings show that precision psy-

chiatry have a solid base on clinical data, provided that

accurate phenotyping, preferably in a longitudinal perspec-

tive, is performed. This can be empowered by the integra-

tion of other sources of data, such as neuroimaging and, as

we will discuss below, biological measures.

Biological Predictive Models in
Precision Psychiatry
The majority of studies assessing whether biological vari-

ables are able to increase the accuracy of predictive mod-

els of treatment response to psychotropic medications

focused on antidepressants (Table 3). A recent meta-

analysis evaluated previous studies using machine learn-

ing-devised models to predict therapeutic outcomes in

unipolar and bipolar depression.38 The quantitative evalua-

tion of 20 studies showed an overall accuracy, clinically

relevant, of 0.82. Importantly, the models with the best

performance were those informed by multiple data types

which included neuroimaging, genetic and clinical

predictors.38 In particular, the latter included overall

mood symptom severity, anxiety, anhedonia, global func-

tioning, and the number of previous mood episodes.38 In

addition, socio-demographic variables, such as employ-

ment status, level of education, and household income,

contributed significantly to the performance of the predic-

tive models.38 This evidence highlights the importance of

including multiple source of data to increase the accuracy

of predictive models.

Among the first studies using genetic data to predict

response to antidepressants, Serretti and Smeraldi (2004)

applied a neural network approach in a sample of 121

patients with major depressive disorder treated with flu-

voxamine for 6 weeks.39 Although this study only

included genotypic data for two variants [serotonin trans-

porter gene-linked functional polymorphic region

(5-HTTLPR) and a polymorphism located in the promoter

of the TPH gene, it reached a promising accuracy equal to

0.71 in predicting response to fluvoxamine defined as an

Hamilton Depression Rating Scale (HAMD) 21 items

(HAMD-21) ≤8.39 An important effort to define algorithms

for treatment-resistant depression is currently being made

by the European Group for the Study of Resistant

Depression (GSRD).40 In a recent work, using random

forest and k-means clustering, the authors identified

a signature of three genetic variants related to treatment

outcome [rs6265 in the gene encoding for the brain-

derived neurotrophic factor (BDNF), rs7430 in the

Protein Phosphatase 3 Catalytic Subunit Gamma

(PPP3CC) gene, and rs6313 in the gene encoding for the

serotonin transporter receptor 2A (HTR2A)] that, com-

bined with the absence of melancholy, were associated

with a decline in the HAMD score <17 (62% of the

patients with this combination compared to 34% in the

whole study population).41 A more comprehensive list of

genetic variants was investigated by Maciukiewicz et al

(2018).42 The authors used LASSO regression to identify

the most promising predictors and SVM to predict treat-

ment outcome in a sample of 186 major depressive dis-

order patients treated with duloxetine for 8 weeks and for

which genome-wide association data (GWAS) were

available.42 Response was defined as a 50% increase in

the Montgomery–Asberg Depression Rating Scale

(MADRS) score from baseline, while remission was

reached with a MADRS score ≤10 at end point. While

no model showed a good performance for response,

a slightly better performance was achieved for remission,

although substantially below the threshold for clinical

applicability (accuracy=0.52, sensitivity=0.58, and

specificity=0.46).42 Although innovative in its approach,

the limited number of participants and the choice not to

apply any filter or weight according to the biological

relevance of the variants might have influenced the results

of this study. Besides genotypic data, peripheral messenger

RNA (mRNA) levels of selected genes might also inform

machine learning models. This approach was applied by

a recent study showing that baseline expression levels of

six genes (IFITM3, RPL5, GZMA, RPL24, MATR3 and

RPL17) selected from genome-wide transcriptome data

reached 0.76 accuracy in predicting non-remission after 8

weeks of treatment with citalopram.43

Other studies investigated the use of genetic variants

together with imaging or metabolomic information.44,45

Specifically, an SVM model integrating clinical variables

with resting-state fMRI and 13 selected single nucleotide

polymorphisms (SNPs) was used to predict early response

to antidepressants defined as a 50% reduction of the 6-item

HAMD (HAMD-6) score after 2 weeks in a sample of 98

Chinese patients with major depressive disorder treated

with SSRI (n=63) or SNRI (n=35).45 In this study, the

model based on multimodal features achieved a better

performance (accuracy = 0.86) compared to models

including only fMRI (accuracy = 0.81) or genetic
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Table 3 Biological Predictive Models in Precision Psychiatry

Outcome Sample Classification

Methods

Best

Performance

Most Relevant Predictors Ref.

MDD

Response to

fluvoxamine at 6

weeks (HAMD-21

≤ 8)

121 patients with MDD Neural networks ROC AUC:

0.73

5-HTTLPR and TPH promoter

polymorphism

Serretti and

Smeraldi

(2004)39

Response to

antidepressants

(HAMD score < 17)

225 patients with MDD included in

the GSRD study

RF, K-means

clustering

NA rs6265 (BDNF), rs7430 (PPP3CC),

rs6313 (HTR2A), absence of

melancholy

Kautzky et al

(2015)41

Remission after

duloxetine

(MADRS ≤ 10) at 8

weeks

186 patients with MDD treated with

duloxetine

LASSO regression,

classification -

regression trees,

SVM

Accuracy: 0.52

Sensitivity: 0.58

Specificity: 0.46

92 SNPs located in various genes Maciukiewicz

et al (2018)42

Remission after

citalopram (HDRS-

17 ≤ 7) at 12

weeks

34 patients with MDD and anxiety

treated with citalopram +

psychotherapy for 12 weeks and 33

controls; validation cohort including

63 patients with MDD treated with

citalopram for 8 weeks

SVM Accuracy: 0.79

Sensitivity:

0.86

Specificity:

0.90

mRNA levels of six genes (IFITM3,

RPL5, GZMA, RPL24, MATR3, RPL17)

Guillox et al

(2015)43

Response to

citalopram/

escitalopram at 4

and 8 weeks

(QIDS-C)

290 patients with MDD included in

the Mayo Clinic PGRN-AMPS SSRI

trial

SVM, GLM, RF Accuracy: 0.80

Sensitivity:

0.83

Specificity:

0.77

65 variables including levels of selected

metabolites (eg serotonin, kynurenine

and tryptophan) SNPs (eg located in

DEFB1, AHR, TSPAN5 and ERICH3),

psychometric measures and

sociodemographic factors

Athreya et al

(2018)44

Response to

antidepressants

(50% reduction of

HDRS-6)

98 patients with MDD treated with

SSRI or SNRI

SVM Accuracy: 0.86 rsfMRI and 13 SNPs located in 12 genes

(ATP6V1B2, PCLO, MTHFR, HTR5A,

CLOCK, HTR2C, DRD5, TPH2, SLC6A3,

MAOB, TOR1A, PER3)

Pei et al

(2019)45

Response to

antidepressants

(HAMD score at 1,

4, 8 and 24 weeks)

121 patients with MDD ENR Accuracy: 0.85

Sensitivity: 0.80

Specificity: 0.87

Brain MRI data, genetic variants and

methylation status of different genes

Chang et al

(2019)47

SCZ

Treatment-

resistant

schizophrenia

5554 patients with treatment-

resistant schizophrenia, 6299 healthy

controls included in the CLOZUK

sample

SVM, PRS ROC AUC

SVM: 0.63

ROC AUC

PRS: 0.64

4998 SNPs located in various genes Vivian-

Griffiths et al

(2019)49

Antipsychotic-

induced

extrapyramidal

symptoms

131 patients with SCZ treated with

risperidone and two replication

cohorts of 113 patients each, treated

with various antipsychotics

Naïve Bayes

learner

Sensitivity:

0.39

Specificity:

0.81

Four SNPs located in genes of the

mTOR signaling pathway (AKT1 and

RPTOR)

Boloc et al

(2018)52

Abbreviations: 5-HTTLPR, serotonin transporter gene-linked functional polymorphic region; ARPnet, antidepressant response prediction network for major depressive disorder;

CLOZUK, clozapine UK; ENR, elastic net regularization; GLM, generalized linear model; GRSD, European Group for the Study of Resistant Depression; HAMD, Hamilton Depression

Rating Scale; HAMD-21,HAMD,HamiltonDepression Rating Scale 21 items; HDRS-6,HamiltonDepressive Rating Scale 6 items; HDRS-17, HamiltonDepressive Rating Scale 17 items;

MADRS, Montgomery–Asberg Depression Rating Scale; MDD, major depressive disorder; MRI, magnetic resonance imaging; mRNA, messenger RNA; NA, not available; rsfMRI,

resting state functional MRI; PGRN-AMPS, Mayo Clinic Pharmacogenomics Research Network Antidepressant Medical Pharmacogenomic Study; PRS, polygenic risk score; QIDS-C,

quick inventory of depressive symptoms; ROCAUC, area under the receiver operating characteristic curve; SCZ, schizophrenia; SNP, single nucleotide polymorphism; SNRI, serotonin

and norepinephrine reuptake inhibitors; SSRI, selective serotonin reuptake inhibitors.
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(accuracy = 0.73) data. Another recent study was con-

ducted by Athreya et al (2018), who developed a learning-

augmented clinical assessment workflow.44 The aim of this

model was to integrate metabolomics and genomics mea-

sures derived from peripheral blood with clinical data, to

increase the accuracy in the prediction of treatment out-

comes. The workflow was designed using data from about

300 patients with major depressive disorder treated with

citalopram/escitalopram for 8 weeks and included in the

Mayo Clinic Pharmacogenomics Research Network

Antidepressant Medical Pharmacogenomic Study (Mayo

PGRN-AMPS) and for whom biological measures were

available. Response to SSRIs at 4 and 8 weeks was eval-

uated using the QIDS-C.46 In this study, the analysis of

GWAS data and plasma metabolomic concentrations for

31 metabolites, integrated with psychometric measures

and sociodemographic factors, increased the prediction

accuracy of treatment response from around 52% to 64%

compared to a model using only clinical predictors.44 In

the first step, unsupervised learning techniques were used

to identify the cluster of patients and metabolites asso-

ciated with symptom severity (eg, serotonin, kynurenine

and tryptophan). GWAS data were also used to identify

SNPs associated with concentrations of the previously

identified metabolites (such as SNPs located in the

DEFB1, AHR, TSPAN5 and ERICH3 genes). The final

model included 65 variables among SNPs, metabolites

and clinical predictors.44 Along this line of research,

recently, Chang et alproposed the Antidepressant

Response Prediction Network for Major Depressive

Disorder (ARPNet) initiative, a platform aiming to predict

whether the patient will reach clinical remission as well as

the degree of response to antidepressants (expressed as the

HAM-D score).47 In this model, elastic net was used to

select the most informative features among clinical and

biological predictors including demographic variables,

brain MRI features, genetic (35 genes related to antide-

pressants) and epigenetic data (136 CpG sites). The model

was applied to predict response to antidepressants (HAMD

scores of the patients measured at 1, 4, 8 and 24 weeks

after the initial visit) in a sample of 121 Korean patients

with major depressive disorder treated with various anti-

depressants. From a methodological point of view, the

novelty of this model consisted of being composed of

three distinct layers (a patient representation, an antide-

pressant prescription representation and a prediction

layer).47 The first two layers capture informative features

to create the patient and antidepressant representation

vectors, respectively, which are used by the prediction

layer based on a linear regression approach. ARPNet

reached high sensitivity (0.80), specificity (0.87) and accu-

racy (0.85), being able to outperform six other machine

learning models, including SVM regressor with a linear

kernel and random forest regressor.47

Fewer studies applied machine learning models includ-

ing biological features to predict response to antipsycho-

tics. Rather than focusing on response to single

antipsychotics, most studies focused on predicting treat-

ment-resistant schizophrenia.48 A recent study from

Vivian-Griffiths et al (2019) used an SVM model to com-

pare its predictive performance to that of a polygenic risk

score (PRS) prediction in discriminating patients with

treatment-resistant schizophrenia from healthy

controls.49 The study was conducted in the CLOZUK

sample, including 5554 patients with treatment-resistant

schizophrenia and 6299 healthy controls50 and the PRS

included 4998 SNPs from the Psychiatric Genomics

Consortium (PGC) wave 2 GWAS meta-analysis.51 In

this study, the SVM model showed a worse accuracy

compared to PRS, with neither of the two approaches

showing a prediction accuracy adequate for clinical imple-

mentation [median area under the receiver operating char-

acteristics curve (AUC-ROC): PRS = 0.644, SVM =

0.634].49

Based on the high heritability of antipsychotics-induced

side effects (0.60–0.80), a recent study developed a model

based on genetic data to predict extrapyramidal symptoms

induced by antipsychotics,52 which represented a refinement

of a previous model proposed by the same authors.53 In light

of the evidence implicating the mTOR signaling pathway in

antipsychotics-induced extrapyramidal symptoms53 as well

as in L-DOPA-induced dyskinesia,54 Boloc et al evaluated 12

functional SNPs located in four genes of the mTOR signaling

pathway (AKT1, FCHSD1, RPTOR and DDIT4). Four of

these SNPs (rs33925946 and rs1130214 in the AKT1 gene;

rs3476568 and rs9915667 in the RPTOR gene) were selected

on the basis of their nominal association with extrapyramidal

symptoms in a discovery sample including 131 patients

treated with risperidone (of which 48 with and 83 without

extrapyramidal symptoms). Naive Bayes learner achieved

the best performance among three machine learning algo-

rithms applied to the discovery sample and was therefore

used to predict the extrapyramidal symptoms status in two

replication samples, showing good specificity (0.81 and 0.79)

but low sensitivity (0.39 and 0.38).52 Taken together, these

data show that, although still falling short of the clinical
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significance threshold, predictive models based on purely

biological data, or integrating themwith clinical information,

are: 1) starting to reach the accuracy needed to become

implantable in clinical settings; 2) showing in general low

sensitivity, but high specificity, implying that, at least for

predictive models of treatment response, it may be of impor-

tance to avoid a premature suspension of a drug trial given

that an eventual response would be highly probable.

Barriers to Precision Medicine in
Psychiatry
There are great expectations for the successful implemen-

tation of precision psychiatry. However, a series of hurdles

might delay or even impede this paradigm shift. These

involve ethical aspects, the impact of stigma and the

possible lack of cost-effectiveness. Ethical components of

a correct application of precision psychiatry include self-

determination (autonomy), nonmaleficence, clinician

competency, justice and veracity.55,56 For instance, self-

determination implies that a patient, duly informed on

the development of novel diagnostic and prognostic

approaches, can freely exert his right to choose (or refuse)

them.56 To guarantee this, a clinician should be properly

informed on the methodology, and should not have any

conflict of interest (such as personal financial benefit)

related to it.56 In addition, given that precision psychiatry

is strongly related to the analysis of massive datasets

(either phenotypic, neuroimaging, or biological), confiden-

tiality and privacy concerns are becoming increasingly

relevant. In this context, it is crucial to develop an appro-

priate ethical-legal framework, which would facilitate safe

data sharing. Closely related to the concept of self-

determination is the essential need of an active role of

the patient to access precision psychiatry instruments

(electronic monitoring tools, neuroimaging, genotyping,

laboratory tests in general). While this is easily achievable

in less severe psychiatric disorders (anxiety disorders,

persistent depressive disorder), patients with severe

depression, and presenting social withdrawal and/or dis-

organized behaviour, as in schizophrenia, might self-

exclude from precision psychiatry. This should be taken

into account in the organization of future mental health

services when precision psychiatry will be implemented.

Another aspect which has a fundamental impact on mental

healthcare in general, and in precision psychiatry specifi-

cally, is stigma. Both public (the prejudice disseminated in

the general population toward patients affected by mental

illness) and self-stigma (occurring when this prejudice is

internalized by the patient) can impact on the implementa-

tion of precision psychiatry. Public stigma could nega-

tively orient public health policies diminishing the

relevance of mental health as a potential target for preci-

sion medicine. In addition, self-stigmatized patients could

withdraw their participation in precision psychiatry

approaches to avoid the spotlight. The influence of stigma

should not be neglected, as it is known to influence several

important outcomes in psychiatry, such as, for instance,

suicide.57

A final remark concerns the possibility that precision

psychiatry tools may not be cost-effective, at least in the

first phases of their implementation. Although there are

examples of cost-effectiveness, such as in pharmacogenetic

testing of polymorphisms within the HLA region for the

onset of Stevens–Johnson syndrome/toxic epidermal necro-

lysis in Asian patients treated with carbamazepine (HLA-

A*31:01), or agranulocytosis/neutropenia in clozapine trea-

ted patients [HLA-B (158T) and HLA-DQB1 (126Q)],58

these remain limited to the prediction of side effects with

lack of evidence with regard to the prediction of clinical

response. For instance, CAR-T is extremely effective but is

priced amongst the most expensive cancer therapies to date,

up to $475,000 per treatment.59 This raises doubts on the

long-term sustainability of these approaches for public

healthcare. However, promising preliminary considerations

can be drawn from studies investigating cost savings asso-

ciated with available pharmacogenetics panels, such as the

Assurex GeneSight Psychotropic test.60 Recent studies sug-

gested significant cost savings in medication costs for

patients whose antidepressant and antipsychotic prescribing

was congruent with the test recommendations.61–63

However, as these studies were funded by Assurex Health,

further independent investigations are needed to draw defi-

nitive conclusions. In addition, the presence of economic

disparities at a global level might also impact the imple-

mentation of precision medicine approaches in mental

health.

Other obstacles can hinder the implementation of

precision psychiatry in clinical settings. Among these

are the lack of an adequate knowledge of precision med-

icine tools, including pharmacogenetics/pharmacoge-

nomics, in clinicians and mental health operators, and

compliance toward precision medicine tools. There are

extensive data on the impact that inadequate education

and training can exert on the proper implementation of

precision medicine.64,65 It has been proposed that to
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realize the translation of precision medicine concepts and

instruments into clinical care, specific training packages

should be implemented at undergraduate and graduate

levels.66 Furthermore, a specific set of skills are needed

in healthcare providers involved in precision medicine

implementation.67 In this context, initiatives such as

those spearheaded by the Electronic Medical Records

and Genomics Network show the relevance of ongoing

education to ensure provider acceptance and adoption of

precision medicine tools.68 Another relevant component

that might delay the implementation of precision psychia-

try is users’ adherence to tests and procedures. It is

conceivable that adherence to precision medicine tools

can be as common as that for pharmacological treatment

in individuals with mental illness. As several factors,

including access to scientifically reliable and valid

evidence,69 might substantially influence adherence, dis-

seminating information and involving patients in shared

decision-making could favor the implementation of pre-

cision psychiatry tools.70 Figure 1 illustrates some of the

main barriers and opportunities for precision psychiatry.

Finally, a concluding remark should be made on the prota-

gonists of the implementation of precision psychiatry. As the

primary responsibility for the care of patients, psychiatrists will

need to take the lead in the implementation of precision psy-

chiatry tools. As previously mentioned, adequate training and

educationwill be key to achieve successful results. In addition,

the involvement of patients in specific brief training activities

might be an achievable and useful objective, as recent evidence

shows that brief community educational program can improve

knowledge of complex genomic concepts in the general

population.71

In summary, stakeholders will need to assess the

impact of these barriers on the application of precision

psychiatry. Changes in the organization of mental health-

care as well as of funding policies and creation of proper

legislation will be crucial to address them.

Perspectives and Potential of
Precision Medicine in Psychiatry
We have argued that precision psychiatry has its foundation in

accurate deep phenotyping. However, this can be achieved

only if a dynamic longitudinal perspective is taken fully into

account. Indeed, most severe psychiatric disorders show

developmental trajectories that start in childhood or early

adolescence. Antecedents of the disorders are not only psy-

chopathological but also neurocognitive, neuroanatomical,

and biological.72 In this context, precision psychiatry might

have also a preventative value. The integration of omics

approach with neuroimaging and phenotypic data can increase

the accuracy in the prediction of diagnostic conversion in at-

risk population. Attempts of implementing these approaches

have been made in the population at clinical high risk for

psychosis.73 Yet, the longitudinal component in psychiatric

disorders remains neglected. This is of relevance if we think

that even genetic associations with a specific disorder might

differ according to different trajectories or patterns of

antecedents.74 Even in well-characterized phenotypes, such

as lithium response, there is scarce knowledge on the temporal

dynamics of those neurobiological changes that underscore the

onset of a long-term efficacy of the treatment. And it remains

to be established whether immediate neurobiological changes

correspond to long-term changes and whether the latter are

predictable from the former. In this context, an ongoing large

Figure 1 Barriers and drivers of a precision medicine approach in mental health.
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EU funded research initiative is attempting to answer these

sensible research and clinical questions.75 Other approaches,

again applying a longitudinal perspective, are attempting to

disentangle the interaction of several biological components,

including the microbiome, on the risk of recurrences in bipolar

disorder.76 In conclusion, the potential for precision psychiatry

is large, but can be realized only by taking into account the

temporal dynamics of mental disorders.

Conclusions
In summary, we have described the intensification of pre-

cision approaches in psychiatry. There is a strong expecta-

tion that the implementation of precision psychiatry, even

if challenging, will ultimately improve the standard of care

for patients suffering from mental illness. It remains to be

seen whether precision psychiatry will cause the expected

paradigm shift, or if it will just prove to be the next in

a long line of disillusionments.
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