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Abstract: Surgery is a critical period in the survival of patients with cancer. While resective

surgery of primary tumors has shown to prolong the life of these patients, it can also promote

mechanisms associated with metastatic progression. During surgery, patients require general

and sometimes local anesthetics that also modulate mechanisms that can favor or reduce

metastasis. In this narrative review, we summarized the evidence about the impact of local,

regional and general anesthesia on metastatic mechanisms and the survival of patients. The

available evidence suggests that cancer recurrence is not significantly impacted by neither

regional anesthesia nor volatile or total intravenous anesthesia.
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Introduction
Cancer is a major cause of mortality worldwide with an estimated 9.6 million

deaths per year.1 Lung, colorectal, stomach and liver are the most common types of

cancer and account for nearly half of cancer-related deaths. By 2040, it is estimated

that there will be approximately 30 million new cases of cancer.1 It is projected that

a large proportion of patients will need surgery for tumor resection despite rapid

and substantial advances in treatments, including chemotherapy, targeted therapy,

radiotherapy, and immunotherapy.

Surgery causes the local and systemic release of inflammatory mediators and

promotes high levels of angiogenesis. Also, surgery is associated with high con-

centrations of circulating catecholamines and immunosuppression that can last for

days or weeks postoperatively, making this a period of high vulnerability for

complications and tumor progression.2,3 Some evidence suggests that certain anes-

thetics or anesthesia techniques may also affect the growth of the so-called minimal

residual disease.4,5 Total intravenous anesthesia (TIVA) with propofol was asso-

ciated with prolonged overall survival in patients with metastatic and non-meta-

static cancers.6 Local anesthetics and regional anesthesia can also modify cancer

progression by limiting inflammation, immunosuppression, and angiogenesis.4,7,8

However, a recently published randomized controlled trial concluded that compared

to sevoflurane-based general anesthesia, regional anesthesia did not improve the

survival nor reduced recurrences after breast cancer surgery.9

Investigators have hypothesized that the technique of general anesthesia (total

intravenous vs volatile-based or regional anesthesia) has a significant impact on

caner progression. In this narrative review, we will discuss the evidence of the

impact of different anesthetics and anesthesia techniques on metastatic progression
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after surgery. Our work will include current basic, transla-

tional and clinical studies addressing the effects and asso-

ciation between different anesthetics and cancer

progression.

Perioperative Metastasis Formation
The growth of metastatic colonies outside the primary

tumor is a multi-step process. Colonization of distant

sites by circulating tumor cells (CTCs) is a rate-limiting

step during the metastatic process. In general, it is well

accepted that metastasis may be part of a dominant clonal

subpopulation that originated within the primary tumor.10

By virtue of tumor-secreted factors and tumor-secreted

exosomes, the microenvironment of distant organ sites is

modified into prometastatic niches that contain recruited

stem cells and stromal cells.11

A critical event in the metastasis process is the epithe-

lial-mesenchymal transition (EMT) that CTCs undergo to

increase mobility and invasiveness (Figure 1). The EMT

process is orchestrated by transcription factors (ie, Snail,

Slug, Twist, and Zeb1) that, in turn, respond to extracel-

lular molecular signals occurring in the nearby tumor

stroma such as inflammation.12 Once in the bloodstream,

CTCs interact with other cells, including platelets and

lymphocytes. Platelets can provide shelter to CTCs and

hide them from lymphocytes such as natural killer (NK)

cells. Also, activated platelets can release soluble media-

tors such as transforming-growth factor beta (TGF-β),

platelet-derived growth factor (PDGF), and adenosine tri-

phosphate (ATP). These factors are known to suppress the

killing activity of NK cells and enhance vascular

permeability.12 Once CTCs extravasate via transendothe-

lial migration (TEM), they find the extracellular tissue

stroma where they may reside and proliferate. Some of

those cells in the new forming metastatic colony retain

features of cancer stem cells (CSC), which have tumor-

initiating ability and can drive colony expansion.12

It is speculated that micrometastasis or dormant colo-

nies are contained by immune surveillance or by the lack

of supporting factors that can sustain cell proliferation.13

Thus, the transition from single cell or colony of cells to

micrometastasis to clinically relevant metastasis can take

months to years.12,14 Remarkably, surgery can facilitate

the homing of CTCs and growth of micrometastasis by

releasing cytokines, angiogenic factors, and catechola-

mines. In mice, surgery-induced inflammation promoted

Figure 1 Perioperative events that influence tumor metastasis and cancer recurrence. Surgery for tumor resection triggers the release of catecholamines, immunosuppres-

sion, and angiogenesis. It has been speculated that these factors facilitate epithelial-mesenchymal transition (EMT) and promote a conducive microenvironment (tumor niche)

for cells to migrate, invade and proliferate.
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the outgrowth of T cell restricted distant tumors by mobi-

lizing myeloid cells and recruiting tumor-associated

macrophages.15

Neutrophil extracellular traps (NETs) has been recog-

nized as a mechanism that facilitates colonies formation.

NETs are web-like structures formed by DNA fragments

and proteins that can sequester CTCs.16,17 In mice, surgery

promoted NETs and micrometastasis. When mice were

treated daily with DNAase after surgery, it reduced

tumor growth.16 Circulating neutrophils entrapped in

clumps formed by platelets or in the extracellular matrix

can also provide a conducive environment for CTCs to

survive by further suppressing the activity of NK cells.12

Several studies have shown a decrease in the number

and function of circulating NK cells after surgery.3

Subsequently, investigations revealed that surgery-induced

reduction in circulating NK killing activity could promote

metastasis (Figure 1).18 Interestingly, it has been demon-

strated that the transcriptome profile of circulating NK

cells is significantly different from NK cells located in

metastasis suggesting that the role of NK cells in the

micrometastatic niche during surgery might be different

from those circulating.19

It is worth considering that the metastatic process is

also affected by factors including the use, timing, and

completion of adjuvant therapies (ie, chemotherapy, radia-

tion, and immunotherapies). For instance, it is now well

understood that for some malignancies, delaying the return

to oncological therapies after surgery has a significant

impact on patients’ survival.20 Another important factor

associated with cancer progression is the occurrence of

complications in the postoperative period and periopera-

tive blood transfusions.21,22 Therefore, it has been sug-

gested that patients undergoing cancer surgery should be

evaluated and treated by a multidisciplinary team dedi-

cated to assess modifiable risks and propose a coordinated

plan of measures (ie, anemia treatment) tailored to reduce

postoperative complications and accelerate recovery.23

In the following sections, we will discuss how anes-

thetics may or may not interfere with the process involved

in the metastatic process and metastatic cancer

progression.

Local Anesthetics
Local anesthetics can act on several steps of the metastatic

process (Figure 2). The administration of intravenous lido-

caine (1.5 mg/kg followed by infusion of 2 mg/kg) under

sevoflurane anesthesia reduced postoperative lung

metastasis by decreasing serum concentrations of the

metalloproteinase (MMP)-2 in a murine surgical breast

cancer model.24,25 It was speculated that changes in

MMP-2 resulted in a reduced ability of CTCs to form

metastasis.24 Local anesthetics also impair the movement

of malignant cells in vitro.26,27 As an example, ropivacaine

inhibited migration and invasion of esophageal and color-

ectal cancer cells.26 Although, the anti-metastatic effects

of ropivacaine in esophageal cancer cells were indepen-

dent of voltage-gated sodium channel (VGSCs) blockade

and mediated by inhibition of RhoA, Rac1 and Ras, they

were dependent on Nav1.5 blockade in colorectal cancer

cells.26,28

VGSCs regulate the metastatic activity of cancer cells.

These channels are located in the cell membrane, in parti-

cular in cellular structures called invadopodia, which are

essential for degrading the extracellular matrix.29 In the

invadopodia, VSGCs promote polymerization of actin fila-

ments via Src signaling.29 In vitro studies demonstrate that

downregulation of VSGCs via shRNA inhibits tumor inva-

sion by blocking the invadopodia.30

Local anesthetics have shown anti-angiogenic effects.

Lidocaine (30 mg/kg) inhibited tumor growth in mice

bearing melanoma tumors by inducing apoptosis in

endothelial cells.31 In these cells, lidocaine suppressed

VEGF-increased phosphorylation of VEGF receptor 2.31

Similarly ropivacaine induced apoptosis on tumor-asso-

ciated endothelial cells by inducing mitochondrial

dysfunction.32 Local anesthetics also modulate inflamma-

tion (Figure 3). Notably, lidocaine reduced pro-inflamma-

tory cytokines [ie, tumor necrosis factor (TNFα) and

interleukin-6 (IL-)] in a mice model having breast cancer

surgery.33 Furthermore, lidocaine and ropivacaine inhib-

ited migration and invasion of lung cancer cells by inhibit-

ing TNFα- induced phosphorylation of Src and reducing

the expression of ICAM-1 (glycoprotein essential for cel-

lular adhesion).34,35 A reduction in the concentrations of

pro-inflammatory concentrations is observed in humans

receiving intravenous lidocaine during surgery.36

Increased vascular permeability, as it occurs during

periods of exaggerated inflammation, facilitates TEM and

can promote the implant of metastatic cells. The intrave-

nous administration of lidocaine (1 and 3 mg/kg) to mice

inoculated with LPS significantly reduced lung permeabil-

ity. The postulated mechanisms included a reduction of

inflammatory cytokines (TNFα, IL-6, and MCP-1) and

impairment of antigen presentation, a process done by

dendritic cells (DC) (Figure 3).37,38 As an example,
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lidocaine inhibited the expression of proinflammatory

cytokines in bone marrow-derived DC that were stimu-

lated with LPS.38

Inflammation also induces DNA methylation, a

mechanism linked with metastasis.39,40 Local anesthetics

such as lidocaine and ropivacaine induce, in vitro, DNA

demethylation in breast cancer cells which correlates with

the overexpression of the tumor suppressor genes (RARB2

and RASSF-1A).41–43 Lidocaine also induces modulation

of microRNAs.44–47 Treatment of lung cancer cells with 8

mM of lidocaine significantly increased the expression of

miR-539, which then induced the downregulation of the

epidermal growth factor receptor (EGFR) and suppressed

migration and invasion.45 The intravenous injection of

lidocaine (1.5 mg/kg) to mice bearing retinoblastoma

caused significant tumor reduction by inducing the expres-

sion of miR520a-3p and inhibiting EGFR.46 MicroRNAs

are also involved in chemo-resistance. Lidocaine, in vitro,

inhibited the expression of miR-21 and sensitized chemo-

resistant lung cancer cells to cisplatin.48 On the other hand,

lidocaine by inducing the expression of miR-493 down-

regulated the transcription factor Sox-4, which ultimately

sensitized melanoma cells to the effect of 5-fluorouracil.49

Another described mechanism that can contribute to

the anti-metastatic effects of local anesthetics include the

induction of oxidative stress, and a reduced formation of

MMP-9.30,34,35,50,51 Local anesthetics act on different

components of the innate and adaptive immune system

has been investigated experimentally and in humans. We

demonstrated that lidocaine in clinically relevant concen-

trations increased the in vitro cytotoxic activity of NK

cells by stimulating the release of perforins

(Figure 3).52,53 In humans with abdominal pain, an intra-

venous injection of 1 mg/kg of lidocaine preserves the

count and function of circulating NK cells.54 Few studies

have investigated the impact of intravenous lidocaine on

lymphocytes counts or function during and after oncologic

surgery.54,55 Wang et al conducted a randomized

Figure 2 Several mechanisms have been associated with the anti-metastatic effects of local anesthetics. Intracellular they inhibit signaling events linked to angiogenesis,

migration, and invasion.

Abbreviation: VEGF, vascular endothelial growth factor.
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controlled trial (RCT) in women having a radical hyster-

ectomy and compared the effects of lidocaine versus pla-

cebo on peripheral blood lymphocytes. The postoperative

proliferative rate of lymphocytes was higher in patients

treated with lidocaine.55 The authors speculated that lido-

caine protected lymphocytes by preserving the IFN-g/IL-4

ratio and by decreasing inflammation, as demonstrated by

lower circulating concentrations of the high mobility

group box-1 protein.55 Similarly, patients with abdominal

pain had a preserved CD4/CD8 ratio, and normal T and B

cell counts after injection of 1.5 mg/kg of lidocaine.54

Local (Infiltration or Intravenous) vs

General Anesthesia: Human Studies
To date, there is no strong evidence from human studies

indicating that local anesthesia modifies oncologic out-

comes after cancer surgery (Table 1). Schalengenhauff

et al included 4329 patients with melanoma and showed

that the use of general anesthesia was associated with a

decreased survival rate.56 A more recent retrospective

study suggests that tumescent local anesthesia, in compar-

ison to general anesthesia, is associated with longer

metastasis-free survival also after melanoma surgery.

However, overall and disease-free survival were not

affected.57

Zhang et al recently assessed the impact of intravenous

lidocaine on cancer progression. The authors reported that

the intraoperative use of lidocaine was associated with

longer overall survival in patients undergoing pancreatic

cancer surgery.58 Several randomized controlled trials are

being conducted in patients with breast (NCT01204242;

NCT01916317), pancreatic (NCT0408278), lung

(NCT04074460) and colorectal (NCT04074460) cancers.

Regional vs Opioid-Based Analgesia:

Humans Studies
Since 2008 there has been an increase in human studies

testing the impact of regional anesthesia on cancer recur-

rence or recurrence-free survival after surgery.9,56,59-89 The

findings are controversial.8,59,90 However, a recent RCT

could not confirm the anti-cancer effects of regional

anesthesia in women undergoing breast cancer surgery.9

Patients were randomized to either regional anesthesia

(preferentially paravertebral block) with propofol sedation

Figure 3 Effect of local anesthetics on immune and inflammatory cells. Local anesthetics modulate the activity of different immune cells. They potentiate natural killer cells

cytotoxicity, facilitate antigen presentation, and have shown to modulate the function of neutrophils, macrophages, and dendritic cells.

Abbreviations: LA, local anesthetics; TNF, tumor necrosis factor.

Dovepress Cata et al

Local and Regional Anesthesia 2020:13 submit your manuscript | www.dovepress.com

DovePress
61

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Table 1 Summary of Clinical Studies, Systematic Reviews and Meta-Analysis on the Impact of Regional Anesthesia/Analgesia in Cancer

Outcomes

Type of Cancer Author

(Year)

Type of

Study

Intervention Overall Survival Recurrence-Free Survival

Breast Sessler et al

(2019)9
RCT PVB-GA vs GA No difference No difference

Breast Perez-

Gonzalez

(2017)59

SR (6 studies) PVB-GA vs GA No difference 1 study showed benefit of PVB-GA, 1

study showed negative impact of PVB-

GA, 4 studies showed no difference

Multiple (Breast,

prostate,

gastroesophageal,

and colorectal)

Ma (2014)90 MA (10

studies)

EA-GA vs GA Not studied No difference overall. No difference for

colorectal alone. For prostate cancer, an

increased survival with EA-GA was

found.

Colorectal Cummings

(2012)61
Retrospective EA-GA vs GA No difference Increased with GA-EA

Colorectal Gottschalk

(2010)62
Retrospective EA-GA vs GA Not studied No difference

Colorectal Gupta

(2011)63
Retrospective EA-GA vs Spinal

vs GA

Increased for rectal

cancer, no difference for

colon cancer

Not studied

Colorectal Day (2012)64 Retrospective EA-GA vs Spinal

vs GA

No difference No difference

Colorectal Kim (2016)65 RCT LA wound

infiltration vs

IVPCA

Not studied No difference

Colorectal liver

metastasis

Zimmitti

(2016)66
Retrospective EA-GA vs GA No difference Increased with EA-GA

Colorectal liver

metastasis

Gao (2019)67 Retrospective EA-GA vs GA Not studied Increased with GA

Gastroesophageal Perez-

Gonzalez

(2018)69

SR (6 studies) EA-GA vs GA 3 studies showed benefit

of EA-GA

1 study showed benefit of EA-GA

Glioblastoma Zheng

(2017)70
Retrospective Scalp block vs

No block

Not studied Increased with scalp block

Glioblastoma Cata (2018)71 Retrospective Scalp block vs

No block

No difference No difference

Hepatocellular Lai (2012)72 Retrospective EA vs GA Not studied Increased with GA

Multiple (Intra-

abdominal,

Prostate and

Colorectal)

Cakmakkaya

(2014)89
MA (4 RCTs

subanalysis

studies)

EA-GA vs GA No difference No difference

Laryngeal and

Hypopharyngeal

Merquiol

(2013)73
Retrospective EA-GA vs GA Increased with EA Increased with EA

(Continued)
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or sevoflurane/opioid-based general anesthesia.9 It can be

speculated that regional anesthesia probably did not pro-

duce a robust immunomodulatory or anti-inflammatory

effect and/or, the concentrations of local anesthetics in

micrometastatic niches may not have been high enough

to produce significant effects.91–93 In line with this notion,

Kim et al concluded that continuous local wound infiltra-

tion did not impact one-year recurrence rate after color-

ectal cancer surgery despite a statistically significant

improvement in NK cell function postoperatively.65

Another factor was the short-term exposure to the inter-

vention. Perioperative immune suppression and inflamma-

tion can last beyond the “protective” effects of regional

anesthesia. Our group demonstrated in patients having

major oncologic surgery, the serum IL-6 levels do not

return to preoperative concentrations even two weeks

after surgery.94 Furthermore, the immune “protective”

effects attributed to regional anesthesia in sub-studies of

Table 1 (Continued).

Type of Cancer Author

(Year)

Type of

Study

Intervention Overall Survival Recurrence-Free Survival

Lung Cata (2013)74 Retrospective EA vs PCA vs

EA-IVPCA

No difference No difference

Lung Lee (2017)75 Retrospective EA vs PVB vs

IVPCA

Increased with PVB than

any other technique. EA

and PCA were not

different.

No difference

Melanoma Schlagenhauff

(2000)56
Retrospective LA vs GA Decreased with GA Not studied

Melanoma Gottschalk

(2012)78
Retrospective Spinal vs GA No difference Not studied

Ovarian De Oliveira

(2011)79
Retrospective EA (intra and

postop)-GA vs

Postop-only EA

vs IVPCA

Not studied Increased with EA-GA

Ovarian Lin (2011)80 Retrospective EA vs GA-IVPCA Increased with EA Not studied

Ovarian Capmas

(2012)81
Retrospective EA vs No EA No difference No difference

Ovarian Lacassie

(2013)82
Retrospective EA vs No EA No difference No difference

Ovarian Tseng

(2018)83
Retrospective EA vs IV-PCA Increased with EA Increased with EA

Ovarian Zhong

(2019)84
Retrospective EA vs GA-IVPCA No difference Not studied

Ovarian Elias (2015)85 Retrospective EA-GA vs GA Not studied No difference

Multiple (Ovarian,

Gastrointestinal,

Prostate, Breast)

Grandhi

(2017)86
MA (28

observational

studies)

RA vs GA No difference No difference

Prostate Lee (2015)87 MA (10

retrospective

studies)

EA vs Opioid-

based analgesia

Increased with EA No difference

Abbreviations: EA, epidural anesthesia/analgesia; IV-PCA, intravenous patient-controlled analgesia; GA, general anesthesia; RA, regional anesthesia/analgesia; RCT,

randomized-controlled trial; LA, local anesthetic; PVB, paravertebral block; MA, meta-analysis; SR, systematic review.
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Sessler’s trial indicate that such benefits were not clini-

cally relevant.95,96 Other studies have been designed to test

whether regional anesthesia can improve survival or

reduce recurrence after bladder (NCT:03597087), non-

small cell lung cancer (NCT02840227), colorectal

(NCT02786329), and pancreas (NCT03245346).

In summary, the available evidence indicates that the

impact of regional anesthesia on cancer recurrence might

be negligible or not existent. It remains unknown whether

perioperative intravenous lidocaine infusion has any

impact on cancer progression.

General Anesthetics and Cancer

Progression
Volatile Anesthetics

General anesthetics modify intracellular signaling mechan-

isms involved in metastasis. Isoflurane (1%-2%) increases

migration and invasion of lung cancer cells by promoting

Akt/mTOR activation and by promoting the release of

MMPs.97 In ovarian cancer cells, two-hour exposure to

isoflurane (1.7 MAC), sevoflurane (1.7 MAC), or desflur-

ane (1.7 MAC) stimulated the mRNA expression of

VEGF-A, CXCR2, TGF-β and MMP-11, which correlated

with increased cell migration.98 Also, in ovarian cancer

cells, isoflurane (2%) increased the release of VEGF,

angiopoietin-1 and MMP-2, and 9.99 Sevoflurane (3.6%)

stimulated the metastatic potential of renal cancer cells and

induced their chemo-resistance to cisplatin. These pro-

metastatic effects were linked to an increase in the expres-

sion of TGF-B1, TGF-BRII and downregulation of

Smad3.100 In a melanoma mice model, isoflurane (1.3

MAC) anesthesia promoted pulmonary metastasis.101

As mentioned previously, platelets may play a critical

role in CTCs’ ability to survive in the bloodstream and

attached the endothelium. Lung cancer cells co-cultured

with platelets obtained from patients anesthetized with

sevoflurane or isoflurane showed increased invasive prop-

erties compared to cancer cells incubated with control

platelets.102 Similarly, the culture of colorectal or breast

cancer cells with serum obtained from patients receiving

sevoflurane anesthesia promoted cell survival in compar-

ison to the serum from propofol-treated patients.103,104

Volatile anesthetics can also impair the immune sur-

veillance system. In animals, volatile anesthetics inhibit

the function of NK cells, which correlates with an

increased metastatic burden.105 A reduction in the expres-

sion of the adhesion molecule leukocyte-associated

antigen-1 and decrease in cell-to-cell contact with their

target cancer cells has been implicated in the suppressive

effects of isoflurane and sevoflurane on NK cells’ activity.-
106 Interestingly, Meier et al suggested that the impact of

volatile anesthetics such as isoflurane on the immune

system are sex-depended.107 For instance, when male

mice were treated with isoflurane, the author observed

not only faster tumor growth compared to controls but

also faster tumor growth compared to female

counterparts.107 The investigators demonstrated that an

immune-mediated mechanism was implicated in their find-

ings since melanoma growth was absent in mice lacking

functional T and B cells.107

In vitro and animal studies have also demonstrated that

general anesthetics may have anti-metastatic effects.108,109

High concentrations (5% and 10%) of sevoflurane inhib-

ited migration and invasion of osteosarcoma cells, which

was associated with the inhibition of EMT markers,

including fibronectin and N-cadherin.108 Similarly, sevo-

flurane (4.1%) inhibited glioma cell migration by inducing

the expression of miR-124-3p and suppressing ROCK

signaling.109 Colorectal cancer cells also exposed to 1%

of sevoflurane showed impaired migration and invasion;

an effect that was mediated by inhibition of both, miR-203

expression and ERK signaling.110 Under in vitro hypoxic

conditions, sevoflurane (3.5%) suppressed the ability of

lung cancer cells to migrate and invade the extracellular

matrix by inhibiting the expression of (hypoxia-inducible

factor) HIF-1α, which resulted in low levels of XIAP and

survivin.111 However, Gallyas et al could not demonstrate

that isoflurane influenced the expression of HIF-1α in

renal cancer cells.112

Propofol

Propofol is the most common hypnotic used for TIVA.

Most in vitro and in vivo animal studies indicate that

propofol has significant anti-metastatic effects.113,114 One

of the proposed mechanisms is the downregulation of the

STAT3/HOTAIR signaling pathway, which suppresses

transcription factors Slug and HIF-1α and induces silen-

cing of the NET1 gene; all changes associated with

decreased migration and invasion in cancer cells. A second

mechanism involves the upregulation of miR-124-3p.1,

miR-135b, miR-361, miR-410-3p, miR-328, and lncRNA

DGCR5. A consequence of those epigenetic changes is in

vitro inhibition of EMT, which correlates with low levels

of N-cadherin and MMPs.113

Cata et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Local and Regional Anesthesia 2020:1364

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Table 2 Summary of Clinical Studies Comparing TIVA vs Inhalational Anesthesia with Respect to Cancer Outcomes

Type of Cancer Author

(Year)

Type of

Study

Intervention Overall Survival Recurrence-Free Survival

Appendiceal (HIPEC) Cata

(2019)128
Retrospective TIVA (Opioid-

sparing) vs

Inhalational-

Opioid

No difference No difference

Breast Sessler

(2019)9
RCT

subanalysis

TIVA vs

Inhalational

No difference No difference

Breast Lee

(2016)129
Retrospective TIVA vs

Inhalational

No difference Increased with TIVA

Breast Yoo

(2019)130
Retrospective TIVA vs

Inhalational

No difference No difference

Breast Yan

(2018)125
RCT (Not

powered for

OS or RFS)

TIVA vs

Inhalational

No difference No difference

Cholangiocarcinoma Lai

(2019)131
Retrospective TIVA vs

Inhalational

Increased with

TIVA

TIVA group showed a decreased rate of

metastasis.

Colorectal Wu

(2018)132
Retrospective TIVA vs

Inhalational

(Desflurane-

specific)

Increased with

TIVA

Not studied

Esophageal Jun

(2017)133
Retrospective TIVA vs

Inhalational

Increased with

TIVA

Increased with TIVA

Gastric Zheng

(2018)134
Retrospective TIVA vs

Inhalational

Increased with

TIVA

Not studied

Gastric Oh

(2019)135
Retrospective TIVA vs

Inhalational

No difference No difference

Glioblastoma Cata

(2017)136
Retrospective Isoflurane ±

Propofol vs

Desflurane ±

Propofol

No difference No difference

Hepatocellular Lai

(2019)137
Retrospective TIVA vs

Inhalational

(Desflurane-

specific)

Increased with

TIVA

Increased with TIVA

Lung Oh

(2018)138
Retrospective TIVA vs

Inhalational

No difference No difference

Lung Xu

(2017)139
RCT (Not

powered for

OS or RFS)

TIVA vs

Epidural/

Inhalational

No difference No difference

Multiple (Breast,

Esophageal, Lung)

Yap

(2019)140
MA (10

studies)

TIVA vs

Inhalational

Increased with

TIVA

Pooled data from 6 studies showed increased

with TIVA

(Continued)
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Adhesion molecules located on the surface of endothe-

lial cells are needed to initiate TEM. HUVEC cells treated

with different concentrations (5, 25, and 50 µM) of pro-

pofol showed low levels of the adhesion molecules

E-selectin, VCAM-1, and ICAM-1. These changes in the

expression of the adhesion molecules correlated with a

reduction in the expression of HIF-1α, and inhibition of

Akt and CaMKII phosphorylation.114 Propofol also has

anti-angiogenesis effects as demonstrated in experiments

in which it suppressed the invasion of endothelial cells and

vessel formation.115

The proposed mechanisms behind the anti-angiogenic

effects of propofol include the downregulation of S100A4

in endothelial cells and inhibition of the release of VEGF

from cancer cells.115,116 Sen et al conducted an RCT to

investigate the effect of propofol in combination with

regional analgesia (in comparison to sevoflurane anesthe-

sia) on serum concentrations of VEGF in patients having

lung cancer surgery.117 Patients receiving sevoflurane had

significantly higher concentrations of VEGF.117 Lastly, a

proteomic analysis from head and neck cancers demon-

strated that the tumors from patients who received sevo-

flurane anesthesia had higher expression HIF-2α and

phosphorylated p38 MAPK in comparison to those receiv-

ing propofol.118

Propofol can protect against immunosuppression by

promoting cytotoxicity activity of NK cells, decreasing

pro-inflammatory cytokines and inhibiting prostaglandin

E2 (PGE2) and cyclooxygenase (COX) activity. In vitro,

propofol stimulated the function and triggered the prolif-

eration of NK cells obtained from healthy subjects and

patients with cancer. Such effect on NK cells has been

linked to an increase in the expression of granzyme B,

IFNγ, and activating surface receptors (CD16, NKp30,

NKp44, and NKG2D) as well as a reduction in the forma-

tion of PGE2.119–121 The beneficial effect of propofol in

tumor metastasis has been demonstrated in animals. When

rats having surgery were anesthetized with propofol the

function of NK cells remained unchanged and metastatic

formation was lower than animals receiving volatile

anesthetics.105

In women undergoing breast or cervical cancer surgery,

the use of propofol for TIVA in combination with regional

anesthesia increased the number of NK and T helper cells

in the primary tumor tissue and it was associated with

significantly less lymphopenia.96 Similar findings were

Table 2 (Continued).

Type of Cancer Author

(Year)

Type of

Study

Intervention Overall Survival Recurrence-Free Survival

Multiple (Breast,

Gastrointestinal,

Gynecological,

Sarcoma, Urologic,

Other)

Wigmore

(2016)6
Retrospective TIVA vs

Inhalational

Increased with

TIVA

Not studied

Multiple (Breast,

Gastrointestinal, Liver,

Lung)

Hong

(2019)141
Retrospective TIVA vs

Inhalational

No difference Not studied

Multiple (Breast,

Gastrointestinal,

Urologic, Glioma, Lung)

Jin

(2019)142
MA (12

studies)

TIVA vs

Inhalational

Pooled effects

favor TIVA, not

individualized by

cancer type.

Pooled data from 5 studies on recurrence

showed no significant difference. TIVA is

favored in breast cancer. Pooled data specifically

on RFS on 3 studies favor TIVA.

Ovarian Elias

(2015)85
Retrospective Inhaled

Anesthesia

(Sevoflurane/

Desflurane) vs

TIVA

Not studied Increased with desflurane

Abbreviations: RCT, randomized controlled trial; HIPEC, hyperthermic intraperitoneal chemotherapy; TIVA, total intravenous anesthesia; OS, overall survival; RFS,

recurrence-free survival; MA, meta-analysis.
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observed in circulating lymphocytes of surgical patients

with tongue cancer who received TIVA in comparison to

sevoflurane.122,123 In contrast two independent groups of

investigators, did not observe any significant changes cyto-

kines (IL-6, IL-10, and IL-12 TGF- β) and in regulatory T

cell cluster differentiation in women randomized to have

breast cancer surgery under TIVA or sevoflurane general

anesthesia.124,125 Similarly, inflammatory and immune

scores were not different between patients who received

general volatile versus TIVA for pancreatic cancer surgery

or during cytoreduction with hyperthermic intraperitoneal

chemotherapy.126,127

TIVA vs Volatile Anesthesia: Human Studies

Because of the anti-metastatic effects of TIVA in experimen-

tal conditions, there has been a growing interest in translating

such beneficial effects into human studies.6,9,85,125,128-142

The most extensive study was conducted by Wigmore et al,

who retrospectively reviewed the impact of propofol-based

general anesthesia vs volatile anesthesia in more than 7000

patients.6 The authors reported a significant benefit in overall

survival (HR 95% CI: 1.59, 1.30–1.95) in patients receiving

propofol, even after adjusting for metastatic disease.6 Several

much smaller retrospective studies have demonstrated simi-

lar results (Table 2). In 2019, a meta-analysis of 10 retro-

spective studies concluded that the use of TIVA during

cancer surgery is associated with significant improvements

in recurrence-free and overall survival.140 However, TIVA

was associated with the most significant impact on the survi-

val of patients with gastrointestinal malignancies.140 Since

the meta-analysis publication, two retrospective studies that

included over 2000 patients did not show any association

between TIVA and longer survival. Also, data from an RCT

(TIVA vs sevoflurane anesthesia) of patients undergoing

breast cancer surgery could not demonstrate differences in

2 years recurrence-free and overall survival. However, survi-

val was not the primary endpoint of the study, which also

lacked significant statistical power.125 Our group investigated

differences in survival in patients receiving different volatile

anesthetics during glioblastoma surgery.136 We observed no

association between the use of desflurane or isoflurane in

progression-free and overall survival.136

The VAPOR-C trial (NCT04074460) is a RCT

designed to investigate the effect of TIVA versus sevoflur-

ane anesthesia on cancer recurrence in patients having

surgery for lung or colorectal cancers.143 The GA-

CARES (NCT03034096) study is also a large clinical

trial that will randomize patients to TIVA versus volatile

anesthesia. The primary endpoint is all-cause mortality.

Similar studies also being conducted in patients with pan-

creatic (NCT03447691) and breast (NCT02839668)

cancers.

Conclusion
The perioperative period is a time of vulnerability for

patients with cancer because it can promote the seeding

of CTCs or the growth of micrometastatic tumors. The

evidence from experimental laboratory studies demon-

strates that anesthetics can modulate the metastatic beha-

viors of cancer cells. Anesthetics can also affect immune

surveillance and inflammatory responses. Nevertheless, it

is less clear about the actual clinical relevance of such

changes in patients with cancer progression and patient’s

survival.

We think that the strength of evidence is weak to

recommend the use of TIVA to improve cancer-related or

overall survival after oncologic surgery. As for regional

anesthesia, there is strong evidence to conclude that the

impact of paravertebral blocks does not influence cancer

recurrence after breast cancer surgery. The findings of

ongoing and future randomized control trials will bring

light on whether an anesthetic technique modifies the long-

term survival of patients who had surgery for cancer.
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