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Abstract: Radiation pneumonitis is one of the most common toxicities following SBRT for

lung cancer. Although local control rates are good, a recurrent tumour is difficult to distinguish

from radiation pneumonitis due to similar size and morphology. Therefore, early detection of

a recurrent tumour is challenging, and moreover, it is crucial for affected patients, as early

detection enables curative salvage therapy. Promising data exists to solve these challenges for

late recurrences, for example, the analysis of high-risk CT features allows prediction of recur-

rence after 12 months. But particularly in cases of early recurrences and radiation pneumonitis,

comprehensive data are lacking. Therefore, the aim of this study was to review the existing

literature with special regard to radiological response assessment after stereotactic body radio-

therapy and risk factors for predicting radiation pneumonitis or local recurrence.
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Plain Language Summary
Radiation pneumonitis is one of the most common toxicities following stereotactic body

radiotherapy (SBRT) for lung cancer. It appears within 6 months after SBRT and more than

50% of the patients have corresponding radiological findings, but they are usually asympto-

matic. By contrast, local recurrence is less common as local control rates are good. However,

distinguishing radiation pneumonitis from a recurrent tumour is challenging due to similar

morphology and size. This study aimed to review the literature which investigated predictive

factors concerning radiation pneumonitis and local tumour recurrence after SBRT. Indeed,

we found promising data. For example, Mattonen and her team reported a computer-aided

algorithm for predicting local recurrence within 6 months. Moran and colleagues developed

a similar procedure for predicting radiation pneumonitis. Furthermore, the use of positron

emission tomography (PET) is encouraging. Huang et al developed a follow-up algorithm for

response-assessment after SBRT, in which a PET is recommended in some cases, and Dong

et al demonstrated that patients with high metabolic activity (described as SUVmax) before

treatment had a worse overall survival. Nevertheless, the interpretation of a PET-scan should

be done carefully as there is no optimal SUVmax threshold for predicting local recurrence or

radiation pneumonitis. Another approach is to analyse of dosimetric parameters before

performing SBRT, and indeed, some parameters seem to be associated with radiation

pneumonitis, but again no specific dose constraints are found yet. We found promising

data in the literature, but the results are controversial, and a conclusion could not be drawn.

Introduction
Lung cancer is the leading cancer typeworldwidewith regard to the number of new cases and

causes of death.1 The therapeutic options are surgery, radiosurgery, respectively, ablative

(stereotactic) radiotherapy, conventional radiotherapy, chemotherapy or immunotherapy. The
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therapeutic strategy depends on the histological type, tumour stage

and the constitution of the patients.2 In cases of early staged lung

cancer (T1-2N0M0), stereotactic body radiotherapy (SBRT) is

now a standard treatment option3 for medically inoperable

patients,4,5 and it is considered to be a safe technique with low

rates of severe toxicity.6 A 3-year local control rate of approxi-

mately >90% has been reported.7,8 Moreover, SBRT could be an

option foroligometastaticpatientswith excellent local control rates

and encouraging overall survival,9 and for operable patients as

results are comparable to those from surgery.10,11

Radiological changes are commonly seen after SBRT.12

Compared to conventional fractionated radiotherapy (CRT),

SBRT allows the delivery of high doses per fraction while

sparing surrounding normal lung tissue. Using volumetric

modulated arc therapy (VMAT, Figures 1 and 2) or intensity-

modulated radiation therapy (IMRT, 3–8 fractions, Figure 3),

a dose distribution highly conformal to the shape of the

tumour (high-dose region) and step-down dose gradients at

its boundary (low-dose region) can be achieved.13 Older

techniques such as CRT are less conformal to the tumour. It

is expected that radiological patterns of radiological changes

on a computed tomography (CT) after SBRT are different

from those after CRT.14 On the one hand, CT changes after

CRTare limited to the irradiated lung and thus conform to the

treatment ports, where a distinct boundary between the irra-

diated and non-irradiated lung can be seen.15 On the other

hand, due to the more complex dose distribution of SBRT,

with highly conformal high-dose region (surrounding the

tumour) and large irregular low-dose region (surrounding

normal lung tissue, Figures 4, 5, and 6), CT changes do not

show distinct boundaries and typically conform to the shape

of tumour (Figures 1, 2, and 3).15

As reported by Linda et al,15 the CT changes following

SBRT can be divided into an early stage within 6 months

(Table 1), mainly related to radiation pneumonitis (RP),

and a late stage after 6 months, related to radiation fibrosis.

Radiation pneumonitis is one of the most common toxi-

cities after SBRT,16 up to 50–60% of the patients show

acute radiological findings.17 Most patients usually are

asymptomatic (grade 0–1, Common Terminology Criteria

of Adverse Events, CTCAE), and reported rates of symp-

tomatic RP (CTCAE grade 2–4) range from 9% to 28%.18

Although local control rates are good, one of the most

challenging problem is the differentiation of those benign

post-SBRT radiological findings from malign local recur-

rence. They appear as an increase in CT density, and RP

might mimic a recurrence due to similar morphology and

size19 making the physicians’ decision of salvage treatment

options more difficult. Promising data exists to solve these

challenges for late recurrences, for example, the analysis of

high-risk CT features allows to predict recurrence after 12

months.20 But particularly in cases of early recurrences and

RP, comprehensive data are lacking. Hence, we aimed to

review the literature concerning early recurrence and radia-

tion pneumonitis after SBRT for lung cancer.

Methods
Literature Research
We accomplished a comprehensive literature research using the

PubMed Database for articles published between January 2006

and April 2019. The following keywords were utilised:

Pneumonitis, lung injury, fibrosis, recurrence, relapse, local

failure, CT changes, CT appearance, imaging changes, early

changes, texture analysis, radiomics, predictive, prognostic and

risk factor. These keywords were accompanied by SBRT,

SABR and lung cancer. After excluding duplicates, a total of

1078 articles were found. These articles were screened by

cross-reading titles and abstracts. Articles directly concerning

pneumonitis, fibrosis and recurrence, respectively, predictive

factors and imaging findings after SBRTwere selected, result-

ing in about 180 articles for final analysis. Twenty additional

studies were included by interest after screening lists of refer-

ence. In brief, the following aspects were found:

● general radiographical changes after SBRT
● impact of different treatment techniques
● computed tomography (CT) analysis to distinguish

tumour recurrence and radiation pneumonitis
● positron emission tomography (PET) to distinguish

tumour recurrence and radiation pneumonitis
● dosimetric factors to predict pneumonitis
● impact of patient-based risk factors

In this review, we report the results as a summary of the

most promising data available in the literature we found.

Patients and Creation of the Figures
We retrospectively checked our patient database (from 2018

and 2019) and picked up 11 patients with radiological signs of

radiation pneumonitis or tumour recurrence. They are illu-

strated in 10 figures. CT findings after SBRT are shown in

Figures 1–7: Figures 1–3 show radiation pneumonitis after

SBRT. Using a deformable image registration, we demonstrate

that these findings are conformal to the high dose region. In
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Figure 1 Radiation pneumonitis after SBRT. (A left): 74-year-old female patient treated with SBRT for lung metastasis of parathyroid carcinoma (within the red contour).

Planning target volume (red contour) and organs at risk: Total lung (green), spinal cord (turquoise), oesophagus (violet). (A right): Treatment plan (VMAT-technology, 15 Gy

in 3 fractions, total dose 45.0 Gy): Isodose lines (% of total dose) and the dose distribution, high-dose region surrounding the tumour (red, green), step down gradient

(yellow, dark blue), and a large low-dose region highlighted in blue. (B left): Ground-glass opacities after SBRT, suspected radiation pneumonitis. (B right): A deformable

image registration was used to correlate the lung changes on follow-up CT-scan with radiation dose distribution. The changes are conformal to the high- and mid-dose

region. (C): A pre-treatment image (orange, dashed lines) and a follow-up image (blue, solid lines) were fused. A rigid image registration (left) cannot account for lung volume

and tumour position changes on follow-up CT-scans. The images do not correlate with each other. The deformable image registration (right) is more accurate than the rigid

registration and the images correlate well with each other.

Abbreviation: VMAT, volumetric modulated arc therapy.
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Figures 4 and 5 we demonstrate local tumour control after

SBRTwithout radiation pneumonitis resp. with discreet signs

of radiation pneumonitis. Figure 6 shows a persistent tumour.

The patients with radiation pneumonitis (Figures 1 and 2) are

shown in Figure 7, too.We illustrate early and late radiological

changes following SBRT. PET/CT findings are shown in

Figures 8–10: SUVmax associated with radiation pneumonitis

is shown in Figures 8 and 9, whereas in Figure 10, we

demonstrate that SUVmax is associated with local recurrence.

Incidences of CT Changes Following
SBRT for Lung Cancer
The CTchanges following SBRT for lung cancer are classified

into two stages. The early stage, which is radiation

pneumonitis, occurs within 6 months after SBRT15 with

a median time of 17 weeks to the development of first CT

changes.17 A classification system with five patterns of acute

CT changes has been proposed by Linda et al15 and Kimura

et al (Table 1)22 andmodified by Dahele et al17 and Palma et al

(Table 2).21 In brief, the modified categories21 are diffuse

consolidation (dc), patchy consolidation (pc), diffuse ground-

glass-opacities (dGGO), patchy ground-glass-opacities

(pGGO) and no evidence of changes. Ground-glass-opacities

describe an increase in pulmonary attenuation with preserved

margins of vessels and airways, whereas within consolidative

changes, the vessels and airways cannot be seen.15,21,22,29 The

terms “diffuse” and “patchy” are defined according to size

criteria (>5 cm or <5 cm longest axial diameter) or to severity

criteria (region contains >50% or <50% abnormal lung).21

Figure 2 Radiation pneumonitis after SBRT. (A left): 78 years old female patient with histologically proven non-small cell lung carcinoma (within the red contour). Planning target

volume (red contour) and organs at risk: Total lung (green), spinal cord (turquoise), oesophagus (violet), trachea (orange). (A right): Treatment plan (VMAT-technology, 5 Gy in 10

fractions, total dose 50.0 Gy): Isodose lines (% of total dose) and the dose distribution, high-dose region surrounding the tumour (red, green), step down gradient (yellow, dark

blue), and a large low-dose region highlighted in blue. (B left): Consolidative changes after SBRT, suspect of tumour progression, but radiation pneumonitis was retrospectively

diagnosed. (B right): A deformable image registration was used to correlate the lung changes on follow-up CT-scan with radiation dose distribution. The changes are conformal to

the high-dose region.

Abbreviation: VMAT, volumetric modulated arc therapy.
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Because of differences in the classification systems, a specific

comparison of acute CTchanges among the studies is difficult

and incidences may differ:21 Kimura et al22 reported inci-

dences of 38.5% (dc), 15.4% (pc and GGO), 11.5% (dGGO),

2.0% (pGGO) and 32.6% (no changes),whereas the incidences

reported by Dahele et al17 were 16% (dc), 24% (pc), 7%

(dGGO), 6% (pGGO) and 46% (no changes). The majority

of patients have consolidative patterns, GGO is less common

and the overall incidence of acute changes is approximately

60%.20 Due to the dose distribution, these changes correspond

to the shape of the tumour and it could be difficult to distinguish

those benign findings (Figures 1B, 2B, and 3B) from early

local recurrence, especially in cases of diffuse or patchy

consolidation.15 Six months after SBRT, the late stage begins,

andCTchanges appear as radiationfibrosis.15 Themorphology

may change over the years.17

Acute RP is shown in Figures 1B, 2B, and 3B. We used

a deformable image registration (Figure 1C, right) to correlate

the lung changes with the radiation dose distribution. The

changes are conformal to the high- and mid-dose region.

A rigid registration cannot account for lung volume and tumour

position changes on follow-upCT-scans (Figure 1C, left).23 The

deformable image registration is more accurate than the rigid

registration and the images correlate well with each other.

Impact of Irradiation Technology
The technical-physical progress of radiation oncology led

to distinct changes of dose distribution in patients.

Figure 3 Radiation pneumonitis after SBRT. (A left): 80-year-old patient with histologically proven non-small cell lung carcinoma (within the red contour). Planning target

volume (red contour) and organs at risk: Total lung (green), spinal cord (turquoise). (A right): Treatment plan (IMRT-technology, 9 Gy in 5 fractions, total dose 45.0 Gy):

Isodose lines (% of total dose) and the dose distribution, high-dose region surrounding the tumour (red, green), step down gradient (yellow, dark blue). The low-dose region

is highlighted in blue. Using IMRT, the lung volume receiving low doses is less compared to VMAT (B left): Consolidative changes after SBRT, suspect of tumour progression,

but radiation pneumonitis was retrospectively diagnosed. (B right): A deformable image registration was used to correlate the lung changes on follow-up CT-scan

with radiation dose distribution. The changes are highly conformal to the high-dose region.

Abbreviations: IMRT, intensity-modulated radiotherapy; VMAT, volumetric modulated arc therapy.
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Volumetric modulated arc therapy (VMAT, Figures 1A

and 2A) improves treatment time by quick dose applica-

tion, but it tends to increase the volume of normal lung

tissue receiving low doses compared to other

techniques.24 Besides VMAT, older techniques such as

three-dimensional conformal radiotherapy (3DC-RT) and

Figure 4 Local control after SBRT. (A–D): (A): 86-year-old woman with a metachronous (5 mm) lung metastasis of colon carcinoma (white arrow). Due to the age, no

histological verification was done. (B): Follow-up after 3 months. Increase in size to 8 mm, decision for SBRT. (C): Tumour response 3 months after SBRT, size decrease by

2 mm, no evidence of radiation pneumonitis. (D left): Tumour within the planning target volume (red contour) and organs at risk: Total lung (green), spinal cord (turquoise)

and oesophagus (violet).(D right): Treament plan: High-dose region surrounding the tumour (red, green), step down gradient (yellow, dark blue), and a large low-dose region

highlighted in blue. The patient was treated with a dose of 15 Gy in 3 fractions (total dose 45.0 Gy). (E and F): Another patient treated with SBRT (7.5 Gy in 8 fractions, total

dose 60.0 Gy) for lung metastasis of colon carcinoma (white arrow) had tumour response on follow-up at 3 months after SBRT. No radiation pneumonitis.
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“step-and-shot” intensity-modulated radiation therapy

(IMRT, Figure 3A) are in use.21 A dose distribution

highly conformal to the tumour can be achieved

(Figure 4D), but because of the differences in dose dis-

tribution, different patterns of radiological changes might

result.14 To investigate this assumption, Palma et al21

compared patterns of acute RP after SBRT with VMAT

and 3DC-RT, and they evaluated the severity of clinical

RP according to CTCAE v3. The authors reported acute

CT changes in 43 of 75 patients (57.3%) which were

mainly consolidative, but no significant difference in the

pattern of CT changes between VMAT and 3DC-RT was

found (p = 0.47). Symptomatic pneumonitis was uncom-

mon, only 4 patients (5.3%) had grade 2 or 3 pneumoni-

tis, and again no significant differences were found

between them (p = 0.99). Similarly, Senthi et al25 and

Badellino et al14 reported no differences of acute CT

changes between VMAT and 3DC-RT (p=0.2325 respec-

tively p=0.5514) with low rates of severe clinical RP. In

conclusion, the techniques are superimposable with low

rates of severe clinical pneumonitis.

High-Risk CT Features for
Detection of Local Recurrence
CT scans after SBRTare recommended for evaluating tumour

response (Figures 4A–C, E, F, 5A, C, 8C, D, and 10D, F),

excluding tumour progression (Figures 6A,C and 7A, B) or

detecting tumour progression (Figure 10A, C, F, and G), and

for detecting benign early (Figure 7C and H) and late radi-

ological changes (Figure 7D–F). Albeit such benign changes

Figure 5 Local control with discreet radiation pneumonitis. (A): 78-year-old patientwith histologically confirmed non-small cell lung carcinoma (white arrow). Size about 30mm. (B): PET/
CT for treatmentplanning. SUVmax=14.94. (C): Tumour response 3months after SBRT.Discreet radiationpneumonitis. Thepatientwas asymptomatic. (D left): Tumourwithin theplanning

target volume (red contour) and organs at risk: Total lung (green), spinal cord (turquoise), oesophagus (violet) and trachea (orange). (D right): Treatment plan (IMRT-technology, 12 Gy in 5

fractions, total dose 60.0 Gy): Isodose lines (% of total dose) and the dose distribution, high-dose region surrounding the tumour (red, green), step down gradient (yellow, dark blue), and

a large low-dose region highlighted in blue.

Abbreviation: IMRT, intensity-modulated radiotherapy.
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after SBRT for lung cancer are common, local recurrence is

rare.26 With a median time of 14.9 months, only 4.9% of

patients experienced local failure within 2 years.27 In clinical

practice, RECIST criteria 1.128 are used for response assess-

ment, but RECIST is not reliable until 15 months post-

SBRT.29 Huang et al20,30 reported CT findings after SBRT

suggestive of recurrence and later defined as high-risk CT

features (HRF), including a bulging margin, enlargement

after 12 months, loss of air bronchogram, appearance of

pleural effusion, linear margin disappearance, enlarging opa-

city, lymph node enlargement and cranio-caudal growth. The

study group30 matched 12 patients (with pathology proven

local recurrence) to 24 patients with benign changes. All

these factors were significantly associated with local recur-

rence (p < 0.01). The best indicators were an enlarging opacity

after 12 months (sensitivity 100%, specificity 83%) and

cranio-caudal growth (sensitivity 92%, specificity 83%).

With an increasing number of HRFs, specificity increases

and sensitivity decreases. Nevertheless, early detection is dis-

putable. Although some of the HRFs appear 6 months after

SBRT, the median time was 22 months for “enlargement after

12 months”, respectively, 13 months for “cranio-caudal

growth”.30 These results were validated by Peulen et al31 and

Frakulli et al.19 Huang et al20,30 also investigated the value of

metabolic findings. A normal response is characterised by

a stable SUV or a decline to background SUV after SBRT,

but a transient increase of SUVmax within 6 months post-

SBRT due to acute inflammation of lung tissue is also possible.

Especially within the first 6 months after SBRT, recurrence

should be considered not until SUVmax is greater than 5.20

Based on these results, an imaging follow-up algorithm was

proposed including the number of HRFs and a SUVmax

Figure 6 PET for tumour detection. (A): 89-year-old female patientwith a tumour-related finding on aCT-scan (size 23mm,white arrow), no histological examinationwas performed due

to poor constitution. (B): PET/CT for treatment planning with a SUVmax = 17.1, suspicious of a tumour. SBRTwas done. (C): Stable disease at 3 months with radiological radiation

pneumonitis. On follow-up (at 12 months), the tumour failed to decline (data not shown). (D left): Tumour within the planning target volume (red contour) and organs at risk: Total lung

(green), spinal cord (turquoise), oesophagus (violet) and trachea (orange). (D right): Treatment plan (IMRT-technology, 7 Gy in 5 fractions, total dose 35.0 Gy): Isodose lines (% of total

dose) and the dose distribution, high-dose region surrounding the tumour (red, green), step down gradient (yellow, dark blue), and a large low-dose region highlighted in blue.

Abbreviation: IMRT, intensity-modulated radiotherapy.
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threshold of 5.30 This algorithm might help to detect early

recurrences within 6 months, but this is ambiguous regarding

the median time of appearance of the benign CT changes.

CT Texture Analysis for
Distinguishing Local Recurrence
from Radiation Pneumonitis
CT Density Measurements Correlate

with CT Changes After SBRT
Palma et al32 used a deformable registration algorithm

for measuring early CT density changes between plan-

ning CT and diagnostic follow-up CT 3 months after

SBRT for the lung (Figure 1C, right). They found

a strong correlation between increased lung density

changes in the peritumoral region and the severity of

radiological pneumonitis (p < 0.001). By contrast, no

correlation was found between severity of radiological

pneumonitis and the whole ipsilateral lung (p = 0.22). In

conclusion, the peritumoral region seems to be appro-

priate for ongoing investigation.

Appearance Measurements Is Superior to

Size Measurements
As previously reported, distinguishing local recurrence from

benign CT changes is feasible by identification of HRFs on

post-SBRT CT, but early detection of local recurrence

remains difficult. Delayed detection of local recurrence

impairs the opportunities for salvage treatment options con-

siderably. Mattonen et al29 investigated measures of sizes

(mean 3D volume and mean RECIST) and appearance mea-

surements (mean CT density and mean standard deviation of

CT density) on the CT for treatment planning and on follow-

up CT. Patients were considered to have a recurrent tumour

(n=11, pathology proven in n=8) or benign CT changes

(n=13, non-recurrent, see17). Based on the results of

Palma et al,32 two regions of interest were manually con-

toured: the consolidative region (increased density without

visibility of vessels, Figure 7C) and the ground glass opa-

cities (increased density with visibility of vessels,

Figure 7H). Before SBRT, no significant differences were

found. Nine months after SBRT, patients with recurrence had

significantly denser mean density changes in consolidative

region than the non-recurrence patients (– 96.4 ± 32.7HU vs

–143.2 ± 28.4HU, p = 0.046). Additional, in the GGO at that

point of time, the recurrence group had a higher standard

deviation of CT density (210.6 ± 14.5HU vs 175.1 ± 18.7HU,

p = 0.0078). Significant differences in RECIST (p = 0.028)

and 3D volume (p = 0.03) were found 15months after SBRT.

In conclusion, size and appearance measurement may distin-

guish benign CT changes from recurrence after 9 months,

compared to RECIST after 15 months.

Appearance Measurements Can Predict

Recurrence Within 5 Months
To validate these findings, Mattonen et al conducted an

ongoing study.13 Using the same patients again,29 the objective

of this study was to analyse the accuracy of size and appear-

ance measurements for distinguishing local recurrence from

benign CT changes. Once more, the two regions of interest

were manually segmented. In the consolidative region, two

measures of size (longest axial diameter/RECIST and 3D

volume) were taken. A total of nine appearance features were

calculated in the GGO: Two first-order texture features (FOF,

mean CT density and standard deviation of CT density), and

seven second-order texture features (SOF). FOFs are histo-

gram-based features which describe the distribution of values

of individual voxels without concern for relationship,33,34

Table 1 Early Radiological Changes According to Radiation

Pneumonitis After SBRT

Name Description

Diffuse consolidation Diffuse, homogeneous increase in

pulmonary parenchymal attenuation that

obscures the margins of vessels and

airway walls and completely fills the

high-dose region. Frequently, air

bronchogram can be detected within

the area of consolidation, a sign that

suggests that the air within affected

alveoli has been replaced by exudates

and cells.

Diffuse ground-glass

opacity

Hazy increased attenuation of lung, with

preservation of bronchial and vascular

margins, that completely fills the high-

dose region.

Patchy consolidation and

ground-glass opacity

Patchy areas of hazy and dense

increased attenuation of lung, not

completely filling the high-dose region.

Patchy ground-glass

opacity

Patchy areas of hazy increased

attenuation interspersed in normal

parenchyma, not completely filling the

high-dose region.

No changes No evidence of increased density within

the high-dose region.

Notes: Data from Linda et al15 and Kimura et al.22
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whereas SOFs describe relationships between voxels including

a grey-level co-occurrencematrix (GLCM).33,34 To summarize

within 5months after SBRT, the FOFmean density (p = 0.035)

and the best performing SOFs energy (p = 0.036), entropy

(p = 0.034) and inertia (p = 0.036) were significantly different

between the groups. The accuracy of SOF, FOF, 3D volume

and RECIST was 77%, 73%, 60% and 57% (two-fold cross-

validation). Similar findings resulted within the 5–8 months

Figure 7 Radiation pneumonitis after SBRT. (A–F, see Figure 2): Consolidative changes. (A): A 78 years old female patient with histologically proven non-small cell lung

carcinoma (white lines) was treated with SBRT, 5 Gy in 10 fractions, total dose 50.0 Gy. (B): Stable disease 1 month after SBRT. (C): Enlarging consolidative changes 5 months

after SBRT, suspected tumour progression. Decision to wait. (D-F): The CT-changes did not change of time (D: 9 months after SBRT, (E) 12 months, (F) 18 months). Thus,

radiation pneumonitis resp. radiation fibrosis was more likely than a recurrent tumour. (G and H, see Figure 1): Ground-glass opacities. (G): A 74-year-old female patient had

a parathyroid carcinoma with a lung metastasis (white arrow). SBRTwas performed. (H): A CT-scan 3 months after SBRT revealed radiographic radiation pneumonitis since

ground-glass opacities were seen. No tumour detection at follow-up (images not shown). Thus, radiation pneumonitis was more likely than recurrence of a tumour.
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interval demonstrating robustness and repeatability. In conclu-

sion, appearance measurements can distinguish local recur-

rence from benign CT changes within 5 months after SBRT,

and this is more accurate than size measurements.

Radiomics-Based Assessment Using
a Semiautomatic Segmentation
Algorithm for Distinguishing Local
Recurrence from Radiation
Pneumonitis
Semiautomatic Segmentation Algorithm Is

Time Sparing
Radiomics describes the extraction of large amounts of

image features from radiographic images and the analysis

of these data for decision support.33,35 The extracted features

are calculated within a region of interest,34 for example, the

consolidative region or the GGO. In clinical practice, deli-

neation of the consolidative regions tends to be simple, but

contouring of the GGO is time-consuming and more diffi-

cult. Even though robustness to the variability of manually

GGO delineation was reported,13 delineation takes time and

an interoperator variability is expected due to barely recog-

nizable boundaries of GGO.36 Using a semiautomatic seg-

mented periconsolidative region, which is an expansion of

the consolidative region, time can be saved. As this region

intends to retrieve GGO tissue, results comparable to manu-

ally contoured GGO are achieved.37,38

Semiautomatic Segmentation Algorithm

Allows Distinguishing Within 6 Months
Mattonen et al established a semiautomatic segmentation algo-

rithm for early prediction of lung cancer recurrence after SBRT

using second-order features.37 First, accuracy of recurrence

Figure 8 SUVmax persistence associated with radiation pneumonitis (see Figure 3). (A and B): 80-year-old patient with histologically confirmed non-small cell lung

carcinoma (white arrow). CT (size 14 mm) and PET/CT (SUVmax = 7.56) at the time of diagnosis. Therapy was rejected. (C): Follow-up 1 year later, enlarging tumour mass

(increase in size to 39 mm, white arrow). SBRTwas performed (9 Gy in 5 fractions, total dose 45.0 Gy). (D): Follow-up 1 month later with radiological radiation pneumonitis

(black arrow) and tumour response (white arrow, size 6 mm). (E): Increasing consolidation on CTat 3 months, suspect of relapse. PET/CTwas performed (SUVmax = 8.27)

and a biopsy was taken, but the histology was negative (no malignity). SUVmax persisted without evidence of a recurrent tumour. Radiation pneumonitis was diagnosed.

(paratracheal increased metabolic activity with histologically confirmed lymph node metastasis, once again radiotherapy was performed).
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Figure 9 PET/CT for distinguishing radiation pneumonitis from local recurrence. (A-E): (A andB): 82-year-old female patient with histologically confirmed non-small cell lung cancer.

CT (size 17 mm, white arrow) and PET/CT (SUVmax = 12.74) at the time of diagnosis. SBRTwas done with a dose of 7.5 Gy in 8 fractions (total dose 60.0 Gy). (C): On follow-up 3

months after SBRT, a CT-scanwas suspect of tumour progression (consolidative region, size 39 mm). (D): A PET/CTat this time point was done, SUVmaxwas 5.25. A biopsy was taken,

but it was negative. A follow-up PETwas recommended. (E): At 6months after SBRT, SUVmax (= 2.25) declined. Thus, elevated SUVmaxwas recognized and radiation pneumonitis was

retrospectively diagnosed. (F–I): (F andG): 80-year-old patient treated with SBRT. Lesion sizewas 22mm (white arrow) and the SUVmax was 16.38. The dosewas 7.5 Gy in 7 fractions

(total dose 52.5Gy). (H): ACT3months after SBRTwas suspect of tumour progression and a PETwas recommended. (I): SUVmaxwas 3.51 at 6months after SBRT. A recurrent tumour

resp. tumour progression was unlikely and radiation pneumonitis was diagnosed. On follow-up, the CT changes did not change (data not shown).
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prediction was tested36 with a patient database previously

used.29 The longest axial diameter (RECIST) of the consoli-

dative region was manually measured and the

periconsolidative regionwas automatically calculated and deli-

neated by adding a margin of 16 mm to the axial diameter. For

control, manual delineation of the GGOwas done. As a result,

Figure 10 SUVmax persistence associated with local recurrence. (A–C): (A) A 79-year-old patient had a tumour-related finding on a CT (size 18 mm, white arrow). (B) The
patient refused histological confirmation and a PETwas performed. SUVmax was 7.56. (C) 2 months after SBRT (7.5 Gy in 7 fractions, total dose 52.5 Gy), the size increased

(27 mm), and SUVmax raised to 8.01 (images not shown). Tumour progression was histologically confirmed, but the patient refused salvage treatment. (D–H): (D and E) 75-year-
old patient with histologically confirmed non-small cell lung cancer. CT (size 24 mm, white arrow) and PET/CT (SUVmax = 13.75) at the time of diagnosis. The patient had a severe

COPD resp. emphysema. SBRTwas done with a dose of 5 Gy in 10 fractions (total dose 50.0 Gy). (F) Tumour response (size 17 mm), no evidence of RP. (G) 6 months after SBRT,

new tumour growth (30 mm, white arrow) was detected and histologically confirmed. (H) PET/CT for treatment planning was done (SUVmax = 18.31). SUVmax failed to decline.

Salvage-treatment was done.
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the semiautomatic algorithm was not inferior to manually

delineation, with low interoperator variability and a trend to

yield better accuracy. The ongoing study39 tested the accuracy

with more patients (45 patients, local recurrence: n = 15,

benign changes: n = 30, see17,30) and a larger radiomic feature

set (22 first-order features and 22 second-order features). The

physicians assessed post-treatment CTscans andwere asked to

decide whether a scan was suspect for recurrence or not.

Median time to the first detection of recurrence was 15.5

months with a moderate level of agreement across the obser-

vers, mean error was 35%, false positive rate 1% and false

negative rate 99%.Within 6months after SBRT, the physicians

were unable to detect recurrences. By contrast, the algorithm

demonstrated good performance with a mean error of 24%,

a false positive rate of 24% and a false negative rate of 23%.

Within 6 months, radiomic assessment using a semiautomatic

algorithm demonstrates excellent results, and this is superior to

the physicians’ ability to distinguish local relapse or

pneumonitis.

Imaging Features from Pre-Treatment

Planning CT and Post-Treatment First

Follow-Up CT at 3 Months Correlate

with Outcome
Other authors suggested a prognostic model based on

a pre-treatment40 or post-treatment CT-scan at 3

months,41 which includes clinical data (like TNM-Stage

or ECOG performance status), manually scored 2D

semantic features (like pleural retraction or longest axial

diameter) and comprehensive computer-derived 3D radio-

mic features. Dependent on their individual risk score,

patients had either a high or low risk of recurrence.

Recent studies validated that radiomics-based pre-

treatment CT analysis42–45 or PET/CT analysis46 correlates

with overall survival (OS) and local control (LC) respec-

tively, local recurrence. Similar, CT-based radiomics ana-

lysis correlates with radiation pneumonitis.47 All in all,

radiomics is an emerging feature for predicting outcome

after SBRT, but due to different use of first- and second-

order features as well as the lack of standardized protocols,

routine use in clinical practice remains difficult.

Impact of 18-FDG-PET/CT Findings
The maximum standard uptake value (SUVmax) of 18-

fluorodeoxyglucose (18-FDG) is a measure for tumour glucose

metabolism (Figures 5, 6, 8, 9B, G, and 10B, E) and it might

correlate with prognostic features,48 but an elevated FDG-uptake

value is also associated with an inflammation like RP

(Figure 8E).49 In clinical practice lung cancer diagnosis is based

on a CTscan of the chest (Figures 5A, 6A, 7A, G, 8A, 9A, F, and

10A, D), ideally proven by a biopsy, and a PET/CT is more

accurate than a CT for mediastinal lymph node staging50 and it

is useful for treatment planning (Figures 5B, D and 6B, D).51

Therefore, the staging of lung cancer should include PET/CT.52

Otherwise, a PET/CT can help if a diagnosis of lung cancer is

uncertain, especially in cases inwhich biopsy is not feasible due to

poor constitution of the patient (Figure 6A and B).53 After treat-

ment, response assessment is performed using CT and RECIST

criteria,49 and a PET/CT is recommended once recurrence is

suspected on a follow-up CT scan (Figures 9C, D, H, I, and

10G, H).53 Over the last decade, several studies investigated the

use of 18-FDG-PET/CT in terms of predicting tumour response,

overall survival, recurrence and pulmonary toxicities like radiation

pneumonitis.8

Relevance of Pre-Treatment SUVmax
Severalstudiescorrelatedpre-treatmentSUVmax(Table3)with

overall survival or local control rates. Some studies found

asignificantcorrelation,48,54-58butotherstudiesdidnot.52,59-61It

isnoteworthythatthereportedthresholdofSUVmaxforpredicting

OS or LC differs among the studies. Two meta-analyses8,62

revealedthatpatientswithhighlevelsofpre-treatmentSUVmax

hadworseoverallsurvival(p<0.001)andworselocalcontrolrates

(p<0.001),buttheprognosticvalueremainsheterogeneousdueto

unknownoptimalSUVmaxthreshold.63

Table 2 Modified Classification of Early Radiological Changes

After SBRT

Name Description

Diffuse

consolidation

Consolidation more than 5 cm in largest dimension.

The involved region contains more consolidation

than aerated lung

Patchy

consolidation

Consolidation less than 5 cm in largest dimension

and/or the involved region contains less

consolidation than aerated lung

Diffuse GGO More than 5 cm of GGO, (without consolidation).

The involved region contains more GGO than

normal lung,

Patchy GGO Less than 5 cm of GGO, (without consolidation),

and/or the involved region contains less GGO than

normal lung

No changes No new abnormalities. Includes patients with

tumours that are stable, regressing or resolved, or

fibrosis in the position of the original tumour that is

not larger than the original tumour

Notes: Data from Palma et al21 and Dahele et al.17
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Table 3 Selected Studies Reporting on Pre-Treatment or Post-Treatment SUVmax

Study Main Findings

Pre-Treatment SUVmax

Hoopes et al52 Pre-SUVmax not correlated with OS or LC

hypermetabolic activity may persist 2 years without recurrence

Burdick et al59 Pre-SUVmax not correlated with OS

Takeda et al54 Pre-SUVmax correlated with LC

threshold: pre-SUVmax = 6 (p<0.01)

Satoh et al60 Pre-SUVmax not correlated with OS or LC

Clarke et al55 Pre-SUVmax correlated with LC/recurrence

post-SUVmax correlated with LC/recurrence

threshold: pre-SUVmax = 5 (p=0.0002) resp. post-SUVmax = 2

Vu et al61 Pre-SUVmax not correlated with OS or LC/recurrence

Takeda et al56 Pre-SUVmax correlated with OS or LC/recurrence

threshold: pre-SUVmax = 2.55 (OS, p<0.001) resp. 3.35 (LC, p<0.001)

Kohutek et al48 Pre-SUVmax correlated with OS or LC

threshold: pre-SUVmax = 3.0 (OS, p<0.001 resp. LC, p<0.003)

Tanaka et al57 Pre-SUVmax correlated with recurrence

threshold: pre-SUVmax = 8.0

Chaudhuri et al71 Pre-SUV non-irradiated lung predicts radiation pneumonitis

Mazzola et al58 Pre-SUVmax predicts complete response at 6 months after SBRT

threshold: pre-SUVmax = 5 (p<0.001)

Pierson et al63 Pre-SUVmax not correlated with outcome

Post-Treatment SUVmax

Matsuo et al66 Post-SUVmax within 6 months tends to be high without indicating recurrence

Henderson et al67 Post-SUVmax at 12 months is slightly elevated without evidence of recurrence

median post-SUVmax = 6.04 (at 2 weeks) resp. 2.80 (at 26 weeks)

low pre-SUVmax might increase after SBRTwithin 2 weeks

high pre-SUVmax commonly declines within 2 weeks after SBRT

Dahele et al65 Post-SUVmax reduction of 3.6 (relative 64%) correlates with tumor response

Bollineni et al49 Post-SUVmax (at 3 months) correlated with LC

threshold: post-SUVmax = 5.0 (p=0.02)

Takeda et al68 Post-SUVmax (at 12 months) correlated with LC

threshold: post-SUVmax = 3.2 (early image*) resp. 4.2 (delayed image*)

Essler et al69 Post-SUVmax (at 12 months) correlated with LC

threshold: post-SUVmax = 5.48 (p=0.009)

Tyran et al64 Post-SUVmax (at 3 months) correlated with LC

no threshold found

Pierson et al63 Post-SUVmax not correlated with outcome

Notes: *Dual-time-point: image registration 60 mins (early) and 120 mins (delayed) after injection of 18-FDG.

Abbreviations: SUV, standard uptake value; OS, overall survival; LC, local control; pre-SUVmax, pre-treatment SUVmax; post-SUVmax, post-

treatment SUVmax.
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Relevance of Post-Treatment SUVmax
Early post-treatment SUVmax (Table 3) at 3 months was

investigated. SUVmax seems to be associated with local con-

trol resp. local recurrence.49,64 For example, Huang et al20,30

suggested an imaging follow-up algorithm that recommends

salvage therapy if SUVmax is greater than five. A decrease of

SUVmax is associatedwith tumour response (Figure 9B, E, G,

and I),65 but elevated SUV values might persist after SBRT

without evidence for local recurrence (Figure 8E).66,67

Furthermore, late post-treatment SUVmax (Table 3) at 12

months was associated with local control,68–70 but hypermeta-

bolic activity might persist without evidence of a recurrent

tumour.52 Once again, the reported thresholds are varying.63

Relevance of PET/CT for Predicting

Radiation Pneumonitis
We found only one study correlating pre-treatment SUV in

the non-target lung with the risk of symptomatic radiation

pneumonitis following SBRT.71 Twenty-eight patients with

symptomatic RP (grade ≥ 2, CTCAE 4.03) and 57 without

RP (grade 0–1) were compared. Non-target volume was

defined as “total lung volume minus PTV” (total non-

target lung volume), respectively, “ipsilateral lung volume

minus PTV” (ipsilateral non-target lung volume). Mean

lung dose (MLD) and SUV were significantly associated

with the risk of developing symptomatic RP, and a model

for risk stratification was proposed. Thus, SUV of non-

target lung might be predictive for radiation pneumonitis.

Relevance of Metabolic Tumour Volume

(MTV) and Total Lesion Glycolysis (TLG)

for Predicting Radiation Pneumonitis
SUVmax is a histogram-based parameter which measures

the hottest voxel in a region of interest, for example,

within the region of a tumour, but it is does not correlate

with its size. Thus, some authors argue that volume-based

parameters like MTV and TLG might better correlate with

overall survival or local control than SUVmax. The meta-

bolic tumour volume (MTV) is the total lung volume with

an SUV greater than 2.5, defined as the sum of voxels with

SUV > 2.5, whereas the total lesion glycolysis (TLG) is

the product of MTV and SUVmean.72 Indeed, Takahashi

et al73 and Dosani et al74 found that MTV and TLG are

predictive for overall survival and local control, but in

contrast, other studies58,75 found no correlation.

Intriguingly, Mazzola et al58 found an increase of MTV

over time. This may correlate with the inflammation of the

lung parenchyma after SBRT. In conclusion, predicting

tumour control is ambiguous, but MTV might be predic-

tive for radiation pneumonitis.

Limitations of PET/CT
National guidelines recommend a PET/CT for tumour staging

(for example, the United States NCCN guideline or the

German S3-guideline of non-small-lung-cancer) since ele-

vated SUVmax is suspect of malignity. PET/CT for predicting

radiation pneumonitis after conventional radiotherapy is well

investigated,71 and PET/CT might be useful for response

assessment following SBRT, but some limitations must be

discussed. SUVmax associated with local recurrence may fail

to decline (Figure 10H),20 but high post-treatment SUVmax

(mean SUVmax = 4.9 at 6 months) without evidence of recur-

rence (Figure 8E)was reported,66 andmetabolic activity (range

SUVmax 2.5–5.07) might persist (Figure 9I).52 Furthermore,

transient increase due to radiation pneumonitis which disap-

peared after complete remission was also reported.20 Thus,

elevated post-SBRT SUVmax should not be considered for

local treatment failure.67 Otherwise, if a follow-up CT-scan

(Figure 9C) is suspicious for recurrence and post-SBRT

SUVmax is greater than 5 (Figure 9D),30 respectively, pre-

treatment SUVmax was low and post-SBRT SUVmax is less

than five,20 a recurrent tumour could be considered.20,30

Moreover, pre- or post-treatment SUVmaxmight be correlated

with overall survival and local tumour control, but the reported

thresholds of SUVmax differ among the studies. That is why

some authors argue to interpret PET imaging findings for 2

years after SBRT carefully,64 and a follow-up PET/CT is not

recommended for response assessment.53 One major reason

for these differences might be the lack of standardization of

obtaining the SUVmax.63 The studies48,49,52,54–60,65–67

reported several PET-protocols with regard to the use of dif-

ferent PET-scanner, fasting time before injection of 18-FDG

(4−6 hrs), blood sugar concentration (<140–<200 mg/dl),

activity of 18-FDG (3–6 MBq) and waiting time between

injection and image registration (40–60 mins). The result is

poor agreement between the studies.76

Impact of Dosimetric Factors for
Predicting Radiation Pneumonitis
BED Greater Than 100 Archives Local

Control
Among others, the therapy planning has two goals. On the

one hand, the prescribed dose should cover the planning

target volume (PTV), on the other hand, the dose
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constraints of the organs at risk (OAR) should be

respected. To compare different dose schedules, the biolo-

gically effective dose (BED) based on the linear quadratic

model is used.77 Although this model might be inappropri-

ate in radiosurgery,78 a BED (α/β-ratio = 10, BED10)

higher than 100 Gy prescribed to the encompassing iso-

dose is recommended in several national guidelines77,79 to

archive local tumour control. In most studies, the majority

of patients were treated with a BED10 > 100 Gy79 resulting

in good local control.

Dosimetric Factors Predicting Radiation

Pneumonitis After SBRT
The tissue and organs have different tolerance towards

radiation-induced injury. Beside the PTV, a biologically

based classification system was suggested which defines

the deterministic risk volume (DRV) and the stochastic

risk volume (SRV). The DRV is exposed to doses which

exceed a specific tolerance to radiotherapy without resulting

in compulsory side effects. These are the organs at risk.

Above a specific dose threshold, side effects develop, and

the extent of damage increases with increasing doses. In the

SRV, a specific threshold does not exist, and a minimal dose

might result in side effects. The damage probability

increases with the doses, mainly resulting in tumour

induction.24 By optimizing the treatment plan, side effects

can be minimized. Several studies (Table 4) attempted to

find risk factors for predicting symptomatic radiation pneu-

monitis (grade ≥ 2, CTCAE) with focus on volume and

dose of SBRT like the PTV, MLD (mean lung dose) or V20

(percentage of lung volume exceeding 20 Gy). Age, gender,

tumour location and dose scheme do not correlate with

radiation pneumonitis,6,80-82 confirmed by a pooled analysis

of the literature.83 Regarding the dosimetric factors, the

results are controversial. The studies (Table 4) reported

variable correlations between the risk of RP and several

dosimetric factors. The pooled analysis83 showed that MLD

and V20 were significantly correlated with the risk of RP,

but the study group failed to ascertain specific dose con-

straints. The underlying causes could be differences in

target definition (like planning target volume) or lung

volume definition (whole or ipsilateral lung volume) and

the use of different algorithm for dose calculation.83

Furthermore, using different number of fractions and dose,

one would expect different biological effects,83 although the

dose scheme was not correlated with RP.82 A meta-

analysis16 could show a relationship between the dosimetric

factors and symptomatic RP, and several dose constraints

were reported, but the authors suggest to conduct more

studies for clarification. However, it is worth mentioning

that a 4D-CT for treatment planning,82 cone beam CT, real-

time tumour tracking84 and respiratory gating85 might

reduce the risk of severe RP. In conclusion, different dose

schemes gain comparable local control rates, and dosimetric

factors with focus on volume and dose are predictive for

RP, but specific dose constraints are lacking, and further

studies are needed to clarify.

Impact of Patient-Based Specific
Risk Factors
Clinical Parameters
As reported above, age, gender and the location of the

tumour (central or peripheral, upper or lower lung) are

usually not associated with an increased risk of radiation

pneumonitis. The concurrent use of angiotensin-converting

enzyme inhibitor might reduce the risk of RP.86,87

Tumour Size
With increasing tumour size, the lung volume receiving low

doses extends. Thus, it is expected that larger tumours are

associated with worse local control and higher incidences of

severe radiation pneumonitis.88 However, the literature is con-

troversial. Tumours above 5 cm diameter7 had a lower 1-year

local control rate (>5 cm 79.8% vs <5 cm 98.2%, p=0.01), but

other studies89,90 suggested similar local control rates using the

same threshold. Similarly some studies correlated radiation

pneumonitis with T-stage (p=0.031), respectively, tumour

size,6 albeit other studies found no correlation.7

Pre-Existing Pulmonary Injury and Serum

KL-6 Level
Chronic obstructive pulmonary disease (COPD) is not corre-

lated with RP (Figure 10D), and SBRT might be a treatment

option for operable patients with higher risk for pulmonary

toxicity following surgery.91 Patients with interstitial lung

changes (IC) have a higher risk for idiopathic pulmonary

fibrosis (one of the seven idiopathic interstitial pneumonias)

as IC is one of the major criteria for diagnosis (American

Thoracic Society and European Respiratory Society 2002).

Thus, patients with IC might have a higher risk for RP

following SBRT. Indeed, Yamashita et al92 reported a high

incidence of severe RP (grade ≥ 4) in patients with IC (p <

0.0001) and high levels of KL-6 (Krebs von den Lungen-6,

p < 0.0001). KL-6 is a glycoprotein which is indicative of
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interstitial pneumonia. Raised serum levels are found in

cases with activated interstitial pneumonia.18 Subsequent

studies93 suggested that patients with IC were at higher risk

for RP, and this was correlated with worse overall survival.

Dosimetric factors of the IC-patients were not different from

those of the non-IC-patients (nIC, p > 0.1). Yoshitake et al94

validated these results: The cumulative incidence of RP

(grade ≥ 2) at 6 months was 44.4% compared to 4.1% in

Table 4 Selected Studies Reporting on Dosimetric Factors for Predicting Symptomatic Radiation Pneumonitis

Study PTV MLD V20 CTCAE Grade Incidence, Median Time to

Onset of RP

Guckenberger et al80

no specific threshold

(+)

p=0.02a
(+)

p<0.05a (IL)

(+)

p<0.05a
≥ °2 °0-1: 81.3%

°2: 16%

median time 5 months

Takeda et al81

no specific threshold

(-)

p=0.84a
(-)

p=0.81a (TL)

(-)

p=0.49a
°0-2 vs °3 °0-1: 79% (°0: 27.2%, °1: 51.8%)

°2: 15.8%

°3: 5.2%

median time 4.3 months (°1-2) and 2.2

months (°3)

Matsuo et al98

Threshold PTV: 37.7mL

(11.1% vs 34.5% for ≥ 2°)

Threshold V20: 5.8% (15% vs

42.9% for ≥ 2°)

(+)

p=0.02b
(-)

p=0.11b (TL)

(+)

p=0.03b
°0-1 vs ≥ °2 °0-1: 79.7%

°2: 18.9%

°3: 1.4%

median time 4.5 months (°2-3)

Barriger et al99

Threshold MLD: 4 Gy (4.3%

vs 17.6% for ≥ °2)

Threshold V20: 4% (4.3% vs

16.4% for ≥ 2°)

(-)

p=0.18b
(+)

p=0.02b (TL)

(+)

p=0.03b
°0-1 vs ≥ °2 °0-1: 90.8% (°0: 83.2%, °1: 7.6%)

°2: 6.8%

°3: 2.0%

°4: 0.4%

median time 8.4 months (°1) and 3.5

months (°2-4)

Bongers et al100

Threshold MLD: 3.6 Gy

n.r. (+)

p=0.006a (CL)

p=0.02a (TL)

n.r. °0-2 vs ≥ °3 °3: 10%

median time 6 months (°3)

Kanemoto et al6

no specific threshold

(+)

p=0.037a
n.r. (+)

p=0.02a
°0-1 vs ≥ °2 °0-1: 87.0% (°0: 21.2%, °1: 65.8%)

°2: 11.3%

°3: 1.7%

median time 4.2 months (°1) and 2.5

months (°2-3)

Kim et al82

Threshold PTV: 14.35 mL

(8.6% vs 27.0% for ≥ °2)

(+)

p=0.042b
(-)

p=0.541b (TL)

(-)

p = 0.222b
°0-1 vs ≥ °2 °0-1: 81.9%

°2: 15.3%

°3: 2.8%

median time 3.5 months (°2-3)

Parker et al7

Threshold TL MLD: 5.1 Gy

(6.1% vs 26.9% for ≥ °2)

Threshold TL V20: 6.7% (5.6%

vs 25.8% for ≥ °2)

Threshold IL MLD: 8.6 Gy

(5.6% vs 26.7% for ≥ °2)

Threshold IL V20: 14.9%

(5.6% vs 27.6% ≥ °2)

(-)

p=0.37a
(+)

p=0.02a (TL)

p<0.01a (IL)

(+)

p=0.02a (TL)

p=0.01a (IL)

°0-1 vs ≥ °2 °0-1: 90.8% (°0: 43.4%, °1: 47.4%)

°2: 6.9%

°3: 2.3%

median time 3.5 months (°2-3)

Notes: (+) significant, (-) not significant, ap value based on comparison of the CTCAE-groups (column 5), bp value based on the reported threshold (column 1).

Abbreviations: n.r., not reported; TL, total lung; IL, ipsilateral lung; CL, contralateral lung; RP, radiation pneumonitis.
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patients without IC (p<0.0001). Overall survival at 2 years

was worse (IC-patients: 49.6% vs nIC-patients: 86.7%, p =

0.0005). IC-patients had higher levels of KL-6

(p < 0.001), and dosimetric factors were not significantly

different between the two groups (MLD p = 0.571 and V20

p = 0.698). However, patients had a significant higher risk of

RP when KL-6 was greater 600 U/mL (IC: 83.5% vs nIC:

25.0%, p = 0.017) and whenMLD was greater 4 Gy (70% vs

12.5%, p = 0.038). V20 did not correlate with an increased

risk of RP (p = 0.210).94 In conclusion, patients with high

levels of KL-6 and interstitial changes may develop severe

radiation pneumonitis. They should not receive SBRT,18 and

if not possible, these patients should be carefully monitored

after SBRT.95 Detection of interstitial changes can avoid

lethal radiation pneumonitis (grade 5).91

Conclusions
Radiation pneumonitis (Figures 1–3) is one of the most

common toxicities following SBRT for lung cancer, and

more than 50% of the patients have corresponding radiolo-

gical findings, but they are usually asymptomatic. By con-

trast, local recurrence is less common as local control rates

are good (Figures 4 and 5). Nevertheless, distinguishing

radiation pneumonitis (Figures 7–9) from early local recur-

rence (Figure 10) is challenging. In particular, Figure 9

shows that a CTwith findings suspect of a recurrent tumour

is not necessarily associated with relapse. Promising data

were reported by Mattonen et al. They established

a semiautomatic algorithm for distinguishing local recur-

rence from benign CT changes within 6 months. The use of

radiomics improved the results, but since standard proceed-

ing protocols are lacking, the routine use in clinical practice

remains difficult. Furthermore, various studies investigated

the utility of SUVmax. In general, PET/CT is useful for

tumour detection (Figure 6) and higher values of SUVmax

are associated with worse local control, but elevated values

of SUVmax following SBRT are correlated with recurrence

(Figure 10) as well as with radiation pneumonitis (Figure 8).

Due to the lack of standardization of PET-CT-scans, an

optimal threshold of SUVmax could not be found yet.

Since SBRT induces vascular damage in addition to DNA-

double-strand breakages,96 some authors argued to use

hybrid PET and CT perfusion imaging.3,97 CT perfusion

imaging is a dynamic contrast-enhanced CT technique

which correlates with tumour angiogenesis and microvessel

density97 and may observe the destruction of blood vessels.3

Unfortunately, studies are rare. Dosimetric factors might be

better to avoid radiation pneumonitis or recurrence.

Optimizing the treatment plan, the risk of radiation pneumo-

nitis might be reduced, and at the same time, good local

tumour control can be achieved, but specific dose constraints

are missing. One major problem is the retrospective nature of

the reported studies and the used patient database.

Histological verification of tumour is inconsistent, and defi-

nition of tumour recurrence varies among the reported stu-

dies. This might result in selection bias. In summary, we

found promising data to predict local recurrence or radiation

pneumonitis, but this data remains controversial. This under-

lines the need for prospective randomized trials. Ongoing

studies might improve the reported findings. However, radia-

tion pneumonitis is common, and local recurrence is rare. For

decision-making, patients who are suspected of a recurrent

tumour should be introduced at the interdisciplinary tumour

conference, which should be attended by radiologists and

surgeons as well as haematology oncologists and radio

oncologists.
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