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Objective: The Warburg effect, also known as aerobic glycolysis, plays a dominant role in

the development of gastrointestinal (GI) cancers. In this study, we analyzed the expression of

key genes involved in the Warburg effect in GI cancers and investigated the effect of

suppressing the Warburg effect in vitro in liver cancer cell lines.

Methods: The Cancer Genome Atlas (TCGA) RNA-Seq data were used to determine gene

expression levels, which were analyzed with GraphPad Prism 7.00. Genetic alterations were

queried with cBioPortal. The influence of the Warburg effect on liver cancer cell viability,

migration and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity was deter-

mined by means of MTT, transwell and GAPDH activity assays.

Results: The levels of expression of genes associated with the Warburg effect were

increased in tumors. To our knowledge, this is the first report of upregulated expression of

CUEDC2, HMGB2, PFKFB4, PFKP and SIX1 in liver cancer. Clinically, overexpression of

these genes was associated with significantly worse overall survival of liver cancer patients.

In vitro, selective inhibition of GADPH suppressed the growth and metastasis of Huh-7,

Bel7404 and Hep3B hepatocellular carcinoma cell lines.

Conclusion: The Warburg effect may play an important role in GI cancers, especially in

liver cancer.
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Introduction
According to GLOBOCAN, liver cancer is the sixth most common form of cancer in

the world. Among the estimated 9.6 million cancer deaths that occurred in 2018, liver

cancer was the second cause of death in men and was among the top five cancer types

resulting in death, with an estimated 8.2% mortality rate for both genders.1,2 Liver

cancer is a highly heterogeneous disease with a wide range of causes, including HBV,

HCV, fungal toxins, alcohol consumption, obesity, and diabetes.2

TheWarburg effect is a metabolic phenotype commonly seen in tumors. Even in the

presence of sufficient oxygen, cancer cells produce about 60% of their ATP through

glycolysis instead of oxidative phosphorylation.3,4 The Warburg effect allows dividing

cells to use intermediate glucose metabolites to double their biomass and suppress

apoptosis.5 This phenomenon was first discovered by Otto Warburg in the 1920s and

was called aerobic glycolysis. A number of studies have shown that hypoxia-inducible
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factor 1a (HIF1A) and PI3K/AKT signaling regulate key

enzymes of aerobic glycolysis and therefore modulate the

Warburg effect in different cancers.6 It has been shown that

AKT1, in response to cellular stress and drug treatments such

as lapatinib, activates Nrf2 and HIF1A signaling in breast

cancer.7 AlteredHIF1A increases the chance of recurrence in

patients suffering from HCC.8 In addition, aerobic glycolysis

is significantly increased in liver cancer stem cells (CSCs).

Nicotinamide adenine dinucleotide (NAD+) is required for

increased activity of mitochondria. Higher levels of riboso-

mal protein S5 (MRPS5) and NAD+ dependent deacetylase

sirtuin-1 (SIRT1) effectively increase the expression of gly-

colytic proteins and of the Warburg effect in liver CSCs.9

Similarly, glycolysis inhibitors such as hexokinase (HK)

inhibitors, suppress tumor xenograft progression.10 In addi-

tion to HK isoenzymes, pyruvate dehydrogenase E1α

(PDHA1) is another key enzyme involved in triggering aero-

bic glycolysis in HCC.11

On the other hand, there are other enzymes which

reportedly act as positive regulators of the Warburg effect

in liver or other cancer cells, so their inhibition might be

an effective means of treating liver cancer (Figure 1). For

example, metastasis-associated in colon cancer protein 1

(MACC1) and EGFR-phosphorylated platelet isoform of

phosphofructokinase 1 (PFKP) enhance glycolysis via

PI3K/AKT-dependent positive feedback regulation.12,13

Liver cancer cell metastasis and motility are reduced by

inhibition of MACC1 expression.14 Transcription factor

sine homeobox 1 (SIX1) is also a key enzyme involved

in the regulation of glucose uptake, lactate production,

ATP generation, and increased oxygen consumption rate

(OCR).15

Cancer stem cells are responsible for drug resistance, so

targeting cancer cell stemness is important to overcome drug-

resistant phenotypes. Inhibition of SIX1 reduces stemness of

HCC cells and therefore, sensitizes HCC cells to chemother-

apy. SIX1 can bind to Sox2, which regulates stemness.16 In

addition to Sox2, high-mobility-group protein 2 (HMGB2) is

upregulated in liver cancer and is a key regulator of stem cell

pluripotency.17 Proliferation of HCC cells depends on 6-phos-

phofructo-2-kinase/fructose-2,6-bisphosphatase-4 (PFKFB4)

which is a key enzyme of glycolysis.18 Upregulation of

Pim1 proto-oncogene (PIM1), a serine/threonine kinase, pro-

motes glycolysis in HCC cells by enhancing Akt activation.19

CUE domain-containing 2 (CUEDC2) also plays a crucial

role in promoting the Warburg effect by interacting with the

Figure 1 Schematic illustration of the roles played by the TCA cycle and the Warburg effect in gastrointestinal cancers and normal tissues. Normal tissues: The TCA cycle

incorporates glucose metabolic products and transform them. Tumors: Under the influence of the Warburg effect, glucose metabolism is predominantly shunted towards

pyruvate and lactic acid. PIM1, PI3K/AKT and HBO1 directly promote the conversion of glucose into G-6-P. PFKFB4 enhances the conversion of F-6-P into F-1, 6-DP. With

the exception of BRD7, multiple factors can promote the production of lactic acid by LDHA.
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glucocorticoid receptor and upregulating glucose transporter 3

(GLUT3) and lactate dehydrogenase A (LDHA), two key

glycolytic proteins20; however, the effect of CUEDC2 on

glycolysis in HCC cells has not been studied. Although aero-

bic glycolysis has been extensively studied, its precise details

and mechanisms are not completely understood. The role of

the Warburg effect in gastrointestinal cancers, especially in

liver cancer, has not been systematically investigated. In addi-

tion to studying Warburg effect-related genes, we also com-

pared the expression of genes involved in the tricarboxylic

acid (TCA) cycle between normal and cancerous GI tissues.

Materials and Methods
Data and Samples
Clinical and gene expression data of patients with GI can-

cers were obtained from The Cancer Genome Atlas

(TCGA), specifically from the TCGA-LIHC, TCGA-

ESCA, TCGA-STAD, TCGA-READ and TCGA-COAD

datasets, including information from both tumoral and nor-

mal tissues (number of samples: liver cancer, 421; esopha-

geal cancer, 172; gastric cancer, 407; rectal cancer, 176;

colon cancer, 497). Differential analysis of genes involved

in the TCA (deep deletions, amplifications, and missense

mutations) in GI cancer was performed by means of the

cBioPortal for Cancer Genomics database (1700 samples).

Protocols for data analysis were based on Zhao et al.21

Chemicals and Reagents
RPMI-1640, DMEM, FBS, antibiotics (penicillin and

streptomycin, 0.25% w/v), trypsin, EDTA, and phos-

phate-buffered saline (PBS) were all obtained from Life

Technologies (Grand Island, USA). Koningic acid (KA)

was purchased from Cayman (Michigan, cat # 14,079).

The GAPDH Activity Assay Kit was purchased from

BioVision (Milpitas, cat # K680). 3-(4,5-Dimethyl-2-thia-

zolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was

obtained from Tocris Bioscience (Bristol, cat # 5224/500).

Cell Lines and Cell Culture
HepG2, Hep3B, hepatoblastoma and HCC cell lines were

purchased from the American Type Culture Collection

(Manassas, USA). The Huh-7 HCC cell line was provided

by Dr H. Nakabayashi (Hokkaido University School of

Medicine, Japan).22 Bel740423 was obtained from the

Cell Bank of the Chinese Academy of Sciences. MIHA-

immortalized hepatocytes were obtained from Dr J.R.

Chowdhury (Albert Einstein College of Medicine; New

York, USA). The normal human liver cell line, LO2, was

obtained from the cell bank of the Shanghai Institute of

Cell Biology (Chinese Academy of Sciences; Shanghai,

China). Use of these cell lines was approved by the ethics

committee of Southwest Medical University. Cells were

cultured in RPMI-1640 or DMEM with 10% fetal bovine

serum (FBS) and antibiotics (100 U/mL streptomycin and

100 µg/mL penicillin) and incubated at 37°C in a humidi-

fied atmosphere with 5% CO2.

MTT Assay
Cell viability was analyzed by means of the MTT method.

Briefly, after 12 hours of incubation to permit cell adher-

ence, the experimental group was treated with 5 µM or 10

µM KA, whereas 0.01% dimethyl sulfoxide (DMSO) was

added to the control group. After 24 hours, 10 µL MTT

was added to each well. Following 4 hours of incubation,

the solution was removed and DMSO was added. The

absorbance at 490 nm was measured to calculate the

average inhibition. The experiment was repeated three

times with each cell line.

Transwell Migration Assay
Cell migration was measured by the transwell method,

using 8-µm pore chambers (Corning, NY, cat # 3244).

Briefly, different numbers of cells were seeded onto the

upper chamber in serum-free medium. The lower chamber

was filled with 600 µL of medium containing 1 µM KA

(or not, in the control group). After 24 hours of incubation,

the cells of the upper chamber were gently removed with

cotton swabs, and the lower side of the membrane was

dipped in 95% methanol and stained with crystal violet for

30 minutes. Five random fields were counted under a

microscope.

GAPDH Activity Assay
Briefly, cells (106) were seeded onto 60mm dishes contain-

ing 1 µM KA or 0.01% DMSO (as control) and incubated

for 24 hours. Trypsinized cells were subjected to the

procedures described in the instructions of the GAPDH

Activity Assay Kit and the protein content of the samples

was determined. The absorbance was measured at 450 nm

in kinetic mode for 30 minutes.

Statistical Analysis
TCGA data were first normalized and log2 transformed.

Next, one-way ANOVA and the unpaired t-test were used

to compare multiple groups and two groups, respectively,
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using SPSS 21.0 and GraphPad Prism 7.00 software pro-

grams. Overall survival was analyzed based on Kaplan–

Meier curves using the Log rank test. P values <0.05 were

considered statistically significant.

Results and Discussion
Expression of Genes Associated with the

Warburg Effect
Cancer cells maintain high rates of glucose uptake, meta-

bolism and fermentation to lactate.24 In this study, we

conducted a systematic analysis of the expression of pro-

teins, factors and enzymes associated with enhancement or

inhibition of the Warburg effect in GI cancers. Our results

indicate that the expression of genes associated with the

Warburg effect are increased in tumors. To our knowledge,

this is the first report of upregulated expression of

CUEDC2, HMGB2, PFKFB4, PFKP, and SIX1 in liver

cancer.

We analyzed the mRNA expression levels of genes

associated with the Warburg effect in GI cancers using

the TCGA database. The results confirmed a significant

trend towards upregulation of all genes in tumors, espe-

cially in liver and esophageal cancer (Figure 2). In colon

and gastric cancer, most genes showed similar results. In

rectal cancer, expression of PFKFB4, SIX1 and MACC1

was significantly increased. It has recently been shown

that SIX1 overexpression promotes HCC progression

through downregulation of p53.25 SIX1 may increase resis-

tance to chemotherapy in liver cancer.16,26

Under hypoxic conditions, PIM1 is upregulated, result-

ing in increased glucose uptake and facilitated glycolysis,

which promotes tumor progression and metastasis.19

Downregulation of PIM1 suppressed tumor growth in

HCC cells.27 We observed PIM1 expression was signifi-

cantly decreased in gastric and liver cancer. It has been

reported that inhibition of PIM kinases causes excessive

mitochondrial fission or increased intracellular ROS pro-

duction and apoptosis.28 Also, PIM1 knockdown signifi-

cantly accelerated apoptosis in myoblasts.29 Therefore,

PIM1 may have different roles in different cancer types.

Since BRD7 assists in the assembly of the p53 tran-

scriptional complex, BRD7 is downregulated in several

types of cancer. In contrast, we observed that BRD7 was

upregulated in GI cancers, including liver cancer, which

may be due to the wide range of mutations found in the GI

cancers analyzed in this study. A previous study showed

that poly-ubiquitinated HIF1A was upregulated in BRD7-

overexpressing MCF-7 breast cancer cells, indicating that

BRD7 promotes the degradation of HIF1A in an ubiquiti-

nation-dependent manner in breast cancer.30 Similarly,

according to our data, HIF1A mRNA expression was

upregulated, possibly revealing why BRD7 mRNA was

highly expressed.

Furthermore, we found that MACC1, first reported to

be a crucial biomarker of metastasis in colon cancer, was

upregulated in GI cancers. In agreement with our findings,

some studies have reported that MACC1 interacts with the

ERK and AKT pathways in pancreatic cancer.31 It has also

been reported that MACC1 is strongly associated with

MET signaling in liver metastases of resected CRC and

is involved in EMT in colorectal cancer.32,33 However, our

analysis showed that it was downregulated in liver cancer.

Until now, no studies have been conducted to try to under-

stand the differential expression of MACC1 between pri-

mary and metastatic liver tumors.

Expression of Genes Related to the TCA

Cycle
In addition to studying Warburg effect-associated genes, we

also compared the expression of TCA-associated genes

between normal and tumor tissues. As expected, expression

of most genes was significantly higher in normal tissues than

in GI tumor cells. Some genes showed high expression in

colon and rectal cancers, but others showed an inverse pat-

tern, includingCS, SDHB, FH, and IDH1. Some studies have

reported that CS activity is higher in human pancreatic ductal

carcinoma than in adjacent, non-cancerous tissues.34 Next,

we analyzed the genetic alterations found in the IDH1, FH

and SDHB genes upregulated in GI cancers by means of

cBioPortal (Supplementary Figure). Based on recent studies,

mutations in the SDHB, IDH1, and FH genes are common

and are associated with different kinds of tumors.35–37

Overall, these results probably explain why these genes are

expressed at higher levels in tumors than in normal tissues.

Influence of the Warburg Effect on

Clinical Progression
We analyzed the relationship between mRNA expression and

clinical stages in GI cancer (Figure 3). The cancer stage

codes were based on the American Joint Committee on

Cancer definitions. Our results showed that high CUEDC2,

HMGB2, MACC1, PFKFB4, and PFKP mRNA expression

was associated with the worst stages of liver cancer. We also

detected higher expression of MACC1, PFKFB4 and PIM1
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in colon cancer patients with the worst stages. In contrast,

expression of genes involved in the Warburg effect was not

significantly associated with stages in other cancers.

However, PIM1 expression was significantly increased in

the more advanced stages of rectum cancer.

Furthermore, we analyzed the relationship between

high or low expression of different genes in GI cancers

and overall survival (OS) (Figure 4). Based on Kaplan–

Meier curves and log-rank analysis, we found that high

expression of CUEDC2, HMGB2, PFKFB4, PFKP, and

SIX1 Warburg effect-associated genes was significantly

associated with worse OS in patients with liver cancer.

Collectively, these results suggest that the Warburg effect

may play a role in the progression and outcome of GI and

liver cancers. In agreement with our results, PFKP was

previously reported as a marker of tumor progression and

OS in liver cancer.38,39 The main problem encountered in

the treatment of cancer is resistance to chemotherapy,

Figure 2 Expression of genes associated with the Warburg effect and the TCA cycle in GI cancers and normal tissues. Upper panel: Expression of genes associated with the

Warburg effect. AKT1, BRD7, CUEDC2, HIF1A, HMGB2, PFKFB4, PFKP, PIM1, SIX1 and MACC1 expression in six different types of gastrointestinal cancers. TCGA RNA-Seq

data was analyzed to compare expression between tumors (grey) and normal tissues (white). Lower panel: Expression of genes associated with the TCA cycle in tumoral and

normal tissues. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001.
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which is crucially linked to cancer stem cells. We found

that HMGB2 was strongly upregulated in all the cancers

analyzed. Similarly, increased expression of HMGB2 has

been reported in liver cancer.17 In addition, HMG mem-

bers, including HMGB2, interact with hepatitis viruses

(HBV and HCV) to modulate HCC progression.40,41

In addition to studying mRNA expression, we also

investigated the influence of the Warburg effect on clinical

parameters. The Warburg effect was identified as an essen-

tial factor associated with the proliferation, growth and

metastasis of different tumors and with the tumor stage

and OS. Patients with high expression of Warburg effect-

associated genes showed more advanced stages and a

poorer prognosis. This indicates that the Warburg effect

may enhance tumor aggressiveness and worsen patient

prognosis, particularly in liver cancer, and this result also

has been demonstrated in other studies.42,43 Although the

mechanism has not been investigated, increased expres-

sion of genes linked to the Warburg effect may be con-

sidered as a prognostic marker.

Figure 3 Association of genes linked to the Warburg effect with pathological stages. In cancers of the liver, esophagus, colon and rectum, expression of some genes was

significantly associated with worse pathological stages. However, in gastric cancer, the correlation was not obvious. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.001.

Abbreviations: S1, Stage-I; S2, Stage-II; S3, Stage-III; S4, Stage-IV.
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Inhibition of the Warburg Effect in Liver

Cancer Cells
GAPDH promotes higher glycolysis in cells and KA has

been shown to be an irreversible and selective inhibitor of

GAPDH. Therefore, KA significantly reduces glycolysis and

targets the Warburg effect in cancer cells44 (Figure 5A).

Based on our bioinformatics results, we determined that

liver cancer was more likely to be affected by key regulators

of the Warburg effect than other GI cancers. In order to

understand the influence of theWarburg effect in liver cancer

cells, we used KA to suppress the Warburg effect by inhibit-

ing GADPH. Based on the MTT assay, KA (5 µM and 10

µM) significantly inhibited the viability of Hep3B, Huh-7

and Bel7407 HCC cells (Figure 5B). Consistent with these

results, migration of HepG2, Huh-7, Bel7407 and Hep3B

cells was inhibited by treatment with 1 µM KA for 24 hours

(Figure 5C). As shown in Figure 5D, GAPDH activity was

strongly inhibited in liver cancer cells. We hypothesize that

the explanation for these results is that KA inhibited the

Warburg effect in liver cancer cells.

As expected, migration and growth of hepatocellular

carcinoma cell lines were significantly inhibited after

blocking the Warburg effect with the GAPDH inhibitor.

According to some studies, the occurrence of liver cancer

is indeed closely related to glycolysis.45,46 Since the liver

is one of the three main metabolic centers in our body, the

occurrence and development of malignant tumors in this

organ may be closely linked to glucose metabolism.

However, the influence of the Warburg effect in patients

with liver cancer needs further investigation.

Figure 4 Association of genes linked to the Warburg effect with overall survival. The Warburg effect seemed to affect overall survival in liver cancer more than in any other

type of cancer. High expression of genes was significantly associated with worse overall survival. High expression of CUEDC2, HMGB2, PFKFB4, PFKP and SIX1 was

significantly associated with poor prognosis in liver cancer. Statistical analysis was carried out based on Kaplan–Meier curves.
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Conclusions
In conclusion, our analysis showed that genes associated

with the Warburg effect were overexpressed in GI cancers.

Our results also provided insight into the association

between the Warburg effect and overall survival and clin-

ical characteristics. Our study suggests that blocking the

Warburg effect may be a promising approach to treat liver

cancer.

Abbreviations
CS, citrate synthase; FH, fumarate hydratase; IDH1, isoci-

trate dehydrogenase (NADP (+))1, cytosolic;MDH1, malate

dehydrogenase 1; OGDH, oxoglutarate dehydrogenase;

SDHB, succinate dehydrogenase complex iron sulfur subunit

B; ATK1, serine/threonine kinase 1; BRD7, bromodomain-

containing 7; CUEDC2, CUE domain-containing protein 2;

HIF1A, hypoxia-inducible factor 1 subunit alpha; HMGB2,

high mobility group box protein 2;MACC1, metastasis asso-

ciated in colon cancer 1; PFKFB4, 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 4; PFKP, platelet isoform

of phosphofructokinase 1; PIM1, Pim-1 proto-oncogene,

serine/threonine kinase; SIX1, sine oculis homeobox 1 tran-

scription factor.
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