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Abstract: Vascular calcification (VC) is a life-threatening state in chronic kidney disease

(CKD). High cardiovascular mortality and morbidity of CKD cases may root from medial

VC promoted by hyperphosphatemia. Vascular calcification is an active, highly regulated,

and complex biological process that is mediated by genetics, epigenetics, dysregulated form

of matrix mineral metabolism, hormones, and the activation of cellular signaling pathways.

Moreover, gut microbiome as a source of uremic toxins (eg, phosphate, advanced glycation

end products and indoxyl-sulfate) can be regarded as a potential contributor to VC in CKD.

Here, an update on different cellular and molecular processes involved in VC in CKD is

discussed to elucidate the probable therapeutic pathways in the future.
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Introduction
The growing burden of cardiovascular disease (CVD) in chronic kidney disease

(CKD) patients and general population is presumably, at least in part, due to

vascular calcification (VC).1 VC is an active, complex, and extremely regulated

procedure that involves cell-mediated processes and a complex interaction between

the inhibitor and promoter factors.2,3 VC is a result of the pathological deposition of

calcium phosphate mineral in soft tissues that decreases the blood vessels’ elasticity

and elevates blood pressure.

Disturbed mineral homeostasis due to an impaired renal function, the uremic

milieu and CKD provides a storm of risk factors for VC and the development of

CVD. Dysregulated mineral metabolism and the elevated levels of circulating

calcium (Ca) and phosphate (Pi) are key factors for the initiation and progression

of VC in CKD since major resident cells in the media layer of blood vessels,

vascular smooth muscle cells (VSMCs), are sensitive to these factors.4,5 VSMCs

can undergo trans-differentiation to osteoblast-like cells and extrude matrix vesicles

(MVs) that contain proteins similar to osteoblastic vesicles. When these proteins are

secreted by VSMCs, the osteogenic environment is created and resulted in VC.6,7

Numerous pathological landscapes are associated with the development of VC.

The impaired homeostasis of Ca/Pi and high levels of parathyroid hormone (PTH)

cause Ca/Pi release by bone under severe hyperphosphatemia. The endothelial dys-

function, oxidative stress, chronic inflammation, VSMCs trans-differentiation, prolif-

eration and apoptosis, loss of mineralization inhibitors, increased remodeling of

extracellular matrix (ECM), and release of calcifying extracellular vesicles (cEVs)
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are the most important contributors to VC.8 Moreover, the

calciprotein particles (CPPs), the complexes of Pi, Ca, and

proteins, are recognized to drive the calcification process.9 It

is reported that in CKD, uremic EVs and CPPs can modulate

VSMCs' responses through an inflammation stress and trans-

differentiation, causing an increase in mineral deposition.

Hence, these circulating particles play an important role in

the mechanisms of widespread calcification.10 Additionally,

several uremia-related factors contribute to the development

of VC among patients with CKD. In addition to disrupted

metabolism and other pathologies that promote VC, genet-

ics, hereditary predisposition, and epigenetics are involved

in VC development.7,11 In this review, we will review the

recently updated state of knowledge on cellular and mole-

cular mechanisms of VC in CKD. Unraveling the signaling

pathways involved in VC in CKD patients will eventually

offer novel therapies to limit the vicious effects of VC.

Vascular Calcification in CKD
Under physiological circumstances, the active mineraliza-

tion inhibitors including matrix Gla protein (MGP), pyr-

ophosphate (PPi), fetuin-A, osteoprotegerin (OPG),

adenosine, bone morphogenetic protein 7 (BMP-7) and

osteopontin (OPN) protect blood vessels from the forma-

tion of stable hydroxyapatite crystals.12,13 A decline in

these inhibitors along with elevated levels of active indu-

cers of VC lead to a high prevalence of VC in the CKD

population (Figure 1A). Although CKD patients can

develop calcification in both media and intima layers of

vessel wall (Figure 1B and C), the media calcification is

more common in these patients, especially in pediatrics.14

It has been shown that all types of VC increase the mor-

tality and morbidity rates in CKD patients.15

Beyond a high incidence of the traditional risk factors

in CKD patients, for instance, age, family history, sex,

diabetes, hypertension, dyslipidemia, and tobacco use,

VC in this population is connected with numerous other

factors. Oxidative stress, inflammation, the CKD-related

disorder of mineral metabolism, and bone are the most

important non-traditional risk factors that accelerate VC in

CKD patients.16 The accumulation of uremic toxins [ie, Pi,

advanced glycation end products (AGEs), and indoxyl-

sulfate (IS)] and uremia-related factors (ie, malnutrition,

hyperhomocysteinemia, and anemia) may also directly

enhance the VC in CKD patients. As a source of uremic

toxins, the gut microbiome is a potential contributor to

CVD in CKD. In CKD, p-cresyl sulfate (PCS) and IS

stimulate toxin-induced VC directly through the activation

of coagulation and inflammation pathways in the arterial

wall.17 Furthermore, CKD risk factors including the his-

tory of dialysis, phosphate retention, high doses of vitamin

D therapy, extra calcium, and uremic hyperparathyroidism

can promote the VC development in patients with CKD.18

It is also reported that the dysregulated mineral metabo-

lism derives oxidative DNA injury and premature senes-

cence to stimulate inflammation and VC in children on

dialysis.19 Different cells and factors can regulate the VC

process in CKD patients. Epigenetics (microRNAs), the

formation and release of extracellular vesicles, elastin

degradation, and CPPs continue to disclose the involved

mechanisms in the initiation and development of VC in

CKD. Autophagy, mitochondrial dysfunction, microtubule

destabilization, and endoplasmic reticulum stress are also

involved in the pathogenesis of VC in CKD and restoring

their functions can be effective therapeutic targets.20–25

Hortells et al (2017) clarified the expression patterns of

factors contributed to the pathogenesis of VC in uremic

rats in detail.26 In the following sections, we highlight the

most common factors in the development of VC.

Cells Involved in Vascular
Calcification
In addition to the fact that osteogenic transition of VSMCs

is the main cause of VC, other cells are involved in this

process. Among them, osteoclast-like cells, endothelial

progenitor cells (EPCs), Gli1+ mesenchymal stem cells

(Gli1+-MSCs) of the adventitia, and calcifying circulating

cells (CCCs) can be mentioned.

Vascular Smooth Muscle Cells
In CKD, the oxidative stress, chronic inflammation, and

uremic toxins may influence the VSMCs’ physiological

functions directly. Under these circumstances, the cellular

environment is capable to stimulate a VSMC trans-

differentiation from a contractile cell to an osteoblastic/

chondroblastic-like cell and undergoes irregular senes-

cence, proliferation, apoptosis, migration, and calcification

(Figure 2).27

A switch to the osteogenic- and/or chondrogenic-like

phenotype is characterized by the expression of Runx2 also

known as core-binding factor a-1 (CBFA1), SRY-Box 9

(SOX9), Msh Homeobox 2 (MSX2), and Osterix that are

important transcription factors for both intimal and medial

VC.28 The VSMCs trans-differentiation into osteo-/chondro-

genic-like cells is coordinated by a complex network of
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Figure 1 Schematic view of vascular calcification in CKD. (A) As renal function continues to fall, normal defense mechanisms for Pi and Ca homeostasis (PTH, FGF-23, and

klotho) become overwhelmed and the endocrine system of FGF23-klotho-VitaminD and RAAS is disturbed. As a result of nephron loss and higher levels of FGF-23, 1α-
hydroxylase activity is diminished in the kidney, leading to elevated levels of inhibitor of this enzyme (FGF-23) and a decrease in 1,25(OH)2-vitamin D (calcitriol) production43

that, in turn, upregulates the production of renin in the kidney. Subsequently, the elevated levels of angiotensin II lead to kidney klotho loss, disruption of FGF-23 signaling,

and the impairment of phosphaturia. Elevated levels of FGF-23 may activate the RAAS either by suppressing ACE-2 directly94 or decreasing calcitriol levels indirectly.107 (B)
Ca and Pi deposition in the VSMCs of medial layers may cause VC. (C) In the intimal calcification process, more diverse cells are involved including osteoclast-like cells,

Gli1+-MSCs of the adventitia, and CCCs. The interaction of different factors and these cells causes atherosclerosis. Uremic toxins cause VSMCs trans-differentiation into

osteoblast-like cells. In the process of calcification, macrophage differentiation into osteoclast-like cells is inhibited. In turn, macrophages increase apoptosis and accumulation

of apoptotic bodies through transition into foam cells. A pro-inflammatory form of circulating monocytes (M1 macrophages) promotes the initial calcium deposition within

the necrotic core of the lesions. All the above factors together cause atherosclerosis. For more details, see the full text.

Abbreviations: CKD, chronic kidney disease; FGF-23, fibroblast growth factor-23; PTH, parathyroid hormone; VC, vascular calcification; MMPs, matrix metalloproteinases;

DH-VitD, 1, 25-dihydroxyvitamin D. Gli1+-MSCs, Gli1+ mesenchymal stem cells; CCCs, calcifying circulating cells; ACE-2, angiotensin-converting enzyme-2; RAAS, renin-

angiotensin-aldosterone system; HA, hydroxyapatite crystal; ECs, endothelial cells; MQ, macrophage; IS, indoxyl-sulfate; VSMC, vascular smooth muscle cell; OS, oxidative

stress.
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intracellular signaling pathways like nuclear factor kappa

beta (NF-κB), receptor activator of NF-κB (RANK)/RANK

ligand (RANKL), Wnt-β-catenin, mitogen-activated protein

kinase (MAPK) p38, calcium-induced signaling, and

nitric oxide–plasminogen activator inhibitor-1 (PAI-1)

pathways.29–32 Moreover, trans-differentiation can be

mediated by extracellular signal-regulated kinases 1/2

(ERK1/2) pathways.31 The downstream impacts of ERK1/2

during VC are not still completely understood.3

Primary CPPs are amorphic and solid-phase Ca-Pi that

bound to serum fetuin-A protein and calcium-regulatory

proteins and disperse as colloids in the circulation to elim-

inate mineral crystal formation and guard against the ecto-

pic calcification. This defense mechanism maintains blood

mineral homeostasis and inhibits calcification. In the pathol-

ogy of VC, the balance between the primary CPP formation

and absorption is dysregulated and these CPPs may undergo

a transition to the crystalline (secondary CPPs) phase.

Secondary CPPs are stretched particles that contain

predominantly hydroxyapatite surrounding proteins.

Clinical studies have showed that the level of serum CPP

was elevated with the decline of kidney function and con-

nected with inflammation and VC in CKD patients.13,33 The

CPPs of CKD patients had the features of secondary CPPs;

a reduced level of fetuin-A and GRP (Gla-rich protein).10

The secondary CPPs may directly stimulate VC through the

induction of VSMCs trans-differentiation.10 This event is

mediated by uptake of the CPPs, increasing the intracellular

levels of Ca2+, initiation of oxidative stress and inflamma-

tory responses (TNF-α) in VSMCs to promote mineraliza-

tion via its receptor (TNFR1).34 This event may be involved

in VC but no sufficient proof is available to underline that

this is the only pathway.

In CKD patients, the elevated levels of Ca and Pi

induce the discharge of membrane-bound MVs from

VSMCs. These MVs contain lipids, microRNAs, and pro-

teins that are essential to induce the calcification cascade.

Proteins for import of Pi and Ca into the MVs and

Figure 2 The impact of uremic toxins on CKD-induced VSMC dysfunction and VC. Due to hyperphosphatemia, hypercalcemia, elevated oxidative stress, and

inflammation,132 VSMCs manifest dysregulated functions and phenotype. Uremic toxins including Pi, IS, AGEs, IL-1β, IL-6, and TNF-α are involved in CV. (A) IL-1β, IL-6,
and TNF-α induce osteoblast-like trans-differentiation of VSMCs through different mechanisms.16 Interaction of AGEs with their receptor (RAGE) induces the expression of

Pit-1 via ROS production49 and leads to osteogenic transition. It also causes apoptosis through NAD(P)H oxidase-derived oxidative stress.133 (B) In CKD, normal Ca

homeostasis is also dysregulated. This homeostasis is mediated by klotho, PTH, active vitamin D metabolites, and calcitonin. In VSMCs, Ca signaling is mediated by Ca

channels, CaR, and pumps that maintain Ca concentrations in these cells.134 Higher level of extracellular Ca is associated with the release of MVs and cell death promotion

and release of apoptotic bodies.43 (C) Extracellular Pi, as a signaling molecule, can trigger numerous changes in VSMCs through regulating different molecular pathways.

NPP1 is responsible for extracellular ATP degradation to AMP and PPi, CD73 degrades AMP to adenosine and Pi and TNAP breaks PPi into phosphate and adenosine.15

Higher Pi level simultaneously upregulates the expression of osteo/chondrogenic genes (Runx2, ALP, OPN, and osterix) and downregulates VSMCs genes (SM22α and

αSMA). ALP controls vascular matrix mineralization by degradation and inactivation of the VC inhibitors (PPi and P-OPN) to allow uncontrolled tissue mineralization and

simultaneously releasing free Pi.43 These osteo-/chondroblast-like cells actively induce apoptosis and vesicle release, a reduction in calcification inhibitors, elastin degradation,

increased ECM remodeling, and a pro-inflammatory state. Moreover, under high levels of Pi, VSMCs synthesize collagen at high amount and provide a collagen-enriched

ECM. Downregulation of Gas6 and Bcl2 may be the basic mechanism of VSMCs apoptosis. The released apoptotic bodies provide a further nidus for deposition of Pi and Ca.

For more details, see the full text.

Abbreviations: Ca, calcium; Pi, phosphate; PPi, pyrophosphate; ECM, extracellular matrix; MMP, matrix metalloproteinases; Gas6, growth arrest-specific gene 6; ALP, alkaline

phosphatase; ROS, reactive oxygen species; SM, α-smooth muscle actin; CPPs, calciprotein particles; CaR, Ca sensing receptor; MVs, matrix vesicles; AGEs, advanced glycation end

products; RAGE, receptor for advanced glycation end products.

Zununi Vahed et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Vascular Health and Risk Management 2020:16170

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


proteins-related to cellular stress, cytoskeleton, and extra-

cellular mineralization along with other intracellular pro-

teins can be found in MVs. These MVs also contain tissue

nonspecific alkaline phosphatase (TNAP) to degrade PPi

for making a local calcifying microenvironment.35 The

apoptotic bodies and Ca/Pi-loaded MVs (released from

VSMCs and macrophages) are different types of extracel-

lular vesicles that eventually form hydroxyapatite crystals

and deposit on a collagen matrix in the vessel wall and

provide a bed for nucleation and VC in the media layer.8,27

Additionally, macrophage-released calcifying MVs are

directly associated with arterial medial early intimal and

calcification in the CKD patients.36 A pathological calci-

fication-inflammation cycle exists between VSMCs and

macrophages. The presence of Ca/Pi mineral in ECM,

cEVs, and secondary CPPs of blood vessels can trigger

pro-inflammatory responses in VSMCs and immune cells.

Osteogenic-like VSMCs cause ECM calcification by

releasing cEVs and increasing pro-inflammatory responses

in macrophage. This inflammatory response in macro-

phages contributes to the elevated VC via releasing cEVs

and inducing VSMCs osteogenic trans-differentiation.37

Elastin degradation is facilitated by proteases such as

Cathepsin-S and matrix metalloproteinases (MMP-2 and

−9) that are upregulated in CKD. Elastin disruption in the

aortic wall causes an increase in the expression level of

transforming growth factor (TGF-β) involved in osteoblast

differentiation and increases arterial stiffness in CKD.38,39

After the VSMCs phenotypical alteration toward osteo-

blast-like phenotype, the deposition of mineral crystals

(biomineralization) happens. This regulated process

requires MVs release to concentrate the Ca and Pi and

support the nucleation of mineral crystals via the matrix

proteins.18 Kapustin et al proposed a model for depicting

the possible mechanism of MVs calcification. Phosphate is

taken up by Pi transporters, while Ca passes through the

MV membrane by voltage-dependent anion-selective

channel protein 1 (VDAC1). The nucleation complexes

are formed via the binding of mineral ions (Pi and Ca)

with phosphatidylserine and annexin A6 on the inner and

outer MVs surfaces. The formation of these complexes

stimulates the growth of crystal apatite. Moreover,

MMP-2 degrades elastin and stimulates calcification on

the MV surface.40

It should be noted that the VSMCs are believed to take

up chondrogenic properties. The VSMCs chondrogenic-

like transformation underlies the cartilaginous metaplasia

formation that is associated with VC in animal models and

humans. TGFβ-Wnt16-Notch signaling is involved in this

process.41

Sensing and Transduction of Osteogenic Signals in

CKD

Sensing and the transduction of osteogenic stimuli in CKD

are mediated through different signaling molecules, recep-

tors, and channels that modulate the osteogenic response

in the VSMC. Some harmful effects of Pi are triggered by

its excessive entry into the VSMCs through sodium-

dependent phosphate transporters (PiT-1 and −2).
Moreover, in response to elevated Pi levels, PiT-1 (but

not Pi that is taken through PiT-1) is necessary for

ERK1/2 phosphorylation. Therefore, for the calcification

process of VSMC, both Pi transport-dependent and -

independent effects of PiT-1 are important.42 The phos-

phate-induced calcification is mediated by reactive oxygen

species (ROS) production and oxidative stress, osteochon-

drogenic differentiation, apoptosis of VSMCs and the

release and instability of extracellular vesicles.43–45

Under uremic conditions, PiT-2 is up-regulated along

with PiT-1 in the vasculature; however, it defends against

VC by unidentified mechanisms.46 Toll-like receptors

(TLRs) may be also involved in Pi-sensing; the activation

of TLR4/NF-κB signaling in VSMCs directly induces VC

in CKD.47 The NF-κB signaling activation, at least,

through the serum- and glucocorticoid-inducible kinase 1

(SGK1) can also promote VC in CKD.48

The endocytosis of Ca/Pi particles in lysosomes causes

calcium release and apoptosis in VSMCs. It is also

reported that VSMCs can be stimulated through AGE

products and their receptors (RAGE). RAGE ligands med-

iate ROS production in VSMC that is involved in the up-

regulation of Pit-1 and Runx2.49 Different channels,

pumps, and exchangers are involved in the sensing,

entrance of Ca into the VSMCs, and preserving of Ca

concentrations in the cytosol and sarcoplasmic reticulum.

Changes in intra- and extracellular pools of Ca affect

VSMC function and phenotype and the regulation of Ca

is dependent on the phenotypic state of VSMC.

Circulating Calcifying Cells
Circulating calcifying cells (CCCs), which originate from

the bone marrow (BM), play a role in the intima calcifica-

tion processes. CCCs have an osteogenic phenotype and

express bone alkaline phosphatases and osteocalcin

(OCN).50 Recent studies have demonstrated that the pool

of CCCs contains calcifying endothelial progenitor cells
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(EPCs), MSC–derived circulating osteoprogenitors and

myeloid calcifying cells (a group of circulating mono-

cytes) in CKD patients.51

The endothelium integrity presents a crucial role in the

establishment of VC and EPCs support it during endothe-

lial injury. In response to cellular apoptosis or activation,

mature endothelial cells secret soluble microparticles

(MPs) to regulate procalcificant activity in VSMCs and

to differentiate EPCs. In CKD cases with VC, higher

endothelial MPs are connected with a lower percentage

of EPCs. This data proposesan inequality between the

repair procedures and endothelial in patients who suffer

from CKD. By the expression of osteogenic factor, OCN,

EPCs could contribute to the VC procedure directly.

Moreover, the OCN gene is expressed in the fibroblast

and VSMCs of CKD patient as a result of MPs

action.52,53 Moreover, EPCs undertake an endothelial to

procalcific shift in CKD-MBD and trigger VC.54

Bone morphogenetic protein 2 (BMP-2), which

increases in uremic patients, promotes the migration of

MSCs from BM to other tissues.55–57 Cianciolo et al

have proven the relationship between a particular type of

EPC subset (CD34+/KDR+/CD133–/CD45– cells) and an

increased VC in CKD patients.58 Calcifying myeloid cells

in the bloodstream can cause VC but their exact role in

CKD patients has not been established.59 Altogether, the

issue of CCCs is a new topic in recognizing the pathophy-

siology of calcification in CKD patients and needs further

investigation.2,50

Gli1+ Mesenchymal Stem Cells
Gli1+ MSC-like cells are located in the vascular adventitious

layer and play a role in the process of vascular repair and

neointima formation.60 These cells are important in main-

taining kidney homeostasis, angiogenesis, and vascular

stability.61 Gli1+ cells affect arterio- and athero-sclerosis in

ApoE−/− mice by migrating to the media and neointima

layers.62 These cells are a key source of osteoblast-like

cells during VC in the intima and media.62 The interference

of Gli1+ in osteogenic differentiation is controlled by the

Sonic Hedgehog (SHH) pathway.2 It can be concluded that

during the uremic calcification, Gli1+-MSCs are a chief

reservoir of osteoblast-like cells that can be therapeutically

targeted to inhibit CV in CKD.2

Microbiota
The human intestinal tract homes to a collection of symbio-

tic, commensal, and pathogenic micro-organisms in a local

ecologic community called microbiome.63 The gut micro-

biome as a “second human genome” has a significant role in

both human health and the pathogenesis of kidney

diseases.64,65 Recent studies demonstrate dysbiosis, a shift

in the bacterial populations, in patients with CKD and end-

stage renal disease (ESRD).66,67 The administration of anti-

biotics and phosphate binders, dietary restriction, and CKD

itself may contribute to dysbiosis in kidney disease.68–71 Gut

dysbiosis may elevate the production of microbial bypro-

ducts that are absorbed from the intestinal lumen. The

increased absorption along with a decreased kidney clear-

ance lead to a rise in gut-derived toxin levels in circulation.63

In CKD, the influx of urea and other toxins causes an altera-

tion in the gut microbiome. A diminished number of bene-

ficial bacteria are associated with an increase in uremic toxin-

producing bacteria. Because of the degradation of cellular

tight junctions and inflammation in intestinal, gut-derived

uremic toxins including phenylacetylglutamine, indole-3

acetic acid, IS, trimethylamine-N-oxide (TMAO) and p-cre-

syl sulfate (PCS), translocate into the bloodstream and cause

an extensive oxidative stress damage to the kidney, cardio-

vascular system, bone-mineral, erythropoiesis, and endocrine

systems.72

Recent evidence indicates that different gut-derived

byproducts are associated with VC, CVD, and adverse

cardiovascular outcomes and mortality in CKD.63 In

patients with CKD, the serum levels of IS have an inverse

association with renal function and a direct correlation

with aortic calcification and cardiovascular mortality.73,74

It is also reported that both PCS and IS can directly

stimulate VC in the peripheral arteries and aorta of CKD

rat through the stimulation of insulin resistance and hyper-

glycemia that activate the coagulation pathways and the

acute-phase response signaling in the arterial wall.17 In

patients on hemodialysis, the serum levels of IS were

connected with coronary artery calcium, an independent

predictor of cardiovascular events.75

Uremic toxins endorse the proliferation and transfor-

mation of VSMCs into osteoblast-like cells, leading to

vascular wall thickening and calcification. The effect of

IS on VSMCs is mediated by organic anion transporter 3

(OAT3). Moreover, the stimulation of VSMC proliferation

is mediated by MAPK activation in vitro. This may be one

of the mechanisms which leads to the development of

atherosclerotic lesions in ESRD patients.76 Furthermore,

IS stimulates the expression of (Pro) renin receptor (PRR)

and renin/prorenin in aorta by ROS production, OAT3-

mediated uptake as well as aryl hydrocarbon receptor
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(AhR) and NF-κB p65 activation in VSMCs. The activa-

tion of PRR by IS stimulates the proliferation and expres-

sion of tissue factor in VSMCs.77

Epigenetics
During the hyperphosphatemia, different epigenetic mod-

ifications including DNA methylation, histone modifica-

tions, and microRNAs (miRNAs, miRs) dysregulation

contribute to the osteo-induced cellular signaling.78,79 It

is indicated that through the hypermethylation of Klotho

gene, IS can suppress vascular Klotho gene expression and

contribute to pathological mechanism of CV in CKD.80

Likewise, the methylation of the SM22α promoter region

induces VC at a higher level of Pi.81 It is also reported that

through a reduction in the ALP promoter region methyla-

tion and an increase in the ALP expression, DNA methyl-

transferases inhibitors ease the Pi-induced VC.78 Changes

in the chromatin conformation, histone modification (his-

tone tail methylation), hypermethylation of calcification

inhibitory genes, activation of osteoblast-differentiation

genes, or the deregulation of histone deacetylase members

may predispose VSMCs to calcification. Furthermore,

there is a cross-talk between different epigenetic mechan-

isms in VC; microRNAs may be upstream regulators of

histone deacetylase that can modulate the severity of the

calcification.82

Over the last decade, the roles of microRNAs have

been identified in the course of CKD, pathogenesis of

VC, and atherosclerosis.83,84 microRNAs are small non-

coding RNAs that negatively regulate the gene expression

at both transcription and translation levels. In a systematic

review, the agonistic and antagonistic miRNAs that posi-

tively and negatively regulate VC are reviewed

comprehensively.82 The protective effect of miR-30b

against VC is mediated by stimulating autophagy and

mitochondrial membrane potential.85 Increased levels of

miR-29b and decreased levels of miR-133b and miR-211

that are correlated with lower and higher expression of

inhibitors and RUNX2 of osteoblastic differentiation,

respectively, are reported in uremic rats.86 It is also

reported that the down-regulation of miR-29b and activa-

tion of Wnt/β-catenin signaling may be involved in IS-

induced VC in CKD.87 Likewise, down-regulated levels of

miR-125-b accelerate trans-differentiation of VSMCs and

calcification by targeting Ets1.88 Moreover, miR-142-3p

prevents VC in both humans and mice with ESRD.89 It

has been proven that miR-223 and miR-126 that are

expressed in VSMCs interfere with the trans-

differentiation of these cells to an osteoblastic phenotype

that increases the vascular wall stiffness.90 There were

higher levels of miR-29a/b and miR-223 expression in

hemodialysis patients with VC and the calcification inten-

sity was associated with the miR-29a level.91

Inducers and Inhibitors of VC
An imbalance between the inducers and inhibitors of VC

happens in CKD and chronic hemodialysis patients.92 In

this section, we summarize some of these factors (Table 1).

Fetuin-A
Fetuin-A (α2 Heremans-Schmid glycoprotein) is

a glycoprotein that is secreted into the circulatory system

by adipose tissue and liver.93,94 It has been revealed that

fetuin-A acts as a prominent protective factor in prevent-

ing VC in patients with CKD and ESRD.93 Decreased

fetuin-A increases the morbidity and mortality rate in

ESRD cases.95 It has been shown that fetuin-A is involved

in preventing aortic calcification.95 This is explained by

the fact that despite the general similarity of risk factors

for aortic and coronary calcification, these factors are

specific to each site in the general population.95

Therefore, the pathophysiology involved in the calcifica-

tion of these two sites is somewhat different.95 Some

studies have shown that fetuin-A is also effective in pre-

venting the calcification of the heart valves, some others

have not shown a link between them.96 The ability of

fetuin-A to prevent the mineralization is mediated by the

CPPs formation.97,98

Magnesium
Higher levels of Pi, amorphous Ca2+-Pi particle (ACP) for-

mation, and reduced levels of VC inhibitors in the circulation

start the VSMC trans-differentiation that is enhanced by the

osteogenic genes expression and amplified by the release of

apoptotic bodies and exosomes.99 At different levels, mag-

nesium hinders these processes of VC. Osteogenic differen-

tiation and VC are negatively regulated by magnesium via

increasing the activity of its transporter, transient receptor

potential melastatin 7 (TRPM7) and its entry into the cell that

leads to the expression of anti-calcifying proteins (BMP-7,

OPN, and MGP).100 Moreover, by reduction in microRNAs

expression (miR-133a, miR-30b, and miR-143a), magne-

sium influences the expression of osteogenesis (Runx2,

Smad1, and Osterix).101 Anti-calcifying impact of magne-

sium is also mediated by the inhibition of Wnt/β-catenin
pathway.102 As an antagonist of Ca-channel, magnesium
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hinders the Ca entry into the VSMCs, loss of inhibitors, and

osteogenic differentiation.103 Moreover, it prevents hydro-

xyapatite formation in the extracellular space, thereby, avoids

VSMCs calcification.104 Although several recent studies pro-

pose that the advantageous role of magnesium on VC can be

elucidated via a delayed formation of secondary CPP,9 the

definitive proof to support this hypothesis is missing.

Hormones
Vascular autocrine and paracrine factors participate in keep-

ing circulatory homeostasis. However, under pathological

circumstances, these factors may modulate the pathogenesis

of VC and CVD. The constant activation of the RAAS

(renin-angiotensin-aldosterone system) has a foremost role

in cardiovascular remodeling and CKD progression.105

Angiotensin II (Ang II), an active factor of the RAS, is

participated in the control of cardiovascular function and

kidney homeostasis through acting on different cells, mainly

VSMCs.106 As renal function continues to fall, normal

defense mechanisms, as an endocrine axis for Pi and Ca

metabolism, become overwhelmed and a disruption happens

in this axis. Low kidney klotho, high levels of fibroblast

growth factor 23 (FGF-23), vitamin D deficiency, and

RAAS activation are associated with adverse kidney out-

come in CKD.107 Klotho is a transmembrane protein that

acts as a co-receptor of FGF23. Klotho is expressed in

kidney, choroid plexus, and parathyroid glands and mediates

the functional role of the FGF-23 in regulating the Pi and Ca

levels; hence, Klotho deficiency causes hyperphosphatemia.

In klotho-hypomorphic mice, deficiency of klotho leads to an

Table 1 The Impact of Other Factors on VC in CKD

Factors Function Ref.

C-RP As a pathologic factor, increases transdifferentiation of VSMCs into osteo-/chondrogenic by induction of

oxidative stress and systemic inflammation.

[116]

Wnt1 Wnt1, through Wnt/β-catenin signaling, reduced VC by regulating the expression of ANKH, a PPi

transport regulator, in VSMCs both in vitro and in vivo.

[117]

KEAP1/NRF2/P62

signaling

Activation of antioxidative KEAP1/NRF2/P62 signaling can lessen the VSMCs VC by inhibiting ROS

production.

[118]

CDC42 CDC42 can activate AKT signaling and promote VC in CKD. [119]

Osteopontin Prevents Pi-induced nephrocalcinosis and VC under high phosphate load. [120]

Sclerostin Serum sclerostin, as an antagonist of Wnt signaling, is significantly correlated with BMD in PD patients. [121]

Chemerin (an

adipokine)

Chemerin signaling guards against VC in CKD via ChemR23. [122]

Pit-2 PiT-2 in VSMCs could guard against phosphate-induced VS and can be a therapeutic target in the CKD

population.

[46]

Loss of renal

klotho

Plays role in mineral homeostasis. Its diminished levels were observed in patients and animal models of

CKD concomitant with renal insufficiency that contribute to CKD-MBD progression.

[15]

FGF23 Plays role in mineral homeostasis. Its elevated levels in CKD are correlated with renal dysfunction and

abnormal mineral metabolism. However, controversial data are exist on the impact of FGF23 on VC.

[15]

Autophagy An endogenous response of VSMC to protect from calcification in uremia.

Stimulation of autophagy (by rapamycin) defends against uremic media calcification by preventing VSMC

osteogenic transdifferentiation in vitro and in vivo.

[20]

Protein

carbamylation

The reduced expression of ENPP1 leads to carbamylation of mitochondrial proteins (ATP synthase) and

oxidative stress that accelerate VC.

[123,124]

Magnesium

carbonate

The magnesium carbonate as a phosphate binder could reduce calcification severity in CKD mice by

increasing the expression of Pit-1 in intestine.

Mg2+ could prevent VC by extracellular Pi binding and inhibit extracellular Ca-apatite crystal formation.

It also prevents the activity of Wnt/beta-catenin and reverses the osteogenic-like transformation of

VSMCs.

[101,102,104,125]

Zinc Plasma levels of Zinc are lower in CKD significantly. Zinc supplementation improves Pi-induced osteo-/

chondrogenic trans-differentiation of VSMCs and VC by TNFAIP3 dependent suppression of the NF-κB

pathway. Zinc can be an effective biomineral for prevention of VSMCs mineralization in response to high

Pi and PHI FG4592 and under atherosclerotic calcifying conditions.

[126–128]

Abbreviations: C-RP, C-reactive protein; VSMCs, vascular smooth muscle cells; FGF23, fibroblast growth factor 23; ENPP1, ectonucleotide pyrophosphate/phosphodies-

terase 1; ROS, reactive oxygen species; RAGE, receptor for advanced glycation end products; CDC42, cell division cycle 42; TNFAIP3, TNF-α-induced protein 3; PHI, HIF

prolyl hydroxylase inhibitors (used for treatment of CKD-associated anemia).
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uncontrolled formation of calcitriol that increases the reab-

sorption of Pi in kidney and intestine, increasing phosphate

levels.28

In CKD, the impaired kidney elimination of Pi leads to

hyperphosphatemia that promotes the FGF-23 secretion,

a regulator of serum Pi level, from bone osteocytes. Due to

nephron loss and higher levels of FGF-23, the 1α-

hydroxylase activity, an enzyme for the production of

active vitamin D (1,25(OH)2 vitamin D, calcitriol) is

reduced; leading to a reduction in calcitriol level that in

turn increases renin production in kidney. The activation

of RAAS reduces the expression of renal klotho, a critical

factor for accurate FGF-23 signaling.

Phosphate may directly induce aldosterone synthase

expression in adrenal glands and vascular tissue that may

have an important effect on how FGF-23 mediates the acti-

vation of RAAS. On the whole, an increased level of FGF-23

activates the RAAS by two possible mechanisms: (a) indir-

ectly by reducing calcitriol levels and (b) directly by suppres-

sing the activity of angiotensin-converting enzyme 2

(ACE-2) that inhibits the conversion of Ang II into Ang

(1–7).108 As a result, the increased levels of Ang II increase

the aldosterone production that activates Pit-1; resulting in Pi

entrance into VSMCs. Moreover, aldosterone fosters the

inflammatory processes by induction of TNF-α.109 It is also

reported that Ang II is able to prevent Pi-induced VSMCs

calcification by increasing the influx of Mg that is mediated

by stimulating the TRPM7 activity as well as prohibition of

the canonical Wnt/β-catenin and the activation of the ERK1/

2 intracellular signaling pathways.106 Moreover, the activa-

tion of angiotensin II type 2 (AT2) receptor could mediate an

endogenous protective pathway for VC in CKD since it may

decrease the adverse cardiovascular events.110 The secreted

FGF-23 from osteogenic cells in the calcified vessel may

further increase the serum levels FGF-23 (reviewed in

Ref. 109).

The deregulated levels of Ca and vitamin D ease the

osteogenic differentiation and mineralization of VSMC;

leading to deleterious VC. As discussed, there is a complex

relationship between vitamin D, Klotho, and FGF-23 on the

Table 2 Therapeutic Strategies for Vascular Calcification

Treatment Mechanism of Action Ref.

Puerarin It can hinder VC in uremic rats through inhibiting inflammation. [129]

Bisphosphonates Activity of BPs against unwanted deposition of calcium phosphate salts in soft tissue [114]

Subtotal parathyroidectomy Subtotal parathyroidectomy significantly decreased or stabilized VC

Sodium Thiosulfate NaSTS sequestering ionic calcium to form highly soluble complexes, and thereby interrupting potential

precipitation of less soluble calcium phosphates

[114]

MPG An important endogenous inhibitor of vascular calcification

High dose vitamin K Activates MGP

PPi PPi is a potent inhibitor of calcium crystallization

Acidosis There is experimental evidence that acidosis may reduce vascular calcification in uremic rats [114]

Bone morphogenic Pr-7 Reduces vascular calcification in a mouse model of atherosclerosis and CKD

Osteopontin Osteopontin is a potent inhibitor of hydroxyapatite formation that inhibits calcification of VSMCs in

culture

Myo-Inositol

Hexaphosphate

inhibition of the formation and growth of calcium phosphate microcrystals in soft tissue, without

interfering directly with calcium and phosphate blood levels

[113]

Yamani-15/5 Shown to be effective in dissolving the calcification deposits of calcific aortic and mitral valves and

coronary arteries

[114]

Magnesium Regulating calcium influx, inhibiting enzymes with pro-calcific activity, and activating anti-calcific

enzymes

TNAP Inhibitor Hydrolyze and inactivate pyrophosphate, thereby providing sites of bone mineralization with surges of

ionic phosphate. This process is carefully regulated and imbalance can promote ectopic calcification

Denosumab Human monoclonal antibody against receptor activator of NF-κB ligand (RANKL). RANKL binding to

its receptor RANK on VSMCs initiates the upregulation of pro-calcific genes and subsequent

osteochondroblastic cell differentiation and mineralization.

[114]

Spironolactone Spironolactone is a mineralocorticoid receptor antagonist that is able to protect VSMCs calcification by

the downregulation of Pit-1 and suppressing their phenotypic transition.

[130,131]

Renal transplantation A small preliminary study suggested that renal transplantation slowed or abolished the progression of

coronary artery calcification (CAC)
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vasculature (Figure 1A). Collectively, the perturbation of

vitamin D activity, including its turnover and systemic levels

along with vitamin D receptor signaling activity are contrib-

uted in VC that may ultimately be anti- or pro-calcifying. On

the other hand, evidence suggests that vitamin D exerts

biphasic impact on the vasculature; both hypo- and hypervi-

taminosis D can contribute to the VC development through

several mechanisms [reviewed comprehensibly in Ref111].

Diagnosis and Treatment of VC
Non-invasive imaging techniques plain X-rays, two-

dimensional ultrasound, echocardiography, and computed

tomography (CT) are accessible to screen the existence of

VC. The multi-detector CT (MDCT) is a highly sensitive

method for accurately and quantitatively assessing VC,

especially coronary artery calcification (CAC).112

Currently, no definite therapy can reverse VC and available

therapeutic modalities can reduce the progression of VC.

Most candidate drugs such as phosphate-binders, bispho-

sphonates, magnesium, and vitamin K are currently under

clinical investigation that can correct the imbalance of inhi-

bitors and promoters (ie, hyperphosphatemia) of calcifica-

tion in VC-affected patients.113,114 The therapeutic potential

of antioxidant compounds that can target different pathways

in VC pathology is also reported115 (Table 2).

Conclusion
Overall, a plethora of several contributing factors are

associated with VC in CKD. Different conditions (uremia,

hyperglycemia, hyperphosphatemia, hyperlipidemia,

inflammation, oxidative stress, and hypertension) might

coincide with VC pathogenesis. The histological location

of VC, the anatomical site of the calcified artery, and many

other factors affect the commencement and progression of

VC. VSMCs along with CCCs are active members of the

calcification process. A range of pathogenic mechanisms

are involved in the intracellular molecular mechanisms of

VC. Although different therapeutically opportunities have

been studied in VC, no study has strongly established that

these modulations alter the patient outcome. Thus, future

research might focus on the exact demonstration of VC in

CKD to develop and assess tailored interventions in the

organized clinical trials.
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