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Abstract: Current evidence indicates an inverse association between Helicobacter pylori and 

asthma and allergy. H. pylori is a Gram-negative bacterium which represents the major cause 

of peptic ulcer and gastric cancer, and preferentially elicits a T helper (Th)-1 response. Many 

H. pylori factors, such as the neutrophil-activating factor of H. pylori (HP-NAP), are able to 

drive Th-1 polarization and to display a powerful inhibition of allergic Th-2 response. This 

article proposes an overview of the actual knowledge about the effects of H. pylori on asthma 

and allergy. Special attention has been drawn to HP-NAP as a potential novel strategy for the 

prevention and treatment of asthma and atopy.

Keywords: Helicobacter pylori neutrophil-activating factor, protein, Th-1/Th-2, Treg, 
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Introduction
The prevalence of airway allergic disease such as asthma has over the years increased 

in developed countries. The causes of this increase remain largely unknown. Proposed 

associations include changes in smoking habits,1 exposure to food-borne and orofecal 

infections,2,3 types of dwellings,4 ownership of furry animals,5 number of siblings, 

family income/education level,6 and the presence of particulates in diesel exhaust.7 

The inverse association between family size and manifestations of allergy has been 

consistently found,8–11 and there is also a much-published potential link between allergy 

and childhood infection, especially with Helicobacter pylori.12–14

Until the late 1980s, interest in the role of infections in allergic diseases focused 

principally upon the process of primary allergic sensitization. The literature of the 

time contained several observations which argued for a role for infections, including 

the ability of bacterial-derived immunostimulants such as pertussigen to selectively 

improve priming for immunoglobulin (Ig)E antibody production,15 and the potential of 

lipopolysaccharide to bypass tolerance to mucosally applied allergens. Also, other studies 

reported that respiratory viral infections such as influenza could subvert the generation 

of protective “inhalation tolerance” to aeroallergens.16 More recently, signals such as 

enterotoxins from skin-dwelling bacteria have been invoked as important contributors to 

the pathogenesis of atopic dermatitis.17 However, it was also clear from other observations 

that microbial exposure per se could not be considered in generic terms as “pro-atopic”. 

For example, other microbial-derived agents exemplified by the components of Freund’s 

adjuvant displayed atopy-antagonistic activity,18 and stimuli derived from normal gut flora 

were demonstrated to be necessary to facilitate the expression of oral tolerance to fed 
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allergens,19 and also inhalation tolerance to aeroallergens.20 

These observations suggested that microbial-derived stimuli 

had potential to modulate the etiology and pathogenesis of 

atopic diseases in dichotomous ways, their ultimate effects 

perhaps being context-dependent.

In this review we will focus our attention on the unambiguous 

effects of H. pylori on asthma and atopy.

The role of Helicobacter pylori  
in asthma and allergy
H. pylori, a Gram-negative bacillus that colonizes the human 

stomach, is the main cause of peptic ulceration, gastric 

lymphoma, and gastric adenocarcinoma, the second leading 

cause of death from cancer worldwide. The World Health 

Organization classifies H. pylori as a human carcinogen 

for distal gastric cancer, and eradicating the bacterium in 

high risk populations reduces incidence of gastric cancer.21 

H. pylori also may contribute to other conditions, including 

iron and vitamin B12 deficiencies, idiopathic thrombocy-

topenic purpura, and growth retardation in children. H. pylori 

colonization occurs in childhood and persists throughout life, 

causing disease mainly in adults.22,23

In 1989, Strachan proposed the “hygiene hypothesis”, 

stating that the exposure to infectious agents and living in 

an unhygienic environment might “educate” the immune 

system and thus protect against the development of allergic 

diseases.24 The idea originated from epidemiological obser-

vations suggesting a general hypothesis that infections in 

early childhood acquired from older siblings might confer 

protection against the development of atopic diseases such 

as atopic eczema, allergic rhinoconjunctivitis, and asthma. 

Subsequent research into the association between childhood 

infections and atopic sensitization or atopic disease have 

offered conflicting results. Indeed, our understanding of the 

timing, the mechanism, and the specific infections that might 

carry antiallergenic potential are by no means satisfactory.25,26 

The T helper (Th)-1/Th-2 paradigm of adaptive immune 

responses provided the initial immunological backbone for 

the hygiene hypothesis.27–29 On the basis of the cytokine 

production patterns, T cell responses may be divided into 

counter-regulatory Th-1 and Th-2 subtypes. Th-2 responder 

phenotype is associated with atopic sensitization and atopic 

disease. Indeed, inflammation of the Th-2 type appears to 

be active in the initial stage of the pathogenesis of atopic 

eczema,30,31 allergic rhinoconjunctivitis,32,33 and asthma.34,35

In detail, the histopathological characteristics of bronchial 

asthma, even a mild one, are represented by inflammatory 

infiltrates consisting of T lymphocytes and accumulation 

of activated eosinophils, epithelial shedding, and basal 

membrane thickening. Immunological and molecular studies 

of bronchial biopsies and bronchoalveolar lavage samples 

obtained in baseline disease or taken after natural or “experi-

mentally” induced asthma exacerbations have shown that a 

complex and fascinating inflammatory mechanism sustains 

the pathogenesis of bronchial asthma, including the partici-

pation of different types of Th cells and peculiar cytokine 

and chemokine networks.36 In allergic asthmatic patients, 

allergen exposure induces a predominant activation of Th-2 

lymphocytes in the airways, able to over-express several 

Th-2 cytokines, such as interleukin (IL)-4 and IL-5.34,37 

Moreover, the degree of IL-5 expression at the bronchial 

level is associated with the disease severity both in atopic 

and in nonatopic asthma.38 IL-5 and granulocyte macrophage 

colony-stimulating factor (GM-CSF) can be considered 

the most important cytokines for eosinophil accumulation 

in asthmatic inflammation. Th-2 cytokines in bronchial 

asthma are produced not only by CD4+ but also by CD8+ T 

cells, which contribute to the genesis of asthma and to the 

clinical expression of the disease.39 In H. pylori infection, a 

predominant activation of Th-1 cells, with the production of 

interferon (IFN)-γ, IL-12, IL-18, IL-23, and tumor necrosis 

factor (TNF)-α, occurs in vivo in the stomach of humans 

and in animal models, and the inhibition of the allergic 

Th-2 inflammation by Th-1 responses can explain the inverse 

relationship between H. pylori and asthma.40

Mechanism of action  
of Helicobacter pylori
H. pylori colonizes the human stomach in childhood and 

persists for decades.23 This implies near perfect adaptation 

to the niche and an ability to evade the human immune 

response. Its spiral shape and flagella allow it to corkscrew 

through the gastric mucus gel, and numerous adhesins enable 

selective adherence to the epithelium. H. pylori has multiple 

mechanisms for protection against gastric acid;41 notably, 

15% of its protein content comprises preformed cytoplasmic 

urease that, when the external pH is less than 6.5, neutralizes 

the periplasm, allowing maintenance of the cytoplasmic 

membrane potential.42

Like many human commensal bacteria, H. pylori has 

evolved specific mechanisms to avoid stimulating the immune 

response. For example, innate immune recognition by several 

Toll-like receptors (TLRs) is attenuated for H. pylori.43,44 

Despite this, colonization is associated with inflammatory 

and mucosa infiltration of polymorphonuclear leukocytes, 

macrophages, and Th-1 lymphocytes, with active production 
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of IL-12 and IFN-γ.45 Such an immune response is expected 

to play a role in the pathogenesis of H. pylori-associated dis-

eases in humans.45,46 Accordingly, a Th-1-directed immune 

response, induced by H. pylori infection, increases gastric 

inflammation and atrophy, whereas Th-2 redirection reduces 

them.47,48 Different pathways are responsible for the predomi-

nant H. pylori-induced mucosal Th-1 response.45,46 Stimula-

tion of human neutrophils, monocytes, and dendritic cells with 

H. pylori neutrophil-activating protein (HP-NAP) strongly 

upregulates both IL-12 and IL-23 production, via TLR2 acti-

vation. In the gastric mucosa of H. pylori-infected patients, 

a considerable proportion of Th cells is specific for different 

H. pylori antigens, including HP-NAP, CagA, urease, VacA, 

and heat shock proteins, and HP-NAP drives the production 

of high levels of IFN-γ and TNF-α by gastric Th cells, thus 

promoting a polarized Th-1 response (Figure 1).45–49

Protective properties  
of Helicobacter pylori  
on asthma and allergies
Asthma, a chronic inflammatory disease of the airways 

is a multifaceted disorder characterized by airway hyper-

responsiveness to a multiplicity of specific and nonspecific 

stimuli, and mucus hypersecretion by goblet cells.

The severity and incidence of asthma have increased 

drastically in the developed nations over recent decades. 

Although the underlying reason is still unknown, clinical, 

epidemiological, and experimental evidence indicate that 

infectious diseases can influence the development of allergic 

disorders.24 Accordingly, an inverse correlation has been 

demonstrated between the onset of allergic disorders and the 

incidence of infections. This may be the result of an inhibition 

of allergic Th-2 inflammation exerted by Th-1 responses; the 

latter are elicited by infectious agents and are able to induce 

the production of IFN-γ, IL-12, IL-18, and IL-23.50 This 

view is supported by studies showing that development of 

asthma can be prevented in animals by administering live 

or killed bacteria or their components, which induce Th-1 

responses.51 Also, we demonstrated that H. pylori inhibited 

Th-2 responses in asthmatic patients.49 Interestingly, on the 

basis of large epidemiological studies, recently, a consistent 

negative association between H. pylori infection and the 

presence of allergic disorders, such as asthma and rhinitis, 

has been proposed.52 Table 1 summarizes some recent studies 

in which the relationships of H. pylori with asthma, atopy, 

allergic rhinitis, and/or eczema were examined.2,8,53–60 In 

general, the cross-sectional studies, involving a variety of 

populations and somewhat differing definitions of atopy 

and asthma, show significant inverse relationships of these 

conditions with H. pylori. The published case-control studies, 

in general much smaller in scale, do not show any significant 

direct or inverse relationships.

Although it is an undoubtedly interesting theory, no con-

vincing molecular mechanism has been proposed to support it. 

Our studies, carried out with H. pylori may help in understand-

ing this complex issue. We have shown that addition of HP-

NAP (a dodecamer formed by four-helix bundled subunits with 

a hollow central part) to allergen-induced T-cell lines derived 

from allergic asthmatic patients led to a drastic increase in IFN-

γ-producing T cells and to a decrease in IL-4-secreting cells, 

thus resulting in a redirection of the immune response from a 

Th-2 to a Th-1 phenotype.49 Furthermore, in the gastric mucosa 

of H. pylori-infected patients a remarkable proportion of Th 

cells showed significant proliferation to different H. pylori 

antigens, including HP-NAP; upon HP-NAP stimulation, 

Ag-specific gastric Th cells produced large amounts of IFN-γ 

and TNF-α, and displayed a powerful cytotoxic activity, thus 

showing a polarizing Th-1 effector phenotype.

Likewise, HP-NAP stimulation of neutrophils, monocytes, 

and dendritic cells resulted in a remarkable upregulation of 

cytokines, including IL-12 and IL-23, contributing to the 

induction of an IL-12- and IL-23-enriched milieu, which has 

the potential to drive the differentiation of antigen-stimulated 

T cells towards a polarized Th-1 phenotype (Figure 1).56,61

An issue to be considered in studies showing negative 

associations between H. pylori and various atopic and 

allergic diseases is that H. pylori positivity is linked with 

more crowded living conditions and poor hygiene in infancy. 

Since these factors also are associated with other childhood 

infections, H. pylori status may simply be a marker for these. 

However, the negative association with childhood asthma is 

stronger for cagA+ H. pylori strains.56

Another hypothetical explanation for the inverse 

association between H. pylori and asthma is that the high 

levels of regulatory T cells (Tregs) associated with H. pylori 

infection may contribute to prevention of allergic diseases, 

and H. pylori-free humans are thus more susceptible to 

these diseases (Figure 2). In support of this, H. pylori-

positive people have higher levels of gastric Tregs than 

those without the organism,62,63 and more importantly also, 

circulating Tregs are increased in number.64 In addition, in 

mice experimentally infected with H. pylori, systemic Tregs 

are increased, and these suppress other immune responses, 

one effect of which is to facilitate H. pylori colonization.65 

The excess Tregs may have immunosuppressive activity in 

humans as well: among H. pylori-positive persons, those 
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with fewer Tregs are more likely to have peptic ulcers62 

and so presumably have more intense gastritis. Finally, in 

cagA+ H. pylori colonization, mucosal Tregs may be more 

numerous, and mucosal levels of the immunomodulatory 

cytokine IL-10 may be higher than in cagA– colonization.66 

If the same phenomenon applies to circulating Tregs, it could 

potentially explain the stronger, negative association with 

childhood asthma of cagA+ strains.56 Taken together, these 

studies imply a theoretical plausible link between H. pylori, 

Tregs, and reduction in risk of allergic diseases. However, 

interventional studies in relevant animal models and in 

humans are needed to verify the hypothesis.

Effect on immune system  
and lung function
So far we have considered what happens in the stomach and 

at the systemic level, following H. pylori colonization; but 

a very pertinent question about the link between asthma and 

H. pylori is whether H. pylori may have some effects in the 

lung region. To answer this question we created a mouse 

CagA VacA

HP-NAP

Urease HSP

Neutrophils Monocytes
macrophages

IL-12 IL-23

Th1
cells Th2

cells
TNF-αIFN-γ

Helicobacter pylori

Figure 1 Schematic representation of Helicobacter pylori-driven inhibition of allergic Th-2 inflammation via activation of Th-1 responses. Following H. pylori infection, HP-NAP 
and other H. pylori factors induce the production of iL-12 and iL-23 that both promote the preferential development of Th-1 cells and repress the Th-2 allergic response. 
Abbreviations: HP-NAP, H. pylori neutrophil-activating protein; Th, T helper; iL, interleukin; iFN, interferon; TFN, tumor necrosis factor.
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model of allergic asthma,67 and demonstrated that in vivo 

administration of HP-NAP prevents the typical eosinophil 

accumulation in the lung, as well as the increase of serum 

IgE. These results suggest the possibility that HP-NAP might 

be a part of the molecular mechanism underlying the negative 

association between H. pylori infection and allergy, cor-

roborating the epidemiological observations with a plausible 

scientific explanation. To address whether HP-NAP, on the 

basis of its immune-modulating activity, could be beneficial 

for the prevention and treatment of bronchial asthma, it was 

administered via the intraperitoneal or the intranasal route 

using a mouse model of allergic asthma induced by inhaled 

ovalbumin (OVA). Groups of nine C57BL/6j, wild type or 

tlr2−/−, mice were treated with OVA alone, or with OVA plus 

HP-NAP intraperitoneally or mucosally administered. In 

both systemic and mucosal protocols, mice were treated with 

OVA according to a standardized procedure consisting of a 

first phase of sensitization with OVA intraperitoneally and 

a second phase of induction of the allergic response with 

aerosolized OVA on day 8, followed by repeated aerosol chal-

lenge with the allergen on days 15–18. Control animals were 

injected with phosphate-buffered saline (PBS) alone and then 

exposed to aerosolized PBS. In the systemic protocol, mice 

were treated with intraperitoneal HP-NAP on day 1, whereas 

in the mucosal protocol mice received intranasal HP-NAP on 

days 7 and 8.67 After priming and a repeated aerosol challenge 

with OVA, Th-2 responses were induced in the mouse lung. 

Accordingly, following OVA treatment, eosinophils were 

recruited and activated in bronchial airways, and serum IgE 

levels increased. Both systemic and mucosal administration 

of HP-NAP strongly inhibited the development of airway 

eosinophilia and bronchial inflammation. Likewise, HP-NAP 

treatment strongly affected the lung cytokine release, reduc-

ing the production of IL-4, IL-5, and GM-CSF. Systemic 

HP-NAP also significantly resulted in both the reduction 

of total serum IgE and an increase of IL-12 plasma levels. 

Table 1 Major studies showing a negative association between Helicobacter pylori and asthma/atopic diseases

Location/type of study Study population H. pylori detection Clinical and laboratory findings  
of the atopic patients studied

Reference

Japan/C-C 46 patients with 
asthma/48 HC

igG eLiSA  
igG CagA

Current asthma diagnosed  
by ATS guidelines.

53

Scotland/C-C 97 patients/208 C igG eLiSA Skin and specific IgE tests.  
Atopy: weal $ 3 mm, or any  
ige . 0.35 iU/mL.  
Self-reported adult-onset  
wheeze and asthma.

8

italy/C-C 240 atopic patients/ 
240 nonatopic C

igG eLiSA Total ige.  
Atopy: logRU . 1.2. 
Nonatopic , logRU , 0.

2

Hong Kong/C-C 90 patients with  
asthma/97 C

igG eLiSA Current asthma diagnosed  
by ATS guidelines.

54

UK/C-S 3244 patients 13C-urea  
breath test

Asthma (treated with inhalers),  
allergic rhinitis (treated with  
antihistamines), and  
eczema (treated with  
topical corticosteroids).

55

USA/C-S 7663 atopic adults igG eLiSA  
igG CagA

Self-reported asthma and hay fever  
(current and lifetime).  
Skin sensitization tests.

56

Finland, Russian/C-S 1177 patients igG elisa Skin prick testing with a panel  
of 11 common airborne allergens.  
Atopy: any wheal diameter $ 3 mm.

57

Germany/C-S 321 with blood samples 
from 930 randomly  
selected from 3112 
inhabitants

igG eLiSA  
igG CagA

Specific IgE against a panel of  
aeroallergens. 
Atopy: any ige . 0.70 kU/L.

58

Denmark/C-S 1011 patients igG eLiSA Self-reported allergic rhinitis.  
Specific IgE to 6 allergens.  
Atopy: any ige . 0.35 kU/L.

59

iceland, Sweden,  
estonia/C-S

1249 patients igG eLiSA Detection of specific atopy: any  
ige . 0.35 kU/L.

60

Abbreviations: ATS, American Thoracic Society; C-C, case-control; C-S, cross-sectional; C, controls; HC, healthy controls; ig, immunoglobulin; eLiSA, enzyme-linked-
immunosorbent serologic assay test.
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However, no suppression of lung eosinophilia and bronchial 

Th-2 cytokines was observed in TLR2 knock-out mice fol-

lowing treatment with the TLR2 ligand HP-NAP.67 The results 

obtained in our studies suggest that HP-NAP might be the key 

element responsible for the decrement of allergy frequency 

in H. pylori-infected patients.

Conclusion
H. pylori and humans have coevolved for at least 50,000 

years and probably for much longer. As such, H. pylori 

colonization has been essentially universal, and the usual 

pattern of inflammation has likely been pan-gastric. H. pylori 

is the main cause of peptic ulceration, gastric lymphoma, 

and gastric adenocarcinoma.

The loss of this ancient, dominant, and persistent member 

of the normal biota of humans would be predicted to have 

consequences, and now there is much information about the 

beneficial and deleterious aspects of this change on the health 

and disease of the gastrointestinal tract. However, increasing 

evidence is pointing to extra-intestinal manifestations of the 

Treg

Th1
cells Th2

cells

Helicobacter 
pylori

Figure 2 inhibition of Th-2 response might hypothetically occur by Helicobacter pylori-induced activation of regulatory T cells.
Abbreviations: Th, T helper; Treg, regulatory T cell.
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disappearance of H. pylori, including asthma. An inverse 

association of H. pylori and childhood asthma, allergic 

rhinitis, and atopy is becoming increasingly obvious.

This phenomenon might be explained by the inhibition 

of the allergic Th-2 inflammation by the Tregs that could be 

present during H. pylori infection and could suppress the 

atopy-associated Th-2 response.

However, a realistic hypothesis, based on clinical and 

experimental evidence in humans and animal models,45,49,67 

is that the allergic Th-2 response is redirected by the Th-1 

response elicited by H. pylori, that is able to induce the 

production of IFN-γ, IL-12, IL-18, and IL-23. Several 

studies were devoted to the definition of new immune 

modulating factors able to inhibit Th-2 responses, and dif-

ferent compounds have been proposed for the treatment 

and prevention of asthma and atopic diseases, including 

several TLR ligands mimicking the effects of microbial 

components such as dsRNA, CpG-oligodeoxynucleotides, 

and imidazoquinolines.68–70 In detail, it has been shown that 

HP-NAP, by acting on both neutrophils and monocytes fol-

lowing the engagement of TLR2, significantly contributes to 

create an IL-12- and IL-23-enriched milieu, and as such it 

represents a key bacterial factor able to drive the differentia-

tion of antigen-stimulated T cells toward a polarized Th-1 

phenotype. HP-NAP has the potential to redirect the in vitro 

allergen-specific T-cell response from a predominant Th-2 

to a Th-1 response. Also, HP-NAP administration in vivo 

resulted in inhibition of the typical Th-2-mediated bronchial 

inflammation of allergic bronchial asthma. Thus, altogether, 

these results support the view that the increased prevalence 

and severity of asthma and allergy in Western countries may 

be related, at least in part, to the decline of H. pylori infection, 

which is able to induce a long-lasting Th-1 background, and 

suggest also that H. pylori compounds such as HP-NAP could 

be important candidates for novel strategies of the prevention 

and treatment of asthma and allergic diseases.
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