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Introduction: This study aimed to investigate the effects of Neutrophil extracellular traps

(NETs) destruction on the apoptosis and invasion of gastric cancer cells and the involved

mechanisms.

Methods: Primary human neutrophils were isolated and co-cultured with three gastric

cancer cells (BGC-823, SGC7901 and MKN28), and phorbol-12-myristate-13-acetate was

added to generate NETs. Expression of NETs (SPINK5/LEKTI) and Cit Histone H3 were

examined by immunofluorescent analysis and Western blot. Cancer cells were then divided

into five groups: Control, NETs, Neutrophil, Amidine and DNase I. Cell apoptosis and

invasion were examined by Transwell assay and flow cytometry, respectively. Expression

of NF-κB p65, Bcl-2 and Bax was determined by RT-PCR, immunofluorescent analysis and

Western blot.

Results: The expression of NETs (SPINK5/LEKTI) and Cit Histone H3 after co-culture

increased significantly (P < 0.05), suggesting that gastric cancer cells could promote NETs

generation. The Control, NETs and Neutrophil groups exhibited similar apoptosis and

invasion of gastric cancer cells and similar mRNA and protein levels of NF-κB p65, Bcl-2

and Bax. However, compared with the Control group, the apoptosis and invasion of gastric

cancer cells in both Amidine and DNase I groups were enhanced and weakened, respectively

(P < 0.05). Moreover, both Amidine and DNase I groups showed much higher mRNA and

protein levels of NF-κB p65 and Bax and lower mRNA and protein levels of Bcl-2 than the

Control group (P < 0.05).

Conclusion: NETs destruction promoted the apoptosis and inhibited the invasion of gastric

cancer cells by regulating the expression of Bcl-2, Bax and NF-κB.
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Introduction
Gastric cancer is one of the most common malignant tumors and it has featured by

high morbidity and mortality.1 Distant metastasis followed by venous thrombosis is

the main cause of death in patients with gastric cancer. Hypercoagulability forma-

tion and tumor progression promote each other, accelerating the death of patients

with gastric cancer.2–6 The pathogenesis of distant metastasis and hypercoagulabil-

ity should be elucidated to improve the diagnosis and treatment of patients with

gastric cancer. As a treatment strategy for gastric cancer, preventive anticoagulant
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therapy can reduce thrombosis, prolong the survival time

and improve the quality of life.7,8

Inflammatory cells are involved in the tumor progression

and can promote the activation of coagulation system and

thrombosis.9,10 Neutrophils are first line of defense against

pathogens.11 Neutrophil activation plays an important role in

tumor progression.12,13 Neutrophil elastase (NE) promotes

the growth and metastasis of lung cancer in mice.14 Elevated

NE level suggests poor prognosis in patients with colon

cancer.15 Histone G can promote neovascularization and

metastasis of tumors. Neutrophil extracellular traps (NETs)

are a new neutrophil death mode found in recent years.16

NETs play an important role in thrombosis and activation of

coagulation system.17 NETs are structured like a network

including a main framework of extracellular DNA which is

surrounded by adhesion of neutrophil-associated proteins.18

NE, matrix metalloproteinase-9 (MMP-9) and histone G are

adhesive proteins on the network of NETs.18 When the

plasma of patients with gastric cancer is treated by DNase

I to degrade NETs, the turbidity of plasma fibrin decreases

and the time of fibrin formation extend significantly, suggest-

ing that NETs formation promotes the hypercoagulability

formation in patients with gastric cancer.19 However,

whether blockage of NETs formation or acceleration of

NETs degradation can inhibit the development of gastric

cancer has not been reported before.

Therefore, this study investigated the effects of NETs

destruction on the apoptosis and invasion of gastric cancer

cells and the involved mechanisms in order to elucidate

the role of NETs in the development of gastric cancer.

Materials and Methods
Materials and Cells
Trizon reagent (CW0580S), Ultrapure RNA extraction kit

(CW0581M), HiFiScript cDNA synthesis kit (CW2569M),

UltraSYBR Mixture (CW0957M), FITC-conjugated goat

anti-mouse IgG (CW0113) and FITC-conjugated goat anti-

rabbit IgG (CW0114) were purchased from CWBIO (Beijing,

China). Cl-amidine (S8141) was obtained from Selleck

Chemicals (Houston, TX, USA). Phorbol-12-myristate-13-

acetate (PMA, P6741), DNase I (D8071) and human periph-

eral blood neutrophil isolation kit (P9040) were provided by

Solarbio (Beijing, China). Rabbit anti-Cit Histone H3 mono-

clonal antibody (ab177183) was gotten from Abcam

(Cambridge, MA, USA). Rabbit anti-SPINK5/LEKTI poly-

clonal antibody (bs-17673R), rabbit anti-nuclear factor-κB

(NF-κB) p65 polyclonal antibody (bs-0465R), rabbit anti-

Bax polyclonal antibody (bs-0127R) and mouse anti-Bcl-2

monoclonal antibody (bsm-33047) were bought from Bioss

Antibodies (Beijing, China). Mouse anti-glyceraldehyde

-3-phosphate dehydrogenase (GAPDH) monoclonal antibody

(TA-08), peroxidase-conjugated goat anti-rabbit IgG(H+L)

(ZB-2301) and peroxidase-conjugated goat anti-mouse IgG

(H+L) (ZB-2305) were provided by ZSGB-BIO (Beijing,

China).

Poorly differentiated human gastric cancer cell line

BGC-823, moderately differentiated human gastric cancer

cell line SGC7901 and well-differentiated human gastric

cancer cell line MKN28 were provided by the Type

Culture Collection of the Chinese Academy of Sciences

(Shanghai, China) and cultured in RPMI-1640 media

(Keygen Biotech, Jiangsu, China) containing 10% fetal

bovine serum (Hyclone, Logan, UT, USA).

The protocol was approved by the Ethics Committee of

the Second Affiliated Hospital of Harbin Medical University

(KY2016-032). Written informed consent forms had been

obtained from all blood donors in accordance with the

Declaration of Helsinki.

Isolation of Primary Neutrophils
Primary neutrophils were isolated using human peripheral

blood neutrophil isolation kit. In brief, 2 mL reagent C was

added into 3 mL reagent A to make gradient interface.

Patients’ blood was carefully added onto the liquid level

and the mixture was centrifuged at 500 g for 20 min.

Lower layer was carefully collected by a straw to obtain

the neutrophils and 10 mL cleaning solution was added.

After mixing, the mixture was centrifuged at 250 g for 20

min. The pellet was resuspended in RPMI-1640 medium

and then cultured at 37 °C and 5% CO2.

Examination of NETs Generation
Neutrophils in the lower chamber of Transwell insert were co-

cultured with three gastric cancer cells (BGC-823, SGC7901

and MKN28) in the upper chamber, respectively. PMA (25

nM) was added to the lower chamber containing neutrophils

and the Transwell insert was cultured for 72 hrs. Neutrophils

without co-culture with gastric cancer cells served as the

Control. The expression of NETs (SPINK5/LEKTI) was

detected by immunofluorescent analysis and the expression

of Cit Histone H3 was determined by Western blot.

Immunofluorescent Analysis
Petri dishes which had been climbed by cells in the culture

plate were washed with phosphate buffer saline (PBS)
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three times, fixed in 4% paraformaldehyde for 15 mins,

washed with PBS three times and immersed in 0.5%

Triton X-100 at room temperature for 20 mins. After

washing with PBS three times, the petri dishes were incu-

bated with 5% bovine serum albumin (BSA) at 37°C for

30 mins. After removing the blocking buffer, they were

incubated in primary antibody buffer at 4°C overnight,

washed with PBS three times, incubated in FITC-

conjugated secondary antibody buffer in the dark at room

temperature for 30 min, washed with PBS three times and

incubated with 4ʹ,6-diamidino-2-phenylindole (DAPI) in

the dark for 5 min. After removing redundant DAPI, the

petri dishes were mounted with 50% glycerine and exam-

ined under a fluorescence microscope. Quantitative analy-

sis was performed using Image Pro-Plus software.

Western Blot
Cells were collected, lysed in lysis buffer for 30 min and

centrifuged at 4°C and 10,000 rpm for 10 mins to collect

the supernatant carefully as total protein. Protein concen-

tration was measured using BCA kit. The protein was then

denatured, loaded to conduct SDS-PAGE for 1–2 h, trans-

ferred to a membrane for 30–50 min by a wet way.

The membrane was incubated in primary antibody buffer

at 4°C overnight and subsequently incubated in secondary

antibody buffer at room temperature for 1–2 h. After add-

ing chemiluminescent solution, the membrane was evalu-

ated on a gel imaging system (ChemiDocTM XRS+, Bio-

Rad, USA). Gray values of bands were measured using

Quantity One software (Bio-Rad, USA).

Experimental Grouping
Three gastric cancer cells (BGC-823, SGC7901 andMKN28)

were co-cultured with neutrophils in the upper and lower

chambers of Transwell insert, respectively. Then, the three

gastric cancer cells were divided into five groups: Control,

NETs, Neutrophil, Amidine and DNase I. Gastric cancer cells

without co-culture with neutrophils and without any treat-

ments served as the Control. In the NETs group, PMA (25

nM) was added to the chamber containing neutrophils and the

Transwell insert was cultured for 72 h. In the Neutrophil

group, gastric cancer cells were only co-cultured with neutro-

phils. In the Amidine group, Cl-amidine (200 μM) was added

to the chamber containing neutrophils and the Transwell insert

was cultured for 72 h. In the DNase I group, DNase I (100 μg/
mL) was added to the chamber containing neutrophils and the

Transwell insert was cultured for 72 h.

Subsequently, cell apoptosis and invasion were examined

by Transwell assay and flow cytometry, respectively. In the

apoptotic assay, gastric cancer cells without co-culture with

neutrophils and treated with the same dose of Cl-amidine in

the lower chamber served as a Control Amidine group.

Similarly, gastric cancer cells without co-culture with neu-

trophils and treated with same dose of DNase I in the lower

chamber served as a Control DNase I group. Expression of

NF-κB p65, Bcl-2 and Bax was determined by RT-PCR,

immunofluorescent analysis and Western blot.

Cell Apoptosis
Cells (1×106) were collected, washed with precooled PBS

twice and resuspended in 500-μL apoptosis-positive control

solution in an ice bath for 30 min. The cells were then washed

with precooled PBS again and resuspended in precooled 1×

binding buffer. Untreated control cells (1×106) and precooled

1× binding buffer were added to make total volume to 1.5 mL.

The mixed cells were divided equally into three tubes.

Annexin V-FITC (5 μL) and PI (10 μL) were added to each

tube. The mixture was incubated in the dark at room tempera-

ture for 5 min and examined on a flow cytometer (NovoCyte

2060R, ACEA Biosciences, San Diego, CA, USA).

Cell Invasion
Membranelle of Transwell inserts with 8 μm pore size were

covered by Matrigel in advance and cultured at 37°C. Cell

suspensions and culture media were added into the upper

and lower chambers, respectively. Subsequently, the

Transwell inserts were cultured for 24 hrs. After removing

the culture media, the cells were washed with PBS for 5 min

and incubated in 0.1% crystal violet at room temperature for

20 min. Cells in the upper chamber were then removed

Table 1 Primers of RT-PCR

Gene Primer (5ʹ-3ʹ) Length of

Primer

(bp)

Length of

Product

(bp)

NF-κB

p65

For: ACCCACCCCACCATCAA 17 311

Rev: CAGAGCCGCACAGCATT 17

Bcl-2 For: TCTTTGAGTTCGGTGGGG 18 271

Rev: CACTTGTGGCTCAGATAGGC 20

Bax For: GGATGCGTCCACCAAGAA 18 436

Rev: AGCACTCCCGCCACAAA 17

GAPDH For: GAAGGTCGGAGTCAACGGAT 20 224

Rev: CCTGGAAGATGGTGATGGG 19
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carefully with cotton swabs. Cells in the lower chamber

were observed and counted under a microscope.

RT-PCR
Total RNAwas extracted from cells with Trizon reagent and

Ultrapure RNA extraction kit and then reversely transcribed to

cDNA with HiFiScript cDNA synthesis kit following the

manufacturer’s instructions. Primers as demonstrated in

Table 1 were added into PCR system which was composed

of 1 μL cDNA/DNA, 1 μL forward primer, 1 μL reverse

primer, 12.5 μL ULtraSYBR Mixture and 9.5 μL RNase free

dH2O. Reaction took 40 circles with pre-denaturation for

10 mins at 95°C, denaturation for 10 s at 95°C, annealing

for 30 s at 57°C, elongation for 30 s at 72°C. Analysis para-

meters of dissociation curve were 15 s at 95°C, 1 min at 57°C,

15 s at 95°C, 15 s at 57°C, 15 s at 57°C, and measured

stepwise from 95°C, every 0.5°C. Eventually, PCR product

was examined on an RT-PCR machine (CFX ConnectTM,

Bio-Rad, USA). GAPDH served as an internal reference.

Statistical Analysis
Statistical analysis was carried out with SPSS software

(v19.0) using analysis of variance followed by a post hoc

Figure 1 The expression of NETs (SPINK5/LEKTI) (A) and Cit Histone H3 (B) which was detected by immunofluorescent analysis and Western blot, respectively. *P < 0.05

vs Control.
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test. When P value was less than 0.05, significant difference

was defined.

Results
NETs Generation
Results of the NETs (SPINK5/LEKTI) expression and the

Cit Histone H3 expression which were detected by immu-

nofluorescent analysis and Western blot, respectively, are

shown in Figure 1. Compared with the Control group, the

expression of NETs and Cit Histone H3 in other three

groups containing gastric cancer cells (BGC-823,

SGC7901 and MKN28) increased significantly (P < 0.05),

suggesting that gastric cancer cells could promote the NETs

generation.

Cell Apoptosis
The apoptotic results of three gastric cancer cells (BGC-823,

SGC7901 and MKN28) in various groups which were

examined by flow cytometry are demonstrated in Figure 2.

Similar results were found among BGC-823, SGC7901 and

MKN28 cells. There was no significant difference in the

apoptosis ratio of gastric cancer cells among the Control,

NETs, Neutrophil, Control Amidine and Control DNase

I groups. However, compared with the Control group, the

apoptosis ratios of gastric cancer cells in the Amidine and

DNase I groups were elevated remarkably (P < 0.05).

Cell Invasion
The invasion results of three gastric cancer cells (BGC-823,

SGC7901 and MKN28) in various groups which were

Figure 2 The apoptosis of three gastric cancer cells (BGC-823, SGC7901 and MKN28) in various groups which was examined by flow cytometry. Three gastric cancer cells

were co-cultured with neutrophils respectively. *P < 0.05 vs Control.
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evaluated by Transwell assay are shown in Figure 3. BGC-

823, SGC7901 and MKN28 cells also demonstrated similar

results. There was no significant difference in the numbers of

gastric cancer cells among the Control, NETs and Neutrophil

groups. However, compared with the Control group, the num-

bers of gastric cancer cells in the Amidine and DNase I groups

were reduced sharply (P < 0.05).

mRNA Levels of NF-κB P65, Bcl-2 and

Bax
The mRNA levels of NF-κB p65, Bcl-2 and Bax in three

gastric cancer cells (BGC-823, SGC7901 and MKN28) of

various groups which were evaluated by RT-PCR are shown

in Figure 4. BGC-823, SGC7901 and MKN28 cells also

demonstrated similar results. There was no significant dif-

ference in the mRNA levels of NF-κB p65, Bcl-2 and Bax

among the Control, NETs and Neutrophil groups. However,

both Amidine and DNase I groups showed much higher

mRNA levels of NF-κB p65 and Bax and lower mRNA

level of Bcl-2 than the Control group (P < 0.05).

Protein Levels of NF-κB P65, Bcl-2 and

Bax
The protein levels of NF-κB p65, Bcl-2 and Bax in three

gastric cancer cells (BGC-823, SGC7901 and MKN28) of

various groups which were evaluated by immunofluorescent

analysis and Western blot are shown in Figures 5 and 6,

respectively. Immunofluorescent analysis and Western blot

Figure 3 The invasion of three gastric cancer cells (BGC-823, SGC7901 and MKN28) in various groups which was evaluated by Transwell assay. *P < 0.05 vs Control.
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exhibited similar results. BGC-823, SGC7901 and MKN28

cells also demonstrated similar results. There was no sig-

nificant difference in the protein levels of NF-κB p65, Bcl-2

and Bax among the Control, NETs and Neutrophil groups.

However, both Amidine and DNase I groups showed much

higher protein levels of NF-κB p65 and Bax and lower

protein level of Bcl-2 than the Control group (P < 0.05).

Discussion
The development, progression and prognosis of gastric

cancer are closely related to its immunosuppressive

microenvironment.20 Tumor microenvironment is com-

posed of tumor cells, stromal cells and a large number of

immune cells. These immune cells constitute the immune

microenvironment of tumors. Neutrophils infiltrate into

solid tumors substantially. Neutrophils exhibit different

phenotypes and play different roles in different tumor

microenvironments. The phenotype, function and clinical

significance of neutrophils in gastric cancer microenviron-

ment are still unclear. When neutrophils are activated by

a variety of inducements, NE and myeloperoxidase will

enter their nuclei.21 Meanwhile, protein arginine deiminase

4 (PAD4) will catalyze the citrullination of arginine resi-

dues of histone 3, resulting in a rapid release of DNA

filaments together with neutrophil-associated proteins with

high hydrolytic activity to the extracellular space.21

Consequently, NETs are formed.21 The NETs formation in

peripheral blood of patients with gastric cancer is markedly

enhanced.13 Moreover, neutrophils isolated from patients

with gastric cancer can release large amounts of NETs

in vitro, and the plasma and platelets of patients with gastric

cancer can induce neutrophils of healthy people to release

NETs in vitro.13 NETs can capture tumor cells in micro-

circulation and promote liver metastasis in infected mice,

suggesting that the enhanced release of NETs which is

caused by post-operative infection may be one of the main

causes of post-operative metastasis in cancer patients.22 In

addition, NETs promote liver metastasis after colon cancer

surgery.23 In this study, we detected the expression of NETs

and Cit Histone H3 and revealed that the co-culture of

neutrophils and gastric cancer cells could promote neutro-

phils to release NETs, which was consistent with the above

reports. These results suggested that all poorly, moderately

and well-differentiated gastric cancer cells could induce the

NETs release.

Neutrophils can highly express PAD4 and initiate NETs

formation and consequent reactions through the citrullina-

tion regulatory pathway.24 In rheumatoid arthritis, NETs are

an important citrullination autoantigen and can stimulate

inflammatory response.25 Cl-amidine can prevent NETs

formation by inhibiting PAD4.26 PAD4 knockout mice

exhibit lower antimicrobial activity than PAD4-containing

mice, but citrullination reduces bactericidal activity of his-

tone, suggesting that PAD4 promotes NETs formation

mainly by enhancing chromosome depolymerization rather

than directly increasing histone-mediated bactericidal

activity.27 NETs formation may be related to individual

susceptibility and epigenetic modification plays an impor-

tant role in the occurrence of autoimmunity.28 Cancer cells

Figure 4 The mRNA levels of NF-κB p65, Bcl-2 and Bax in three gastric cancer

cells (BGC-823, SGC7901 and MKN28) of various groups which were evaluated by

RT-PCR. *P < 0.05 vs Control.
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can also induce adjacent neutrophils to release their traps

when there is no infection or invader.21 This implies that

NETs can promote cancer metastasis in this case. In this

study, we showed that the invasive ability of gastric cancer

cells decreased significantly when treated with Cl-amidine

and DNase I, which might be due to the destruction of

NETs. NETs participate in or promote thrombosis.

Degradation of NETs will inhibit the progression of gastric

cancer and thrombosis.29 In this study, inhibition of NETs

formation by Cl-amidine or hydrolysis of NETs by DNase

I could significantly induce the apoptosis of gastric cancer

cells. These results suggested that the NETs destruction

might block the promotion effect of neutrophils activation

on gastric cancer progression, hypercoagulability and

thrombosis.

Among many apoptosis-related genes, Bcl-2 gene

family is a major regulator.30 It exists not only in B-cell

lymphoma but also in many normal tissues and embryos.

Bcl-2 can directly inhibit cell apoptosis at any stage of cell

cycle, prolong cell survival and induce cancer.31,32 When

cells become cancerous, a series of defensive reactions

occur in the body, including the increased expression of

Bax.33 Bax can promote the apoptosis of cancer cells.

Therefore, Bax is overexpressed in cancerous tissues.

When cancer cells are developed to an advanced stage,

a large number of various oncogene expression products

accumulate to inhibit the Bax expression.33 At this time, the

Bax expression will decrease or even disappear. NF-κB

is named for its activation of κ light chain of

immunoglobulin.34 It is a multifunctional transcription

Figure 5 The protein levels of NF-κB p65, Bcl-2 and Bax in three gastric cancer cells (BGC-823, SGC7901 and MKN28) of various groups which were evaluated by

immunofluorescent analysis. *P < 0.05 vs Control.
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factor. Many cytokines, cell adhesion molecules and viral

genes have NF-κB recognition sites.35 NF-κB participates

in gene activation and tumorigenesis.36 NF-κB deficient

mice die in embryonic stage because of a large number of

hepatocyte apoptosis, and NF-κB inhibition can cause

B cell apoptosis in the immune system.37 A recent study

has shown that the genes regulated by NF-κB also include

adhesion molecules and extracellular matrix proteolytic

enzymes which play an important role in the invasion and

metastasis of tumors.38 This study showed that the expres-

sion of NF-κB p65 and Bax increased and the expression of

Bcl-2 decreased significantly after inhibiting NETs forma-

tion by Cl-amidine or hydrolyzing NETs by DNase I. These

results suggested that the NETs destruction promoted the

apoptosis of gastric cancer cells by down-regulating the

expression of Bcl-2 and up-regulating the expression of

Bax and NF-κB. The destruction or inhibition of NETs

would up-regulate the Bax expression and down-regulate

the Bcl-2 expression, which subsequently activated the

expression of NF-κB and eventually induced the cell

apoptosis.39,40

Conclusion
NETs destruction promoted the apoptosis and inhibited the

invasion of gastric cancer cells by regulating the expression

of Bcl-2, Bax and NF-κB. These results might provide

a potential target for the treatment of gastric cancer.
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