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Abstract: Caenorhabditis elegans (L1s) were exposed to (in order of decreasing toxicity) 

sodium arsenite, sodium fluoride, caffeine, valproic acid, sodium borate, or dimethyl sulfoxide 

in C. elegans habitation medium (CeHM) for 72 consecutive hours. At this time point nematode 

growth and development were assessed using a Complex Object Parametric Analyzer and Sorter 

(COPAS™). The COPAS generated biomarkers of growth (time of flight [TOF] – a measure of 

axial length) and development (extinction [EXT] – a measure of optical density) were subse-

quently utilized to rank compounds according to their relative toxicity, as measured by the rat 

oral LD-50, using artificial neural network methods. Neural network methods were utilized to 

analyze this data because of their ability to model nonlinear endpoints and a multilayer perceptron 

neural network method was used because of its capability to function well in the presence of 

collinearity. Using a neural network approach we found that the LD-50 was correctly predicted 

96% of the time. The present study demonstrates that neural network methods can be utilized 

to rank compounds according to their relative toxicity using COPAS-generated data (TOF 

and EXT) obtained from exposing a large number of nematodes to water-soluble compounds 

in axenic liquid culture.

Keywords: neural network, TOF, EXT, COPAS, C. elegans, rat oral LD-50

Introduction
The Complex Object Parametric Analyzer and Sorter (COPAS™; Union Biometrica, 

MA), an instrument designed to facilitate the rapid, accurate, and efficient analysis, 

dispensing and/or sorting of a large number of nematodes by measuring nematode 

axial length (time of flight, TOF), optical density (extinction, EXT), and the intensity 

of specific fluorescent markers, is commonly utilized in the development of high 

throughput assays. The quantity of data obtained using COPAS technology can be 

enormous and statistical methodologies are being developed for the analysis/evalua-

tion of the large datasets obtained when using this technology. In a previous study1 we 

assessed the use of COPAS parameters TOF and EXT to gauge growth and develop-

ment in nematodes exposed to compounds of known toxicity in axenic liquid culture 

and proposed statistical methods to analyze the large COPAS generated datasets. The 

objectives of the present investigation are to propose more sophisticated statistical 

approaches for the analysis of COPAS data and assess the usefulness of our approach 

for use in future toxicity testing. We will judge the feasibility of using a neural network 

model to rank water soluble compounds in terms of their acute  toxicity (as measured 
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by their rat oral LD-50s) using the COPAS parameters TOF 

and EXT. Artificial neural networks were inspired by the 

design of the biological neural network and are supervised 

learning techniques commonly used for pattern recognition or 

data classification. Our intent is to develop a neural network 

model that will predict relative toxicity of test compounds in 

the scheme of select training compounds (of known toxicity) 

previously tested using axenic liquid culture, Caenorhabditis 

elegans, and the COPAS parameters TOF and EXT.

Materials and methods
Test animals (nematode culture)
Bristol N2 (wild-type) worms utilized for dosing were obtained 

from our axenically raised nematode colony. Adult worms were 

maintained at 22 + 1°C in 250 mL BD Falcon Tissue Culture 

Flasks with canted necks and vented tops (BD Falcon, Two Oak 

Park, Bedford, MA) containing 30 mL of C. elegans habitation 

media (CeHM2). Eggs were obtained by treating gravid adults 

with hypochlorite.3 Collected eggs, after several washes in ster-

ile distilled water, were transferred into M9 salt solution where 

they remained until hatching. All worms utilized in the present 

study were maintained in M9 for 3 days prior to dosing.

exposure period: dose selection  
and test compounds
Cohorts of L1 stage larvae were exposed to water soluble 

compounds sodium arsenite, sodium fluoride, sodium borate, 

caffeine, valproic acid at five different doses (300, 600, 1,200, 

2,500, and 10,000 ppm) and dimethyl sulfoxide at doses 

1,200, 2,500, and 10,000 ppm) for 72 h. Test compounds 

were selected to represent a range of toxicities. The doses 

utilized in this study were established based on preliminary 

dose range finding studies previously conducted internally 

(unpublished data). Controls were exposed to sterilized 

double distilled water and control groups were included for 

each compound tested. The pH range of each control (water 

plus CeHM) and dosing solution (compound plus CeHM) was 

recorded. The six test compounds and their corresponding 

rat oral LD-50 values are presented in Table 1.

Preparation of dosing solutions  
and animal exposure
Methods for the preparation of the dosing solutions and 

animal exposure have been previously reported.1 Briefly, the 

stock dosing solution was prepared at twice (2X) the desired 

concentration in sterile distilled water and filtered using a 

0.22 µ vacuum filter assembly (Corning Non Pyrogenic, 

Polystyrene Vacuum Filter Assembly; Corning Life Sciences, 

New York, NY). Individual dosing solutions were prepared 

by serially diluting the stock solution with filtered distilled 

water. The individual dosing solutions were prepared at 

twice the desired concentration. CeHM culture medium is 

composed of three component parts. These include ultra-high 

temperature pasteurized milk, the media proper consisting 

of salts, amino acids, vitamins etc, and sterile distilled water 

in a ratio of 2:3:5, respectively. To prepare the final dosing 

solution, two parts of ultrahigh temperature pasteurized milk 

to three parts of the media proper and five parts of the desired 

dosing solution prepared at twice the desired concentration 

in sterile distilled water were combined in a 25 mL BD 

Falcon Tissue Culture Flask with canted necks and vented 

top (BD Falcon). This combination of milk/growth media 

and the dosing solution will reduce the concentration of the 

dosing solution by ½.

Nematodes (n = 12,000; day 3 post-hatching L1’s) were 

transferred into the freshly prepared growth media proper 

containing ultrahigh temperature pasteurized milk and 

either the dosing or control solutions. This time point was 

considered 0 h post-feeding (PF). Experimental animals 

were exposed to their respective dosing solutions for 72 h. 

Controls were exposed to double distilled water for the same 

period of time. During this time the growth media was not 

replaced. The tissue culture flasks containing either control 

or treated worms were placed on an Innova 2000 platform 

shaker (Shaker setting: 62 revolutions/min; New Brunswick 

Scientific, Edison, NJ) in an Ambi Hi Lo Chamber incuba-

tor (Lab Line Instruments Inc, Melrose Park, IL) whose 

temperature was set at 22 + 1°C. Tissue culture flasks were 

examined after approximately 1 h of incubation to assess 

worm viability.

cOPAs analysis
calibration
The COPAS was calibrated using, as per manufacturers 

specifications, GP Control Particles (HI-Fluorescence; Union 

Biometrica, Holiston, MA). Briefly, 20 mL of the control par-

ticles were placed into the primary sample cup and parameters 

were adjusted to process the fluorescent control particles at 

Table 1 The LD-50 for each test compound

Compound Rat oral LD 50 (in mg/kg)

sodium arsenite 41
Sodium fluoride 52
caffeine 192
Valproic acid 670
sodium borate 4,500
Dimethyl sulfoxide 14,500
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a rate of 5–10 events/s until 1000 events are collected. After 

calibrating the instrument the sample chamber was rinsed 

with distilled water. After the final rinse, distilled water was 

flushed through the sample delivery tubing before sample 

analysis was initiated.

sample analysis
Nematode growth and development were monitored after 

72 h of continuous incubation/exposure in CeHM. After 

the exposure period, treated and control worms were each 

collected by centrifugation (800 rpm/45 seconds), washed 

three times in 5 mL of M9 then transferred into the primary 

sample chamber of the COPAS. The sample tube was rinsed 

two times with M9 into the primary sample chamber (vol-

ume of worms and M9 in sample chamber = 15 mL). The 

primary sample chamber was then filled with 15 mL of M9 

bringing the total volume of the primary sample chamber to 

30 mL. Initial data observations (first 30 s after the initiation 

of sample analysis) were discarded in order to prevent data 

carry over from the previously analyzed sample. Obser-

vations (3,000–3,100 observations) were collected from 

each dose and control groups for each of the compounds 

tested. The experiment was repeated three times, resulting 

in three replicate cohorts. For each replicate, the treatment 

groups and controls were randomized prior to analysis. The 

primary sample chamber and the sample delivery tubing 

were rinsed with distilled water between the analysis of 

each experimental and control sample. The data collected 

included information on the TOF and extinction. The TOF 

measures the amount of time the instrument microprocessor 

was detained in the analysis of a signal. TOF is an indicator 

of the length of an object. The EXT measured the decrease 

in laser light when a particle or organism passed through 

the laser beam. Extinction is an indicator of the size and 

the internal structure of the object (see Sprando et al1 for 

details).

ph measurements
Three pre-exposure pH measurements per replicate were 

made on all high and low dose and control dosing solu-

tions for each test compound using a Corning pH/ion 

analyzer 350.

statistical analysis
standardization
TOF and EXT were standardized to their respective controls 

as follows: for observation i in replicate j of compound k, the 

standardized TOF value (TOF
ijk

) was:

TOF
ijk

 = TOF
ijk

 - MEAN_TOF
jk0

/STD_TOF
jk0 

where TOF
ijk

 is 

the raw TOF value for observation i of replicate j of com-

pound k, MEAN_TOF
jk0

 is the mean TOF value of the control 

for replicate j of compound k and STD_TOF
jk0

 is the standard 

deviation of the TOF values of the control for replicate j of 

compound k. EXT was similarly standardized. The means 

(and accompanying standard deviations) of the standardized 

TOF and EXT values of the compounds are presented in 

Table 2 for each concentration.

Prediction of LD-50
For each compound, the observations were randomly split into 

a training dataset containing 65% of the observations and a 

validation dataset containing the remaining 35%. This process 

Table 2 The means of the TOF and eXT standardized-to-control 
values and their standard deviations (sD) at each concentration

Compound Concen- 
tration

EXT 
mean (SD)

TOF 
 mean (SD)

sodium borate 0 0.000 (1) 0.000 (1)
sodium borate 0.03 -0.027 (0.965) -0.007 (0.978)
sodium borate 0.06 -0.895 (0.556) -0.659 (0.645)
sodium borate 0.12 -1.320 (0.493) -1.014 (0.492)
sodium borate 0.25 -1.469 (0.424) -1.212 (0.454)
sodium borate 1 -1.691 (0.422) -1.609 (0.396)
caffeine 0 0.000 (1) 0.000 (1)
caffeine 0.03 -0.366 (0.846) -0.222 (0.919)
caffeine 0.06 -0.345 (0.852) -0.193 (0.902)
caffeine 0.12 -0.938 (0.629) -0.609 (0.787)
caffeine 0.25 -1.391 (0.448) -0.936 (0.617)
caffeine 1 -2.234 (0.251) -1.948 (0.287)
Dimethyl sulfoxide 0 0.000 (1) 0.000 (1)
Dimethyl sulfoxide 0.12 -0.087 (1.001) -0.028 (1.031)
Dimethyl sulfoxide 0.25 0.084 (0.992) 0.034 (0.961)
Dimethyl sulfoxide 1 -0.433 (0.679) -0.455 (0.652)
sodium arsenite 0 0.000 (1) 0.000 (1)
sodium arsenite 0.03 -2.520 (0.186) -2.078 (0.328)
sodium arsenite 0.06 -2.513 (0.142) -2.045 (0.331)
sodium arsenite 0.12 -2.552 (0.139) -2.129 (0.334)
sodium arsenite 0.25 -2.555 (0.131) -2.146 (0.331)
sodium arsenite 1 -2.581 (0.138) -2.239 (0.334)
Sodium fluoride 0 0.000 (1) 0.000 (1)
Sodium fluoride 0.03 -1.714 (0.162) -1.507 (0.314)
Sodium fluoride 0.06 -1.720 (0.156) -1.495 (0.325)
Sodium fluoride 0.12 -1.743 (0.18) -1.558 (0.363)
Sodium fluoride 0.25 -1.749 (0.151) -1.555 (0.32)
Sodium fluoride 1 -1.791 (0.185) -1.673 (0.328)
Valproic acid 0 0.000 (1) 0.000 (1)
Valproic acid 0.03 -0.159 (0.934) -0.045 (0.99)
Valproic acid 0.06 -0.483 (0.805) -0.292 (0.894)
Valproic acid 0.12 -1.046 (0.663) -0.764 (0.814)
Valproic acid 0.25 -1.556 (0.438) -1.310 (0.635)
Valproic acid 1 -1.969 (0.259) -1.965 (0.309)
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was repeated 50 times to obtain 50 training and validation 

datasets. For each training dataset the mean standardized TOF 

and EXT values at the six concentrations (excluding control), 

for each of the three replicates, were fed into a feed forward 

multilayer perceptron neural network with the output layer 

containing the ordinal LD-50 values. Linear combination 

functions were used in both the hidden and output layers. 

The hyperbolic tangent activation function was used in the 

hidden layer and the logistic activation function was used in 

the output layer. Because the target variable was ordinal, the 

multiple Bernoulli error function was employed. Minimiza-

tion of the misclassification rate, via Levenberg–Marquardt 

Optimization, was the criterion used to select the model. To 

avoid over-fitting, the neural network models were cross-

validated by classifying the compounds in each validation 

set using the neural network trained from the corresponding 

training set. Any missing values  (including the values for 

dimethyl sulfoxide at 300 and 600 ppm) were interpolated 

with cubic splines using the remaining non missing portion 

of the data vector prior to input to the neural network. The 

neural network routines were implemented using the Neural 

Network Node of SAS® Enterprise MinerTM 4.3 (Copyright© 

1999–2003; SAS Institute Inc, Cary, NC).4

Results
ph measurements
The mean pH from each of the six control groups (range: 

6.14 ± 0.004 to 6.19 ± 0.002) was not significantly different 

from the mean pH of the culture media for the high (range: 

6.12 ± 0.004 to 7.76 ± 0.001) and low dose groups (range: 

6.14 ± 0.003 to 6.32 ± 0.002) for each of the compounds 

tested. The mean pH calculated for the high borax dose group 

(7.76 ± 0.001) was slightly higher than the mean pH for the 

control group (6.14 ± 0.004) however the mean pH of the high 

dose borax treatment group was close to neutral. These 

measurements excluded marked changes in pH as possible 

confounding variables in producing the effects on growth 

and development observed in the present study.

Prediction of LD-50
Multiple neural network architectures were tested with the 

eventual choice balancing out the simplicity of the chosen 

network with the relatively low misclassification rate of the 

validation datasets. The ultimate neural network had one hid-

den layer with one node containing three units. Please refer 

to Figure 1 for a pictorial description of this ultimate  neural 

network with equations specified at each layer. We do 

not propose that this architecture is optimal for all future 

endeavors. We rather suggest that the researcher use similar 

cross-validation approaches to obtain the architecture that 

best fits their data.

The mean misclassification rates averaged across all fifty 

validation sets for each compound were as follows: 12% for 

caffeine, 9.3% for valproic acid, 2.7% for sodium borate, 

and 0% for dimethyl sulfoxide, sodium arsenite, and sodium 

fluoride. Averaged across all six compounds, the mean mis-

classification rate was therefore 4.0%.

Examining the misclassifications more closely, we found 

that: 1) sodium borate was misclassified as more toxic than 

its LD-50 indicates for all its misclassifications with a pre-

dicted LD-50 of 670; 2) valproic acid was misclassified as 

more toxic than its LD-50 indicates with a predicted LD-50 

of 192 for 21% of its misclassifications and less toxic, with 

a predicted LD-50 of 4500, for the remaining misclassifica-

tions; 3) caffeine was misclassified as more toxic than its 

LD-50 indicates with a predicted LD-50 of 52 for 61% of its 

misclassifications and less toxic with a predicted LD-50 of 

670 for the remaining 39% of the misclassifications.

Once the neural network is properly trained and the archi-

tecture that best fits both the training and validation data is 

obtained, that same network can be used to determine the LD-

50s of future compounds. The compounds dimethyl sulfoxide 

and caffeine were run in duplicate, allowing us to set aside 

these duplicate runs to mimic this process and further validate 

the prediction abilities of our neural network. The parameters 

for our network with one hidden layer containing one 3-unit 

node were re-estimated on the full dataset comprising all 

the training compounds. Recalling that all compounds were 

run in triplicates, dimethyl sulfoxide’s LD-50 was correctly 

predicted for all three replicates. The LD-50 for caffeine was 

correctly predicted for two of its replicates, with the LD-50 

for the third replicate predicted to be 670.

Discussion
Neural networks are data mining techniques that can be taught 

to identify complex relationships in relatively large datasets. 

“Their advantage over classical statistical models used to 

analyze data, such as regression and ANOVA, is that they 

can fit data where the relationship between independent and 

dependent variables is nonlinear and where the specific form 

of the nonlinear relationship is unknown”.5 In other words, 

they are very effective in modeling highly nonlinear patterns. 

Since our main goal was pattern recognition and prediction 

and not explicitly identifying the exact nature of the relation-

ship between the LD-50 and TOF and EXT, artificial neural 

networks were selected for data analysis.
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Multilayer perceptron neural networks were furthermore 

chosen for their ability to cope with collinearity. Both TOF 

and EXT are growth endpoints and are therefore highly 

correlated. Moreover, as expected, the mean TOF and EXT 

values exhibit a high degree of autocorrelation, with the 

correlation decreasing as the difference between the doses 

increases. Due to the high multicollinearity exhibited by the 

data vectors, multilayer perceptron neural networks were 

chosen since they are well equipped to handle collinear data. 

As Omdivar and Elliott6 point out, the neural network model 

derived from collinear data is valid only when the correla-

tion holds. Therefore it is important that the approximate 

structure and degree of correlation be preserved in any 

validation and test datasets that the neural network will be 

tested on. We explored lessening the degree of collinear-

ity by reducing the input data vector to a small number 
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Y is then predicted to be the LD-50 which corresponds to the maximum of these probabilities. 

The network was trained on each of the 50 training datasets, to obtain a set of 50 parametes β estimate vectors, which were then used to predict the Y for the 50
validation datasets, concluding the cross-validation cycle.

)4500( P1P2 -YP ==

Figure 1 Architecture of the neural network ultimately chosen: For each of the training datasets, the inputs into the neural network were the eXT and TOF mean 
standardized values for each compound at the 6 different concentrations excluding control (the first concentration of 0 ppm was the standardization control). For each 
compound, the inputs therefore were: eXT_c, the mean of the (standardized-to-control) eXT values at the cth concentration, and TOF_c, the mean of the (standardized-
to-control) TOF values at the cth concentration, where c = 300, 600, 1,200, 2,500, 5,000, and 10,000 ppm.
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of principal components but found that neural networks 

run on these principal components did not have improved 

predictive abilities.

In the present study1 we have demonstrated how a 

properly trained neural network may be used to rank order 

compounds with unknown LD-50s in the scheme of com-

pounds with known LD-50s. It is our hope that with further 

exploration of this method we may be able to develop a 

method to rank order compounds of unknown toxicity 

and in so doing refine, replace, and reduce animal use in 

toxicity testing.

In a previous study1 we utilized a multivariate analysis of 

variance which was run for each replicate for each control to 

non-control comparison to jointly model the normalized TOF 

and EXT variables on concentration (control or non-control) 

and the P-values from Hotelling–Lawley’s trace F-test were 

computed on subsamples of nematodes. The percentage of 

significant P-values was calculated for each dose from each 

replicate and a mean significant P-value ratio was calculated 

for each dose group. This mean P-value ratio was then used 

as a measure of preponderance of evidence against the null 

hypothesis by determining the lowest concentration at which 

this ratio was relatively “large”. In contrast to the methods 

in the previous study, the current method is more suited 

to the inherent nature and size of the data and keeps the 

focus of the study on classifying the compounds into their 

respective rat LD-50 values. The nonlinearity of the data 

is handled seamlessly by the neural network and the high 

multicollinearity present in the data is efficiently accom-

modated by the multilayer perceptron based network. Since 

the amount of data is so vast, some sort of P-value scaling 

or adjustment, as with the ratio method previously utilized, 

would almost certainly be necessary with hypothesis testing. 

For this reason we bypassed the hypothesis testing method 

and approached the problem from a neural-network based 

prediction perspective.

In conclusion, more training compounds should be eval-

uated representing different classes of compounds using this 

modeling system as the more compounds tested the more 

precisely the model will be able to predict relative toxicity. 

If a sufficient number of LD-50s is tested, then the LD-50 

target response may better be viewed as a continuous vari-

able and could be predicted using regression for continuous, 

instead of ordinal, dependent variables. The rat oral LD-50 

was chosen as the indicator of acute toxicity because it is 

widely available and universally considered the standard 

for expressing and comparing chemical toxicity. Although 

the testing of this method against other measures of acute 

toxicity is beyond the scope of this paper, there is no rea-

son this method cannot be extended to approximate other 

measures of acute toxicity in lieu of rat LD-50s. It would 

be interesting, for future studies, to measure the ability of 

the model to approximate other toxicity measures such as 

those examined in Rosenkranz and Cunningham7 including 

minnow lethality, rat maximum tolerated dose, and mouse 

maximum tolerated dose. Rosenkranz and Cunningham7 

conclude that the relationship of in vitro cell toxicity data 

to endpoints more relevant to human health than the rat 

LD-50 deserves investigation.
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