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Abstract: Vasculogenic mimicry (VM) is the formation of a “vessel-like” structure without

endothelial cells. VM exists in vascular-dependent solid tumors and is a special blood supply

source involved in the highly invasive tumor progression. VM is observed in a variety of

human malignant tumors and is closely related to tumor proliferation, invasion, and recur-

rence. Here, we review the mechanism, related signaling pathways, and molecular regulation

of VM in glioma and discuss current research problems and the potential future applications

of VM in glioma treatment. This review may provide a new viewpoint for glioma therapy.

Keywords: glioma, vasculogenic mimicry, glioma stem cells, hypoxia, drug delivery
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Introduction
Gliomas are among the most common central nervous system tumors. At present,

comprehensive high-grade gliomas treatment involves surgical intervention com-

bined with postoperative radiotherapy and chemotherapy. However, the median

survival time for patients with glioblastoma is less than 14 months, as the tumors

are prone to recurrence and the patient mortality rate is very high.1 High-grade

gliomas are the typical vascular-dependent solid tumor,2 rich in tumor angiogenesis,

and difficulty restricting tumor blood supply is one reason why clinical treatment is

problematic.3

Antiangiogenic therapy has been an adjuvant therapy for high-grade gliomas for

the past decade. The angiogenesis inhibitor bevacizumab has been used in the

treatment of glioma. However, neuro-oncologists have found that angiogenic inhi-

bitors have not achieved the desired therapeutic effect in clinical practice.4–6 It

appears that glioma cells (GCs) exhibit “therapy resistance”, suggesting the pre-

sence of a blood supply source in gliomas that differs from traditional angiogenesis.

Discovery of Vasculogenic Mimicry (VM)
VM was first discovered by Maniotis et al in highly invasive malignant melanoma.7

VM is a matrix-rich conduit without endothelial cells (ECs), and an EC-

independent tumor microcirculation model. Specifically, VM refers to a channel

formed by a series of changes, including self-deformation and matrix remodeling of

tumor cells to undergo “phenotypic transformation into ECs”.7 The tumor cells that

comprise this channel structure show a variety of phenotypic transformations, such

as dedifferentiation, where cells show the dual phenotypic characteristics of ECs

and tumor cells.
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Maniotis et al7 first found a grid-like structure formed

by interconnections between the stroma in malignant mel-

anoma tissue sections. Using transmission electron micro-

scopy, they observed that the grid structure in the tumor

tissue was composed of a special kind of channel. This

channel contained hemoglobin and plasma components

that pass through it. They further used iodate Schiff stain-

ing and found that some of the ducts were strongly posi-

tive, suggesting that they were rich in matrix components.

However, there was no expression of CD34, an EC mar-

ker, in the ducts. This finding suggested that there were no

vascular ECs present in these structures.

Furthermore, Maniotis et al7 found that the channels

were rich in laminin, collagen IV, collagen VI, and heparan

sulfate proteoglycan. Phenotypic analysis of tumor cells

suggested that they had undergone a phenotypic transfor-

mation into ECs. Hemoglobin, red blood cells, platelets,

and other blood components were observed in the duct,

indicating that this channel was involved in the microcircu-

lation supplied by the tumor vessels.7,8

This kind of tumor cell, with an “EC phenotype”,

forms the structure of the channels through complex pro-

cesses of cell deformation, proliferation, migration, and

matrix remodeling, to provide the blood supply required

for invasive tumor growth. This is also one of the reasons

why there is a lack of necrosis in malignant melanoma

tissue sections.

Since its initial discovery, VM has been found in other

solid tumors, including hepatocellular carcinoma,9–12 Ewing’s

sarcoma,12,13 acute leukemia,14 ovarian carcinoma,15,16 cervi-

cal cancer,17 prostate adenocarcinoma,18 nasopharyngeal

carcinoma,19 non-small cell lung cancer,20 lung

adenocarcinoma,21 osteosarcoma,22 gastric cancer,23,24 breast

cancer,25,26 and renal clear cell carcinoma.27

The in vitro detection of VM involves Periodic Acid-

Schiff (PAS)-CD34 double immunohistochemical staining

to observe the structure of the lumen in the section. If the

endothelial marker CD34 (or CD31) is present, PAS-

positive staining indicates tumor vessels. If the endothelial

marker CD34 (or CD31) is absent, PAS-positive staining

indicates VM. Another detection method has been devel-

oped based on the Matrigel three-dimensional (3D) culture

model of tumor cells in vitro. Arrangement of tumor cells

in a 3D reticular structure suggests that the tumor cells

have undergone phenotypic transformation into ECs.

Additionally, the glycoprotein-rich VM channel was also

observed in 3D in an in vitro tumor cell culture model by

using X-ray tomography for 3D reconstruction.28 Through

time-lapse dynamic magnetic resonance angiography com-

bined with electron microscopy and immunohistochemis-

try, this VM structure has been confirmed to be involved in

tumor microcirculation.29

VM Formation in Glioma
VM was discovered and reported in glioma by Yue and

Chen30 in 2005. They collected 45 cases of WHO II–IV

grade astrocytoma tissues and found PAS (+)/CD34 (-)

channels in two high-grade astrocytoma tissues. These

channels connected to the CD34 positive glioma micro-

vessels and formed part of the microcirculation, which

confirmed the existence of VM in gliomas.30 In

a subsequent study of 101 glioma tissue samples, VM

was found in glioma tissue sections from 13 samples.

The positive rate of VM positively correlated with the

degree of malignancy in these samples, indicating that

patients with VM often have a poor prognosis and short

survival time.31 The positive rate of VM in highly malig-

nant adult glioblastoma specimens was higher than that in

lower-grade glioma tissues.32,33 CD105 (a vascular EC

marker) and CD133 double-positive GCs were also

found in high-grade gliomas in children, suggesting that

VM is not unique to adult high-grade glioma.34,35 VM

formation in glioma is shown in Figure 1.

Differentiation of Glioma Stem Cells

(GSCs)
Using gene chip technology, researchers analyzed and the

expression of specific genes in GCs with VM. Their find-

ings suggest that GCs undergoing VM may regain plur-

ipotent characteristics, exhibit an embryonic phenotype,

and undergo “transdifferentiation”.36 However, VM has

been detected in some malignant tumors with bidirectional

differentiation. Taken together, these studies have shown

that to form VM, GCs must show “transdifferentiation”

characteristics and be able to differentiate.37 Recently, Mei

et al38 collected 64 glioblastoma tissue samples. Live-cell

imaging confirmed that malignant GSCs could differenti-

ate into ECs and produce VM. Among them, CD133 (+)

GSCs were considered to have a stronger ability to induce

VM formation than CD133 (-) GSCs.39 Wu et al40 found

that bevacizumab could induce autophagy in GSCs and

activate the vascular endothelial growth factor/vascular

endothelial growth factor receptor-2 (VEGF/VEGFR-2)

signaling pathway, which also promotes VM. This

mechanism may, in part, explain the poor clinical efficacy
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of bevacizumab in the treatment of glioma. An increasing

number of studies have shown that GSCs play a vital role

in the development of VM in glioma.41 However, Ke et al42

found that non-stem-like cells of glioma were more prone

to gain VM-related gene expression and phenotype than

were stem-like cells of the same origin.

Based on the critical role of GSCs in glioma VM, the

researchers developed a variety of drug delivery systems

(Table 1), hoping to produce the dual effects of inhibiting

glioma stem cell growth and glioma VM at the same time.

Some receptors, such as VEGFR-2, neuropilin 1 (NRP1),

ephrin A, and epidermal growth factor receptor (EGFR), are

highly expressed on GSCs within the VM. Multifunctional

targeted drug delivery is feasible when these receptors are

efficiently targeted. Liposomes or micelles possess a high

binding capacity for receptors and demonstrate superiority in

tumor-homing imaging.43–57 This type of treatment is

expected to become a new direction for the treatment of

glioma.58

Formation of Glioma VM in Hypoxic

Environments
The rapid proliferation of GCs causes a relative lag in

tumor angiogenesis, which then leads to the formation of

a hypoxic microenvironment in localized tumor regions.

In this hypoxic microenvironment, GCs are arranged

autonomously into channels. These GC-arranged VM

channels are the key to maintaining the malignant biolo-

gical characteristics of tumors and have some EC func-

tions and phenotypes.59,60 The hypoxic microenvironment

also activates some related signaling pathways, mole-

cules, and the prolyl hydroxylase activity decreases,

allowing the hypoxia-inducible factor (HIF) subunit

alpha subunit to escape von Hippel-Lindau degradation.

HIF alpha subunits accumulate in the cytoplasm, where

they combine with HIF beta to form heterodimers and

then translocate to the nucleus to activate target gene

transcription.61 Additionally, hypoxia inhibits HIF degra-

dation, allowing HIF-1α or HIF-2α to be in the nucleus

and bind to the hypoxia response element of the

target gene. Activation of VEGF, cytokines, stem cell

characteristic maintenance-related genes, and epithelial-

mesenchymal transition (EMT) inducers could also lead

to VM.62,63

Rapid cell proliferation and unorganized perfusion in

glioma microcirculation can cause an increase in intersti-

tial fluid pressure, inducing ECs to cross the blood-tumor

barrier and form a hypoxic environment in the center of

Figure 1 The occurrence of VM in gliomas. Rapid glioma cell proliferation and disordered perfusion in the glioma microcirculation can lead to elevated high interstitial fluid

pressure (IFP), the formation of a hypoxic environment in the center of the glioma, M2 tumor-associated macrophage (Pink) infiltration, formation of a duct structure by

GSCs with an “EC phenotype” through the complex process of cell deformation, proliferation, migration, and matrix remodeling (yellow), which provides the blood supply

required for invasive tumor growth.
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Table 1 Targeting Drug Delivery Systems for Circumventing VM Formation

No Drug

Carrier

Types

of

Drugs

Name of Drug Special

Conjugate

Other

Conjugate

The Transport

and

Identification

Mechanism

The Aim of

Treatment

Ref

1 Liposomes Single Combretastatin

A4

Peptide containing

the Asn-Gly-Arg

NA Endocytosis, CPP Anti-VM 43

2 Liposomes Single PTX Multifunctional

tandem peptide R8-

c(RGD)

NA Endocytosis, CPP Anti-VM and anti-

BCSCs

44

3 Liposomes single DOX Hyaluronic acid

ion-pairing

nanoparticle

NA Endocytosis, CPP Anti-VM and anti-

BCSCs

45

4 Liposomes single PTX Tandem peptide

R8-dGR

Integrin αvβ3 and

NRP1 receptors

recognizing

peptide

Endocytosis, CPP Anti-VM and anti-

BCSCs

46

5 Liposomes Dual PTX;

artemether

Mannose-vitamin

E derivative;

dequalinium-lipid

derivative

NA Glucose

transporters;

adsorptive-

mediated

endocytosis

Anti-VM; induction of

apoptosis in brain

cancer cells and

BCSCs

47

6 Liposomes Single PTX TR peptide Integrin

αvβ3-specific

vector

Endocytosis, CPP Anti-VM and anti-

BCSCs

48

7 Liposomes Single PTX SHH targeting

peptide; VEGFR 2

targeting peptide

CK peptide; GYG

linker

PEG-PLA Anti-VM and anti-

BCSCs

49

8 Liposomes Single DOX d-peptide of

nicotine

acetylcholine

receptors

VEGFR 2 and

NRP1 recognizing

peptide

Endocytosis, CPP anti-VM 50

9 Micelles Single PTX Tumor-homing

peptides

GRP78 Endocytosis, CPP Anti-VM and anti-

BCSCs

51

10 Micelles Single PTX EGFR/EGFRvIII

Dual-Targeting

Peptide

NA Endocytosis, CPP Anti-VM and anti-

BCSCs

52

11 Liposomes Dual Lycobetaine,

OCT

nRGD NA Endocytosis, CPP Anti-VM, anti-BCSCs

and anti-tumor-

associated

macrophages

53

12 Micelles Single PTX Peptide ligand

RAP12 of LRP1

NA PEG-PLA Anti-VM and anti-

BCSCs

54

13 Liposomes Single DOX Myristic Acid-

Modified DA7R

Peptide

NA Endocytosis, CPP Anti-VM and anti-

BCSCs

55

(Continued)
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the glioma.61,64 This hypoxia causes GCs with “stem cell

characteristics” to form VM channels, which are then

connected to endothelial-dependent blood vessels to form

early VM structures.65 This structure is a mixed structure

in which glioma microvessels and VM coexist. The spatial

and temporal correlations between the VM networks and

GCs with “stem cell characteristics” suggest that these

cells are the early driving forces of VM.64

Matrix Remodeling Is a Critical Step in

VM
In the identification of VM, the PAS-positive matrix layer

was found to cover the inner surface of the VM structure.

At present, the known matrix components include laminin,

collagen, mucopolysaccharide, and F tissue factor and its

inhibitors. The first several components are also compo-

nents of the vascular basement membrane, which promotes

connection and penetration between the VM structure and

glioma microvessels. The balance between F tissue factor

and its inhibitors is the key regulatory mechanism control-

ling anticoagulant function and maintaining VM blood

flow.66

Immune Cell Infiltration
GCs can recruit tumor-associated immune cells, espe-

cially M2 tumor-associated macrophages (TAMs) that

express CD68 and CD206.67 GCs secrete IL-4 to acti-

vate TAMs and upregulate the expression of CD68,

Arg-1, and CD204. Activated TAMs are widely

recruited to, and infiltrate, VM-positive areas where

they activate and upregulate cyclooxygenase-2. This

further activate prostaglandin E and prostaglandin

E receptor 1 through the protein kinase C pathway,

and promotes VM in glioma.68,69

Regulation of VM in Glioma
Many molecules and signaling pathways are involved in

the regulation and development of VM in glioma.

Hypoxia-Related Signaling Pathways
Hypoxia can induce VM. Under hypoxic conditions, leucine-

rich repeats and immunoglobulin-like domains 1 (LRIG1)

inhibit the EGFRmediated phosphoinositol 3-kinase (PI3K)/

AKT pathway and repress the EMT.70 The inhibition of

hypoxia-induced VM in gliomas has been studied.70 Under

hypoxia, the rapamycin target protein is involved in VM

formation in glioma through HIF-1α.63 In the in vitro

hypoxia glioma model, B-cell lymphoma 2 (Bcl-2) inhibits

VM formation in gliomas by inhibiting the activation of the

HIF-1α-MMP-2-MMP-14 signaling pathway.71 Silencing

Beclin-1 can also significantly reduce hypoxia-induced VM

formation.72 Additionally, under hypoxia, some GSCs

express vascular endothelial (VE)-cadherin; VE-cadherin

and HIF-2α directly interact to contribute to GSC VM

formation.73

The VEGF family is a group of regulatory molecules

critical for angiogenesis in glioma, and it is also involved

in VM regulation in gliomas.41 For example, GSCs

express VEGFR-2, which is activated by VEGF and pro-

motes tubule formation. During autophagy in GSCs, phos-

phorylation of VEGFR-2 is activated by the PI3K-AKT

pathway, which promotes the formation of VM in GSCs.40

The role of VEGF in VM in gliomas was also detected by

the dynamic 3D culture model.74

Table 1 (Continued).

No Drug

Carrier

Types

of

Drugs

Name of Drug Special

Conjugate

Other

Conjugate

The Transport

and

Identification

Mechanism

The Aim of

Treatment

Ref

14 hMSCs Single Bispecific

immunotoxins

VEGF165; ephrin A PE38KDEL Injection of

engineered

hMSCs

Anti-VM and inhibiting

tumor growth

56

15 Liposomes Single DOX Heptapeptide A7R VEGFR 2 and

NRP1 recognizing

peptide

Endocytosis, CPP Anti-VM and anti-

BCSCs

57

Abbreviations: VM, vasculogenic mimicry; PTX, paclitaxel; DOX, doxorubicin; CTT, octreotide; hMSCs, human mesenchymal stem cells; BCSCs, brain cancer stem cells;

VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2; NRP1, neuropilin-1; RGD, arginine-glycine-aspartic acid; SHH, human sonic

hedgehog targeting peptide; LRP1, LDL receptor related protein 1;PEG-PLA, poly(ethylene oxide)- poly(lactic acid); CPP, cell penetrating peptides. NA, not applicable.
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VE-cadherin, a member of the cadherin superfamily, is

closely related to hypoxia-related signaling molecules. Under

hypoxic conditions, VE-cadherin is upregulated in a HIF-1α-
and HIF-2α-dependent manner and contributes to hypoxia-

induced VM.73 Abnormal expression of VE-cadherin

specifically by ECs was also found in VM glioma-like stem

cells, suggesting that VE-cadherin is involved in VM.75,76

Matrix Metalloproteinases (MMPs)
MMPs play an essential role in VM formation and are

essential protein targets and effectors in the VM regulatory

network. It has been reported that both MMP-14 and

MMP-2 degrade the gamma 2 laminin subunit into

gamma 2ʹ and gamma 2x fragments and then stimulate

glioma cell invasion and VM.77 In malignant glioma,

MMP-14 expression and activation transform MMP-2 pre-

cursors into active MMP-2 and affect matrix remodeling,

which affects VM formation in glioma.78 Histone deace-

tylase activates MMP proteins through the PI3K-ERK

signaling pathway and promotes VM formation by regu-

lating the expression of laminin subunit gamma

2 (LAMC2), a mimicry-related molecule in gliomas.77

Cytokine Family
Epidermal growth factor (EGF) is increased in GCs, and

binding to EGFR activates its downstream pathways,

including PI3K-AKT, ultimately activating LAMC2 and

cyclooxygenase-2 and promoting VM.31 The inhibitory

effect of LRIG1 on VM in glioma is also mediated by

the EGFR signaling pathway.70 EMT plays an important

role in glioma progression.79,80 Transforming growth fac-

tor beta (TGF-β) induces the development of VM,81

while the TGF-β1 inhibitor galunisertib inhibits astrocyte-

induced VM in glioma.82 Additionally, the expression of

insulin-like growth factor-binding protein 2 (IGFBP2) is

positively correlated with VM in patients with glioma.

IGFBP2 interacts with the integrin alpha5beta1 subunits

and enhances CD144 expression in a FAK-ERK pathway-

dependent manner, IGFBP2 can also activate CD144 and

MMP2 through transcription factor SP1 activation,

enhancing VM in gliomas.83 Aquaporin-1 may play

a role in VM in glioblastoma, and it can be used as

a new diagnostic biomarker and a potential therapeutic

target.84 In oligodendroglioma, downregulation of galec-

tin-1 gene expression, a significant decrease in brain

expressed X-linked 2 expression, and inhibition of VM

may present new therapeutic strategies for reducing che-

motherapy resistance.85 A histone deacetylase inhibitor

has also been identified as a promising candidate for

VM inhibition in glioblastoma.77,86 Finally, suppression

of Axin187 and curA88 have also been shown to

affect VM.

Figure 2 Noncoding RNAs are important regulatory molecules for VM formation in gliomas. The lncRNA-miRNA network played an essential role in regulating VM

formation in glioma.
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Noncoding RNAs
In recent years, the regulatory roles of noncoding RNAs

(ncRNAs) in glioma occurrence, metastasis, invasive

growth, and angiogenesis have become the focus of glioma

research. ncRNAs include long ncRNAs (lncRNAs),

microRNAs (miRNAs), and PIWI-interacting RNAs.

lncRNAs are a newly discovered class of ncRNAs with

lengths ofmore than 200 nucleotides. lncRNAHOXA-AS2 is

upregulated in glioma tissues and is positively correlated

with the positive rate of VM.78 HOXA-AS2 knockout attenu-

ates the GC viability and represses VM, which may occur

through VE-cadherin inhibition. Moreover, HOXA-AS2

knockout inhibits the activity of MMP-2 and MMP-9.78 In

addition, LINC00339 expression in glioma positively corre-

lates with VM formation. LINC00339 inhibits miR-539-5p

expression, resulting in increased expression of twist family

bHLH transcription factor 1 (TWIST1). TWIST1 upregu-

lates MMP-2 and MMP-14 promoter activities and

expression.89 The USF1 transcription factor promotes VM

in glioma by regulating lincRNA-SNHG16 and linc00667.

Silencing of USF1 can inhibit VM occurrence, which may be

regulated by a competitive endogenous RNA mechanism.90

lncRNA SNHG20 also plays a vital role in regulating the

formation of VM in glioma.91

miRNAs are also essential regulators of VM in glioma.

Xue et al92 found that miR-Let-7f reduces the occurrence

of VM in gliomas by inhibiting periostin-induced GC

migration. Li et al93 confirmed that miR-141 expression

in primary gliomas is downregulated. miR-141 regulates

GC proliferation, migration, and invasion by controlling

EphA2 expression, which then affects VM in gliomas.

miR-584-3p plays a role in glioma inhibition by inhibiting

Table 2 The Roles of Major Noncoding RNAs in VM Formation in Glioma

No. The Types of

Noncoding

RNAs

The Name of

Noncoding

RNAs

Function The Target Molecules Ref

1 lncRNA HOXA-AS2 Promotion Inhibit VE-cadherin expression, and inhibit the expression and activity of

MMP-2 and MMP-9, PI3K-AKT signaling pathway

78

2 miRNA miR-373 Inhibition Inhibit VE-cadherin expression, and inhibit the expression and activity of

MMP-2 and MMP-9, PI3K-AKT signaling pathway

78

3 lncRNA LINC00339 Promotion Increase in the expression of TWIST1. TWIST1 upregulates the promoter

activities of MMP-2 and MMP-14, and increases the expression and activity

of MMP-2 and MMP-14

89

4 miRNA miR-539-5p Inhibition Increase in the expression of TWIST1. TWIST1 upregulates the promoter

activities of MMP-2 and MMP-14, and increases the expression and activity

89

5 lncRNA SNHG16 Promotion Increase the expression of ALDH1A1 90

6 lncRNA linc00667 Promotion Increase the expression of ALDH1A1 90

7 miRNA miR-212-3p Inhibition Inhibit the expression of ALDH1A1 90

8 miRNA miR-429 Inhibition Inhibit the expression of ALDH1A1 90

12 lncRNA SNHG20 Promotion Upgradation of FOXK1 mRNA by SMD pathway 91

9 miRNA miR-Let-7f Inhibition Disturbing periostin induced migration 92

10 miRNA miR-141 Inhibition Controlling EphA2 expression 93

11 miRNA miR-584-3p Inhibition Disturbing hypoxia-induced stress fiber formation and migration of glioma

cells

94

13 miRNA miR-9 Inhibition Controlling STMN1 expression 95

14 miRNA microRNA-26b Inhibition Controlling EphA2 expression 96

Abbreviations: lncRNA, long noncoding RNA; miRNA, microRNA; TWIST1, transcription factor twist family bHLH transcription factor 1; VE-cadherin, vascular

endothelial-cadherin; HOXA-AS2, HOXA cluster antisense RNA 2; ALDH1A1, aldehyde dehydrogenase 1 family member A1; SMD, Staufen1-mediated mRNA decay;

EphA2, EPH receptor A2; STMN1, stathmin 1.
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VM formation in GCs by antagonizing hypoxia-induced

ROCK1-dependent stress fiber formation.94 miR-995 and

miR-26b96 can also be used as potential anti-VM mole-

cules in GCs.

These results suggest that ncRNAs are critical VM

regulatory molecules in glioma. Looking for a noncoding

RNA molecule may be a potential target for glioma ther-

apy (Figure 2 and Table 2).

Conclusion
The in-depth study of VM in gliomas has shown that VM

can be used as a new entry point for the basic research of

gliomas, and as a new direction in glioma growth inhibi-

tion. Moreover, VM has become the focus of many

researchers to solve antiangiogenesis-targeted drug resis-

tance in the treatment of gliomas.

The main issues remaining to be addressed in VM

research in glioma are: (1) the glioma microenvironment

and its complexity, in which the relationships among var-

ious regulatory factors, specific regulatory mechanisms,

and glioma VM are not clear; (2) the relationship between

GSCs and VM in glioma is not clear; and (3) at present,

glioma VM research is mainly supplemental to glioma

angiogenesis research, and the relationship between VM

and angiogenesis and their interaction with the malignant

progression of glioma have not been reported.

Nevertheless, the study of the role of VM in gliomas

may still provide a new direction for glioma treatment.

Abbreviations
VM, vasculogenic mimicry; ECs, endothelial cells; GCs,

glioma cells; PAS, Periodic Acid-Schiff; 3D, three-

dimensional; GSCs, glioma stem cells; VEGF, vascular

endothelial growth factor; VEGFR-2, vascular endothelial

growth factor receptor-2; NRP1, neuropilin 1; EGFR, epider-

mal growth factor receptor; HIF, hypoxia-inducible factor;

EMT, epithelial-mesenchymal transition; TAMs, tumor-

associated macrophages; LRIG1, leucine-rich repeat

sequences and immunoglobulin-like domain 1; PI3K, phos-

phoinositol 3-kinase; Bcl-2, B-cell lymphoma; MMPs, matrix

metalloproteinases; VE-cadherin, vascular endothelial-

cadherin; LAMC2, laminin subunit gamma 2; TGF-β,
Transforming growth factor beta; IGFBP2, insulin-like growth

factor-binding protein 2; ncRNAs, noncoding RNAs;

lncRNAs, long noncoding RNAs; miRNAs, microRNAs;

TWIST1, transcription factor twist family bHLH transcription

factor 1; IFP, interstitial fluid pressure.
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