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Abstract: Long non-coding RNAs (lncRNAs) are emerging regulators of a diverse range of 
biological processes through various mechanisms. Genome-wide association studies of tumor 
samples have identified several lncRNAs, which act as either oncogenes or tumor suppressors in 
various types of cancers. Small nucleolar RNAs (snoRNAs) are predominantly found in the 
nucleolus and function as guide RNAs for the processing of transcription. As the host genes of 
snoRNAs, lncRNA small nucleolar RNA host genes (SNHGs) have been shown to be abnormally 
expressed in multiple cancers and can participate in cell proliferation, tumor progression, metas-
tasis, and chemoresistance. Here, we review the biological functions and emerging mechanisms of 
SNHGs involved in the development and progression of endocrine-related cancers including 
thyroid cancer, breast cancer, pancreatic cancer, ovarian cancer and prostate cancer. 
Keywords: endocrine, cancers, lncRNA, SNHG

Introduction
Long non-coding RNAs (lncRNAs, >200 nucleotides in length) are emerging reg-
ulators of gene transcription.1 The human genome estimated to encode >28,000 
lncRNAs,2 but only 15,778 lncRNAs are annotated in the current GENECODE 
version 27.3 Therefore, more lncRNAs are yet to be discovered. Moreover, the 
known lncRNAs have not been studied in depth.

Accumulating evidence suggests lncRNAs play key roles in the development and 
progression of several cancers, acting as either oncogenes or tumor suppressors.4 

LncRNAs can regulate transcription, translation, protein modification, and the formation 
of RNA-protein or protein-protein complexes, depending on the cellular location.5 For 
example, lncRNAs primarily located in the nucleus are involved in transcriptional 
regulation and mRNA processing, while cytoplasmic lncRNAs play roles in modulating 
mRNA translation by competing with proteins or in miRNA-mediated mRNA decoy.5,6

Small nucleolar RNAs (snoRNAs, 60–300 nucleotides in length) are more well- 
characterized than lncRNAs and are predominantly found in the nucleolus.7 Most 
snoRNAs function as guide RNAs for the post-transcriptional modification of riboso-
mal RNAs and some spliceosomal RNAs, with some involved in the nucleolytic 
processing of the original rRNA transcript.8 As shown in Figure 1, the majority of 
snoRNAs are encoded (hosted) in the introns of protein-coding and non-protein-coding 
genes, termed small nucleolar RNA host genes (SNHGs).9–11 Primary RNA transcripts 
of host genes (including all exons and introns with their snoRNAs) are cut into different 
exons and introns. Exons are then re-spliced and function in the cytoplasm, while the 
introns are further processed into snoRNAs and play roles in the nucleolus.
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Currently, there are 22 members of SNHG family 
(SNHG1 to SNHG22) that have been shown to regulate 
proliferation, apoptosis, invasion, and migration in multiple 
cancers, including endocrine-related cancers (as summarized 
in Tables 1 and 2). These 22 SNHGs have diverse activities 
and mechanisms of action. For example, SNHG1 has been 
shown to promote colorectal cancer cell growth by modulat-
ing histone methylation of gene promoters of the Kruppel 
Like Factor 2 (KLF2, a member of the KLF family, also 
exerts tumor-suppressive roles) and the cyclin-dependent 
kinase 4 inhibitor B (CDKN2B, a tumor suppressor).12 

SNHG1 can also act as a sponge for miR-154-5p to upregu-
late expression of G1/S-specific cyclin-D2 (CCND2, which 
is involved in cell cycle progression).12 Meanwhile, SNHG13 
serves as a competing endogenous RNA (ceRNA) of miR- 
34a-5p, leading to the derepression of Jagged 1 (JAG1) 
expression, which eventually triggers resistance to docetaxel 
in prostate cancer.13

This review aims to provide an overview on the current 
understanding of the regulation and function of SNHGs in 
endocrine-related cancers that arise from the endocrine 
glands or neuroendocrine tissues, including thyroid cancer, 
breast cancer, pancreatic cancer, ovarian cancer, and pros-
tate cancer.14

Thyroid Cancer
Thyroid cancer is the most common malignancy of the 
endocrine system with enormous heterogeneity in terms of 
morphological features and prognosis.15 Although the 

majority of cases of thyroid cancer tend to be biologically 
indolent and have an excellent prognosis, some are asso-
ciated with more aggressive clinical behavior.16

SNHG1 may act as an oncogene in thyroid cancer by 
competing with miR-199a-5p and upregulating the expres-
sion of its target gene, the transcription factor (TF) SP1. In 
turn, SP1 targets the promoter region of SNHG1 and 
promote its transcription, forming a positive feedback 
loop to promote cancer cell proliferation and invasion.17 

Conversely, low expression of SNHG2, also known as 
growth arrest specific transcript 5 (GAS5), is associated 
with poor prognosis of patients with thyroid cancer.18 

Mechanistically, GAS5 acts as a sponge for miR-222-3p, 
thereby modulating the expression of the phosphatase and 
tensin homolog (PTEN), leading to PTEN/protein kinase 
B (AKT) pathway activation and the suppression of thyroid 
cancer cell proliferation.19

SNHG7 is also markedly upregulated in thyroid cancer 
samples, with high SNHG7 expression associated with shorter 
survival times.20 Indeed, SNHG7 knockdown leads to 
a suppression of thyroid cancer cell proliferation and migra-
tion, and induction of apoptosis via downregulating the acyl- 
CoA synthetase long chain family member 1 (ACSL1) and the 
brain-derived neurotrophic factor (BDNF).21,22 In addition, 
bioinformatics analysis showed SNHG7 was associated with 
the processes of “protein translation”, “viral life cycle”, “RNA 
processing”, “mRNA splicing”, “histone ubiquitination”, 
“endoplasmic reticulum-to-Golgi vesicle-mediated transport”, 
“sister chromatid cohesion”, “DNA damage checkpoint 

Figure 1 The synthetic pathway of snoRNAs.
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regulation”, “translation”, and “the spliceosome”, suggesting 
further research directions for this lncRNA.20

SNHG12 is also upregulated (by 3.8-fold) in papillary 
thyroid carcinoma (PTC) tissues compared to normal adja-
cent tissue samples.23 High SNHG12 was associated with 
poorer progression in PTC in terms of tumor node metas-
tasis (TNM) staging and lymph node metastasis (LNM).24 

SNHG12 likely acts as a sponge for miR-16-5p, thereby 
inducing PTC cell proliferation, migration, and invasion, 

as well as inhibiting apoptosis.25 SNHG12 also promotes 
the proliferation and migration of PTC cells via the Wnt/β- 
catenin signaling pathway.23 Meanwhile, SNHG13, also 
known as differentiation antagonizing non-protein coding 
RNA (DANCR), acts as a tumor suppressor in PTC: down-
regulation of DANCR is associated with more aggressive 
clinical features of PTC.26 DANCR is also a potential 
biomarker for PTC diagnosis, showing a sensitivity of 
85.29% and a specificity of 66.18%.26

Table 1 Characteristics of SNHG Members

SNHG 
Member

Aliases Chromosomal 
Location

GENE ID Associated Endocrine-Related 
Cancers

SNHG1 LINC00057, NCRNA00057, U22HG, UHG, lncRNA16 11q12.3 23642 Thyroid Cancer, Breast Cancer, 

Pancreatic Cancer, Ovarian Cancer, 

Prostate Cancer

GAS5 NCRNA00030, SNHG2 1q25.1 60674 Thyroid Cancer, Breast Cancer, 

Pancreatic Cancer, Ovarian Cancer, 
Prostate Cancer

SNHG3 NCRNA00014, RNU17C, RNU17D, U17HG, U17HG-A, 
U17HG-AB

1p35.3 8420 Breast Cancer, Ovarian Cancer

SNHG4 NCRNA00059, U19H 5q31.2 724102 Prostate Cancer

SNHG5 C6orf160, LINC00044, NCRNA00044, U50HG 6q14.3 387066 Breast Cancer, Ovarian Cancer

SNHG6 HBII-276HG, NCRNA00058, U87HG 8q13.1 641638 Breast Cancer, Prostate Cancer

SNHG7 NCRNA00061 9q34.3 84973 Thyroid Cancer, Breast Cancer, 

Pancreatic Cancer, Prostate Cancer

SNHG9 NCRNA00062 16p13.3 735301 Pancreatic Cancer

SNHG12 ASLNC04080, C1orf79, LINC00100, NCRNA00100, 
PNAS-123

1p35.3 85028 Thyroid Cancer, Breast Cancer, Ovarian 
Cancer, Prostate Cancer

DANCR AGU2, ANCR, KIAA0114, SNHG13, lncRNA-ANCR 4q12 57291 Thyroid Cancer, Breast Cancer, 
Pancreatic Cancer, Ovarian Cancer, 

Prostate Cancer

SNHG14 115HG, IC-SNURF-SNRPN, LNCAT, NCRNA00214, 
U-UBE3A-ATS, UBE3A-AS, UBE3A-AS1, UBE3A-ATS, 
UBE3AATS

15q11.2 104472715 Breast Cancer, Pancreatic Cancer, 

Ovarian Cancer, Prostate Cancer

SNHG15 C7orf40, Linc-Myo1g, MYO1GUT 7p13 285958 Thyroid Cancer, Breast Cancer, 

Pancreatic Cancer, Ovarian Cancer, 
Prostate Cancer

SNHG16 Nbla10727, Nbla12061, ncRAN 17q25.1 100507246 Thyroid Cancer, Breast Cancer, 
Pancreatic Cancer, Ovarian Cancer

SNHG17 - 20q11.23 388796 Breast Cancer

SNHG20 C17orf86, LINC00338, NCRNA00338, SCARNA16HG 17q25.2 654434 Breast Cancer, Ovarian Cancer, Prostate 

Cancer

SNHG22 - 18q21.1 103091864 Ovarian Cancer

Dovepress                                                                                                                                                              Qin et al

OncoTargets and Therapy 2020:13                                                                                         submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
7701

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Table 2 SNHG Members in Endocrine-Related Cancers

SNHG 
Member

Mechanism Related 
Signaling 
Pathway

Related 
Clinicopathological 
Characteristics

Prognostic 
Significance

Related Cell 
Biofunctions

Role In vivo

Thyroid Cancer

SNHG1 Positive feedback loop and 

ceRNA: SP1/SNHG1/miR- 

199a-5p/SP1

Tumor size Proliferation, 

invasion

Oncogene NO

GAS5 ceRNA: GAS5/miR-222-3p/ 

PTEN 

Regulation: GAS5/p-AKT

PI3K/AKT 

signaling 

pathway

TNM stage, LNM, multiple 

cancer foci

DFS, OS Proliferation Antioncogene YES

SNHG7 ceRNA: SNHG7/miR-449a/ 

ACSL1 

Regulation: SNHG7/BDNF

BDNF/TrkB 

signaling 

pathway

Tumor size, TNM stage DFS Proliferation, 

migration, cell cycle, 

apoptosis

Oncogene NO

SNHG12 ceRNA: SNHG12/miR-16-5p; 

Regulation: SNHG12/β- 

catenin, MMP2, Cyclin D1

Wnt/β-catenin 

signaling 

pathway

TNM stage, LNM Proliferation, 

migration, invasion, 

apoptosis, cell cycle

Oncogene YES

DANCR – – T grade, TNM stage – Antioncogene NO

SNHG15 ceRNA: SNHG15/miR-200a- 

3p/YAP1, SNHG15/miR-510- 

5p; Regulation: SNHG15/β- 

catenin, E-cadherin, 

N-cadherin, Vimentin, MST1, 

LATS1

YAP1-Hippo 

signaling 

pathway

Gender, tumor size, TNM 

stage, LNM, distant 

metastasis

DFS, OS Proliferation, 

migration, invasion, 

apoptosis, EMT

Oncogene/ 

Antioncogene

YES

SNHG16 ceRNA: SNHG16/miR-497; 

Regulation: SNHG16/BDNF

TNM stage, LNM Proliferation, 

migration, invasion, 

apoptosis

Oncogene NO

Breast Cancer

SNHG1 ceRNA: SNHG1/miR-382-5p, 

SNHG1/miR-448/IDO; 

Regulation: SNHG1/ 

E-cadherin, N-cadherin, 

Vimentin, ZEB1

TNM stage OS Treg cell 

differentiation, 

immune escape, 

proliferation, 

migration, invasion, 

EMT

Oncogene YES

GAS5 ceRNA: GAS5/miR-196a-5p, 

GAS5/miR-23a/ATG3, GAS5/ 

miR-21/PTEN, GAS5/miR- 

378a-5p/SUFU, GAS5/miR- 

221-3p/DKK2; Regulation: 

GAS5/β-catenin, c-Myc, Cyclin 

D1, FOXO1, p-PI3K, p-AKT, 

miR-221/GAS5, miR-222/GAS5

PI3K/AKT 

signaling 

pathway, 

Notch signaling 

pathway, Wnt/ 

β-Catenin 

signaling 

pathway

Tumor size, TNM stage, 

histological grade, LNM, ER-

OS Proliferation, 

invasion, apoptosis, 

autophagy, cell cycle, 

Chemosensitivity: 

DNC, Trastuzumab, 

Imatinib, PTX, CIS, 

Adriamycin

Antioncogene YES

SNHG3 ceRNA: SNHG3/miR-330-5p/ 

PKM, SNHG3/miR-384/HDGF

Histological grade, LNM, 

TNM stage, ER, Her-2

Glycolysis 

metabolism, 

proliferation, 

invasion, migration

Oncogene NO

SNHG5 ceRNA: SNHG5/miR-154-5p/ 

PCNA; Regulation: SNHG5/ 

Cyclin D1, p16

OS Proliferation, 

apoptosis, cell cycle

Oncogene YES

(Continued)
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Table 2 (Continued). 

SNHG 
Member

Mechanism Related 
Signaling 
Pathway

Related 
Clinicopathological 
Characteristics

Prognostic 
Significance

Related Cell 
Biofunctions

Role In vivo

SNHG6 ceRNA: SNHG6/miR-26a/ 

VASP, SNHG6/miR-26a/MAPK6

Tumor size, TNM stage, 

distant metastasis

Proliferation, 

migration, invasion, 

cell cycle, apoptosis, 

EMT

Oncogene YES

SNHG7 Activated by TF and ceRNA: 

c-Myc/SNHG7/miR-34a-5p/ 

LDHA; ceRNA: SNHG7/miR- 

186, SNHG7/miR-381; 

Regulation: SNHG7/Ki67, 

MMP-2, MMP-7, E-cadherin, 

Vimentin, Snail, Notch-1, 

Survivin, Cyclin D1

Notch-1 

signaling 

pathway

T grade, LNM, distant 

metastasis

OS Proliferation, 

glycolysis 

metabolism, 

migration, invasion, 

EMT

Oncogene YES

SNHG12 Activated by TF: c-MYC/ 

SNHG12

Tumor size, LNM Proliferation, 

migration, apoptosis

Oncogene NO

DANCR ceRNA: DANCR/miR-216a-5p; 

Methylation: DANCR/EZH2/ 

SOCS3&CD44&ABCG2; 

Phosphorylation: DANCR/ 

RXRA/PIK3CA; Regulation: 

DANCR/Snail, Slug, MMP-2, 

MMP-9, E-cadherin, Vimentin, 

CD133, OCT3/4, NANOG, 

p-p65, p65, p-STAT3, STAT3, 

SOX2, ABCG2, ALDH1

PI3K/AKT 

signaling 

pathway

TNM stage, histologic grade, 

LNM

OS Proliferation, 

invasion, migration, 

EMT

Oncogene YES

SNHG14 ceRNA: SNHG14/miR-193a- 

3p; Acetylation: SNHG14/ 

PABPC1/Nrf2/HO-1; 

Regulation: SNHG14/c-PARP, 

c-Caspase-3

Nfr2 signaling 

pathway

LNM, distant metastasis, 

cardiac toxicity

Proliferation, 

invasion, cell cycle, 

Chemosensitivity: 

Trastuzumab

Oncogene YES

SNHG15 ceRNA: SNHG15/miR-411- 

5p/VASP, SNHG15/miR-381, 

SNHG15/miR-211-3p; 

Regulation: SNHG15/Bcl-2, 

Bax, VEGF, MMP-2, MMP-9, 

MMP-14, PCNA, Cyclin D1, 

c-Caspase-3, Snail, Vimentin, 

E-Cadherin

Tumor size, TNM stage, 

LNM

OS Proliferation, 

migration, invasion, 

apoptosis, cell cycle, 

Chemosensitivity: 

DDP

Oncogene YES

SNHG16 ceRNA: SNHG16/miR-30a/ 

RRM2, SNHG16/miR-98/E2F5, 

RRM2-let-7a-5p-SNHG16 

/MAL2

DFS, OS Proliferation, 

invasion, migration

Oncogene NO

SNHG17 ceRNA: SNHG17/miR-124-3p TNM stage, LNM OS Proliferation, 

migration, invasion

Oncogene YES

SNHG20 ceRNA: SNHG20/miR-495/ 

HER2

Proliferation, 

migration, invasion

Oncogene YES

Pancreatic Cancer

(Continued)
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Table 2 (Continued). 

SNHG 
Member

Mechanism Related 
Signaling 
Pathway

Related 
Clinicopathological 
Characteristics

Prognostic 
Significance

Related Cell 
Biofunctions

Role In vivo

SNHG1 ceRNA: SNHG1/miR-195/ 

Cyclin D1; Regulation: 

SNHG1/p21, Vimentin, 

E-Cadherin, N-Cadherin, Notch- 

1, Hes-1, PI3K, p-AKT, t-AKT, 

Bcl-2, Bax

PI3K/AKT 

signaling 

pathway, 

Notch-1 

signaling 

pathway

Tumor size, TNM stage OS Proliferation, 

apoptosis, cell cycle, 

migration, invasion

Oncogene YES

GAS5 ceRNA: GAS5/miR-221/ 

SOCS3, GAS5/miR-32-5p/ 

PTEN, GAS5/181c-5p; 

Regulation: GAS5/Vimentin, 

E-Cadherin, N-Cadherin, Snail, 

OCT4, CD133, Nanog, SOX2, 

CDK6

PI3K/AKT 

signaling 

pathway

Proliferation, 

migration, invasion, 

cell cycle, EMT, 

Chemosensitivity: 

Gemcitabine

Antioncogene YES

SNHG7 ceRNA: SNHG7/miR-342-3p/ 

ID4

Tumor size, LNM, TNM 

stage, tumor differentiation

OS Proliferation, 

migration, invasion

Oncogene YES

SNHG9 - N grade, distant metastasis OS Antioncogene NO

DANCR ceRNA: DANCR/miR-33b/ 

MMP16, DANCR/miR-135a/ 

NLRP37, DANCR/miR-214-5p/ 

E2F2, DANCR/miR-33a-5p/ 

AXL; Regulation: DANCR/ 

E-Cadherin, N-Cadherin, 

NLRP3

Tumor size, T grade, 

N grade, TNM stage, LNM, 

vascular invasion, recurrence 

rates

PFS, OS Proliferation, 

invasion

Oncogene YES

SNHG14 ceRNA: SNHG14/miR-101, 

SNHG14/miR-613/ANXA2; 

Bind and regulation: 

SNHG14/EZH2; Regulation: 

SNHG14/Vimentin, E-Cadherin, 

RAB5A, ATG4D

LNM DFS, OS Proliferation, 

invasion, apoptotic, 

EMT, autophagy, 

Chemosensitivity: 

Gemcitabine

Oncogene YES

SNHG15 Methylation: SNHG15/EZH2/ 

P15 

&KLF2; 

Regulation: 

SNHG15/ 

CDK2, CDK4, 

c-Caspase-3, 

c-Caspase-9

Tumor size, 

TNM stage, 

LNM

Proliferation, 

apoptosis, 

cell cycle

Oncogene YES

SNHG16 ceRNA: SNHG16/miR-200a- 

3p, SNHG16/miR-195/ 

SREBP2, SNHG16/miR-218-5p

TNM stage, LNM, distant 

metastasis, tumor 

differentiation

OS Proliferation, 

migration, invasion

Oncogene YES

Ovarian Cancer

SNHG1 Regulation: SNHG1/β-catenin, 

Bax, Bcl-2, Caspase-9, 

c-Caspase-9, PARP, Vimentin, 

E-Cadherin, N-Cadherin, MMP- 

2, MMP-9, Lamin A, Cyclin D1, 

c-myc

Wnt/β-catenin 

signaling 

pathway

Pathological grade, TNM 

stage

OS Proliferation, 

migration, invasion, 

apoptosis, EMT

Oncogene YES

(Continued)
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Table 2 (Continued). 

SNHG 
Member

Mechanism Related 
Signaling 
Pathway

Related 
Clinicopathological 
Characteristics

Prognostic 
Significance

Related Cell 
Biofunctions

Role In vivo

GAS5 ceRNA: GAS5/miR-196a-5p/ 

HOXA5, GAS5/miR-21/SPRY2; 

Bind and regulation: GAS5/ 

E2F4/PARP1/MAPK; 

Regulation: GAS5/c-Caspase-3, 

Caspase-3, c-Caspase-7, 

Caspase-7, CDK4, CDK6, 

Cyclin D, ERK1/2, p-ERK, 

p-JNK, P38MAPK, GDF15, ASC, 

Cas-1, p-Cas-1, IL-1β, p-IL-1β, 

IL-18, p-IL-18, APAF1, p21

MAPK signaling 

pathway

Tumor size, invasive depth, 

FIGO stage, histological type

DFS, OS Proliferarion, cell 

cycle, apoptosis, 

migration, invasion, 

Chemosensitivity: 

DDP

Antioncogene YES

SNHG3 Regulation: SNHG3/GSK3β, 

Cyclin D1, CDK1, MMP-9, 

MMP-3, β-catenin

GSK3β/β- 

catenin 

signaling 

pathway

FIGO stage, LNM OS Proliferation, 

invasion

Oncogene NO

SNHG5 ceRNA: SNHG5/miR-23a Tumor grade, FIGO stage, 

LNM

OS Proliferation, 

apoptosis, 

Chemosensitivity: 

PTX

Antioncogene YES

SNHG12 ceRNA: SNHG12/miRNA- 

129/SOX4

OS Proliferate, migration Oncogene

DANCR ceRNA: DANCRmiR-145/ 

VEGF; Regulation: DANCR/ 

UPF1, IGF2

Tumor stage, accompanied 

by metastatic loci

Proliferation, 

invasion, migration, 

angiogenesis

Oncogene YES

SNHG14 ceRNA: SNHG14/miR-219a- 

5p, SNHG14/miR-125a-5p/ 

DHX33; Regulation: 

SNHG14/DGCR8

OS Proliferation, 

migration, invasion, 

cell cycle

Oncogene NO

SNHG15 - Cancer type, ascites, FIGO 

stage

PFS, OS Proliferation, 

migration, invasion, 

Chemosensitivity: 

DDP

Oncogene NO

SNHG16 Regulation: SNHG16/p-AKT, 

AKT, MMP9

PI3K/AKT 

signaling 

pathway

Clinical stage, tumor size, 

LNM, distant metastasis

OS Proliferation, 

invasion, migration

Oncogene NO

SNHG20 Regulation: SNHG20/β- 

catenin, GSK-3β, p-GSK-3β, 

cyclin D1, c-myc, E-cadherin, 

P21, Vimentin

Wnt/β-catenin 

signaling 

pathway

Histological grade, LNM OS Proliferation, 

migration, invasion, 

EMT

Oncogene NO

SNHG22 ceRNA: SNHG22/miR-2467/ 

Gal-1

Tumor size, CA125 

expression

OS Chemosensitivity: 

DDP, PTX

Oncogene NO

Prostate Cancer

SNHG1 ceRNA: SNHG1/miR-377-3p/ 

AKT2, SNHG1/miR-199a-3p/ 

CDK7

Gleason score, T grade Biochemical 

RFS, OS

Proliferation, 

apoptosis, cell cycle

Oncogene NO

(Continued)
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The role of SNHG15 in thyroid cancer remains controver-
sial. SNHG15 is upregulated in human PTC tissues and cell 
lines compared to controls, and was associated with gender, 
larger tumor size, LNM, advanced TNM stage, and poorer 
overall survival (OS).27 Meanwhile, SNHG15 downregulation 
attenuated cell proliferation, migration, and epithelial– 

mesenchymal transition (EMT) in PTC cells, as well as indu-
cing apoptosis.27 Mechanistically, SNHG15 acts as a sponge 
for miR-200a-3p, thereby upregulating the Yes-associated 
protein 1 (YAP1) signaling pathway.27 Alternatively, another 
study showed SNHG15 was downregulated in thyroid cancer 
tissues and cell lines and suppressed tumor progression, 

Table 2 (Continued). 

SNHG 
Member

Mechanism Related 
Signaling 
Pathway

Related 
Clinicopathological 
Characteristics

Prognostic 
Significance

Related Cell 
Biofunctions

Role In vivo

GAS5 ceRNA: GAS5/miR-21/ 

PDCD4/PTEN, GAS5/miR- 

1284/AKT, GAS5/miR-1284/ 

HMGB1, GAS5/miR-103; 

Regulation: GAS5/γ-H2AX, 

H2AX, p-mTOR, mTOR, S6K1, 

p-S6K1; SNP: rs55829688, 

rs14520427

AKT/mTOR 

signaling 

pathway

Clinical T stage, pathologic 

N stage, seminal vesicle 

invasion, lymphovascular 

invasion

DFS, OS Proliferation, 

migration, invasion, 

apoptosis, cell cycle, 

radiosensitivity

Oncogene/ 

Antioncogene

YES

SNHG4 ceRNA: SP1/SNHG4/miR- 

377/ZIC5

Tumor stage, LNM OS Proliferation, 

invasion, migration

Oncogene NO

SNHG6 - Gleason score, T grade DFS Oncogene NO

SNHG7 ceRNA: SNHG7/miR-324-3p/ 

WNT2B, SNHG7miR-503/ 

Cyclin D1; Regulation: 

E-cadherin, N-cadherin, CDK4, 

CDK6

T grade, TNM stage, Gleason 

score, bone metastasis, pelvic 

LNM

OS Proliferation, 

migration, invasion, 

cell cycle, EMT

Oncogene YES

SNHG12 ceRNA: SNHG12/miR-195/ 

CCNE1, SNHG12/miR-195, 

SNHG12/miR-133b; 

Regulation: Bcl-2, Bax, 

Caspase-3, c-Caspase-3, 

Caspase-9, c-Caspase-9, LC3, 

Beclin-1, p62, PTEN, PI3K, 

p-PI3K, AKT, p-AKT, mTOR, 

p-mTOR, β-catenin, c-Myc

Wnt/β-catenin 

signaling 

pathway

Gleason score, clinical stage, 

bone metastasis, disease 

recurrence, serum PSA, 

LNM, new tumor event after 

treatment, lymph nodes 

examined, PSA value, residual 

tumor

OS Proliferation, 

invasion, apoptosis, 

autophagy, cell cycle

Oncogene YES

DANCR ceRNA: DANCR/miR-135a, 

DANCR/miR-34a-5p/JAG1; 

Methylation: DANCR/EZH2/ 

TIMP2/3; Regulation: DANCR/ 

PCNA, Ki-67, c-Caspase-3, Bax, 

LRP, p-gp, MRP1

Notch signaling 

pathway

Proliferation, 

apoptosis, migration, 

invasion, 

Chemosensitivity: 

PTX, Docetaxel

Oncogene YES

SNHG14 ceRNA: SNHG14/miR-613 Proliferation Oncogene YES

SNHG15 ceRNA: SNHG15/miR-338- 

3p/FKBP1A; Regulation: 

E-cadherin, N-cadherin

Proliferation, 

invasion, migration, 

EMT

Oncogene NO

SNHG20 ceRNA: SNHG20/miR-6516- 

5p/SCGB2A1

Proliferation, 

invasion, apoptosis

Oncogene NO

Abbreviations: LNM, lymph node metastasis; ER-, estrogen receptor-negative; Her-2, human epidermal growth factor receptor 2; FIGO, International Federation of 
Gynaecology and Obstetrics; DFS, disease-free survival; OS, overall survival; PFS, progression-free survival; RFS, recurrence-free survival; DNC, dendrosomal curcumin; 
PTX, paclitaxel; DDP, cisplatin.
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indicating SNHG15 may act as a tumor suppressor.28 

Moreover, inhibition of SNHG15 by miR-510-5p promoted 
cell proliferation, migration, and invasion in thyroid cancer.29 

These diverse functions of SNHG15 found in different studies 
may reflect the different subtypes of thyroid cancer; however, 
further research is required.

Finally, SNHG16, which functions as an endogenous 
sponge for miR-497, was upregulated in both PTC tissues 
and cell lines and shown to induce proliferation, migration, 
and invasion of thyroid cancer cells, while inhibiting 
apoptosis.30 High expression of SNHG16 was also posi-
tively associated with advanced TNM stage and LNM.30

In summary, SNHG1, GAS5, SNHG7, SNHG12, 
DANCR, SNHG15, and SNHG16 all appear to play essen-
tial roles in thyroid cancer; although the function of 
SNHG15 requires further confirmation.

Breast Cancer
Breast cancer is the most commonly diagnosed cancer 
worldwide and the leading cause of cancer-related death 
for women.31 Although advances in early detection and 
cancer therapeutics have led to a decrease in mortality 
rates, breast cancer remains a significant public health 
concern. Some classes of breast cancer, such as triple- 
negative breast cancer (characterized by a lack of expres-
sion of the progesterone receptor, estrogen receptor, and 
Her-2), have a poor prognosis.32 Many lncRNAs have 
been implicated in breast cancer development in recent 
years, which may eventually lead to better outcomes for 
these patients.33

The downregulation of SNHG1 can suppress the pro-
liferation and invasion of breast cancer cells by regulating 
miR-382.34 In addition, SNHG1 may inhibit the differen-
tiation of regulatory T cells, promote miR-448 expression, 
and reduce indoleamine 2,3 dioxygenase (IDO) levels in 
breast cancer.35 Therefore, SNHG1 may be a useful target 
in breast cancer treatment.

GAS5 was first reported to be a tumor suppressor in breast 
cancer in 2009.36 Since then, studies have shown low GAS5 
expression is closely related to a more aggressive tumor 
phenotype, enhanced proliferation, and attenuated apoptosis 
in breast cancer cells.37–39 GAS5 can bind to miR-196a-5p, 
thereby partially alleviating its tumor-promoting effects, 
including invasion and downstream forkhead box O1 
(FOXO1)/phosphatidylinositol 3-kinase (PI3K)/AKT signal 
pathway activation.37 Notch-1 also promotes breast cancer 
cell proliferation by downregulating GAS5.40 GAS5 can also 
act as a sponge for miR-23a to promote autophagy via the 

GAS5-miR-23a-ATG3 axis in breast cancer.38 Moreover, in 
drug-resistant breast cancer cells, GAS5 overexpression 
increases chemosensitivity (eg to trastuzumab, imatinib, 
paclitaxel, cisplatin, among others), especially in triple- 
negative breast cancer cells.39,41-46 Another study showed 
miR-221/222 suppresses GAS5 expression and enhances 
tumor growth in a mouse model of breast cancer 
xenografts.47 Moreover, lower plasma GAS5 levels were 
found in patients with a high Ki67 proliferation index before 
surgery and in those with LNM after surgery.48 Finally, 
bioinformatics analysis showed GAS5 plays a role in “pro-
liferation” and the “cell cycle”, although the molecular 
mechanisms related to these regulatory pathways are 
unclear.49

There is evidence that lncRNA secreted in exosomes 
from cancer cells can regulate gene expression and signal-
ing pathways in other niche cells. For example, breast 
cancer-derived cancer-associated fibroblasts can secrete 
increased amounts of SNHG3 than healthy breast tissue 
cells, which in turn promotes the growth of breast cancer 
cells by regulating miR-330-5p/Pyruvate Kinase M1/M2 
(PKM).50 SNHG3 can also act as a sponge for miR-384/ 
hepatoma-derived growth factor (HDGF) to drive breast 
cancer cell proliferation, migration, and invasion.51

SNHG5 is an oncogene and acts as a sponge for miR-154- 
5p, reducing its ability to repress proliferating cell nuclear 
antigen (PCNA), thus promoting breast cancer proliferation, 
cell cycle progression, and inhibiting apoptosis.52 SNHG6 
was also found to be highly expressed in breast cancer tissues 
and cell lines, and is associated with poorer clinicopathologic 
features.53 Indeed, SNHG6 knockdown inhibits breast cancer 
cell proliferation, migration, invasion, and G1 cell cycle 
arrest by acting as a sponge for miR-26a-5p, which regulates 
expression of the vasodilator-stimulated phosphoprotein 
(VASP)54 and mitogen-activated protein kinase 6 
(MAPK6).55

The expression of SNHG7 is also upregulated in breast 
cancer tissues and cells compared to healthy tissues, with 
high SNHG7 expression strongly related to tumor stage, 
distant metastasis, LNM, and OS.56–58 Knocking down 
SNHG7 inhibited breast cancer cell proliferation, invasion, 
and EMT.56–58 Further mechanistic studies revealed 
SNHG7 could act as a sponge to repress miR-34a,57 miR- 
186,58 and miR-381,56 thereby activating the Notch-1 path-
way and glycolysis in breast cancer. Additionally, c-Myc (a 
TF) can bind to the SNHG7 promoter and positively reg-
ulate its expression in breast cancer.59
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Increased expression of SNHG12 has been observed in 
triple-negative breast cancer.60 SNHG12 upregulation 
positively correlated with advanced tumor stage and size, 
and negatively correlated with OS.60 SNHG12 is a direct 
transcriptional target of c-Myc, and the c-Myc-induced 
upregulation of SNHG12 enhances the proliferation of 
breast cancer cells and inhibits apoptosis.60 SNHG12 
may also promote the migration of breast cancer cells by 
regulating the expression of matrix metalloproteinase 13 
(MMP13).60

High DANCR levels can lead to shorter OS in triple- 
negative breast cancer, by acting as a sponge for miR- 
216a-5p and thereby promoting the proliferation and 
invasion of tumor cells.61 DANCR can mediate protein 
assembly and modification in triple-negative breast can-
cer. For example, DANCR can bind to the phosphoryla-
tion site of retinoid X receptor alpha (RXRA) and 
suppresses its interaction with the phosphatidylinositol- 
4,5-bisphosphate 3-kinase catalytic subunit alpha 
(PIK3CA) promoter.62 This leads to the activation of 
the P13K/AKT pathway, which in turn, promotes the 
proliferation and growth of triple-negative breast cancer 
cells.62 DANCR may also participate in the enhancer of 
zeste homolog 2 (EHZ2)-mediated epigenetic repression 
of the suppressor of cytokine signaling 3 (SOCS3) in 
breast cancer cells.63 Sha et al64 proposed DANCR 
knockdown was associated with increased binding of 
EZH2 to the promoters of CD44 and ABCG2 (two triple- 
negative breast cancer stem cell markers), and the con-
comitant reduction of expression of these genes 
decreased cancer cell proliferation and invasion. 
Furthermore, nanoparticle-mediated RNAi of DANCR 
was shown to be an effective therapy for triple-negative 
breast cancer.65

Upregulation of SNHG14 in breast cancer tissues may 
also promote cancer cell proliferation and invasion.66 In 
particular, SNHG14 upregulates polyadenylate-binding 
protein 1 (PABPC1) expression by modulating H3K27 
acetylation (H3K27ac) in the promoter of PABPC1 gene, 
resulting in the activation of the nuclear factor E2-related 
factor 2 (NRF2) signaling pathway, which is involved in 
cell defense and survival against chemotherapy drugs.66 

Besides histone methylation, acetylation is another impor-
tant form of histone modification.

Indeed, exosomal SNHG14 was upregulated in trastu-
zumab-resistant human epidermal growth factor receptor 2 
(HER2) breast cancer cells compared with parental breast 
cancer cells, and SNHG14 knockdown re-sensitized breast 

cancer cells to trastuzumab treatment.67 These results indi-
cate SNHG14 may be a promising therapeutic target for 
patients with HER2+ breast cancer. In addition, SNHG14 
may enhance breast cancer cell proliferation and invasion 
by acting as a sponge for miR-193a-3p.68

SNHG15 has also been shown to be highly expressed 
in breast cancer tissues and cell lines and is positively 
associated with larger tumor size, LNM, advanced TMN 
stage, and worse survival.69,70 SNHG15 primarily acts as 
a sponge for miR-411-5p69 and miR-211-3p,70 leading to 
the proliferation, migration, and invasion of breast cancer 
cells. Additionally, SNHG15 knockdown enhances the cis-
platin sensitivity of breast cancer cells by acting as 
a sponge for miR-381.71 Moreover, bioinformatics analysis 
showed SNHG16 might be associated with the prognosis 
of breast cancer.72,73 In particular, SNHG16 may interact 
with miR-30a to regulate the expression of ribonucleoside- 
diphosphate reductase subunit M2 (RRM2)74 and competi-
tively bind miR-98 and the E2F Transcription Factor 5 
(E2F5)75 to promote the proliferation and invasion of 
breast cancer cells. Finally, SNHG1776 and SNHG2077 

may also drive breast cancer progression by sponging 
miR-124-3p and miR-495, respectively.

In general, multiple SNHGs, including SNHG1, GAS5, 
SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, DANCR, 
SNHG14, SNHG15, SNHG16 and SNHG20, play a role 
in breast cancer. Targeting SNHGs, especially the treat-
ment of drug-resistant breast cancer, is the future research 
direction.

Pancreatic Cancer
Pancreatic cancer is one of the most devastating human 
tumors, with high invasiveness, early metastasis, lack of 
specific symptoms, and high mortality. According to the 
most recent statistical data, the 5-year survival of pancrea-
tic cancer is 9%, which is the lowest among all types of 
cancers and continues to increase (by 0.3% per year) in 
men.78 The high fatality rate in pancreatic cancer is attrib-
uted to late diagnosis and resistance to current therapies. 
Recent studies demonstrate lncRNAs are critical in the 
pathogenesis of pancreatic cancer and are therefore poten-
tial biomarkers or drug targets.79

SNHG1 acts as an oncogene in pancreatic cancer and 
accelerates cancer cell growth.80 In addition, SNHG1 over-
expression can promote cyclin D1-mediated pancreatic 
cancer proliferation by regulating the cell cycle.81 

Meanwhile, SNHG1 downregulation inhibits the prolifera-
tion, migration, and invasion of pancreatic cancer cells by 
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suppressing the Notch-1 signaling pathway.80 Similarly, 
SNHG1 downregulation inhibits the PI3K/AKT signaling 
pathway in pancreatic ductal adenocarcinoma (PDAC).82

By acting as a sponge for miR-32-5p, GAS5 can pro-
mote the expression of PTEN and stop the activation of the 
PI3K/AKT signaling pathway, thereby inhibiting pancreatic 
cancer cell proliferation and survival.83 GAS5 also inhibits 
the expression of the oncogene cyclin-dependent kinase 6 
(CDK6), although the underlying mechanisms have not 
been determined.84 Studies also show GAS5 reduces the 
chemoresistance of pancreatic cancer cells by downregu-
lating miR-181c-5p and miR-221.85,86

SNHG7 is highly expressed in pancreatic cancer tissues 
and positively correlates with reduced OS. Meanwhile, 
SNHG7 knockdown suppresses cell proliferation, migra-
tion, and invasion of pancreatic cancer cells by modulating 
the miR-342-3p/inhibitor of DNA binding 4 (ID4) axis.87 

Zhang et al88 showed low expression of SNHG9 in pan-
creatic cancer tissues and serums, while those with high 
SNHG9 expression had significantly higher survival rates. 
This data indicates SNHG9 may be a novel prognostic 
marker for pancreatic cancer.

High DANCR expression correlates with vascular inva-
sion, advanced T grade, LNM, and advanced TNM stage, 
and is an independent risk factor for poor OS and progres-
sion-free survival (PFS) in PDAC.89,90 Mechanistically, 
DANCR acts as an miRNA sponge, affecting the miRNA- 
33a-5p/Anexelekto (AXL) axis,89 the miRNA-33b/MMP16 
axis,91 the miR-135a/NLRP3 axis,92 and the miR-214-5p/ 
E2F2 axis90 to promote cell proliferation, migration, inva-
sion, and metastasis in pancreatic cancer.

The SNHG14 oncogene also potentiates pancreatic can-
cer cell proliferation through modulation of annexin A2 
(ANXA2) expression by acting as a ceRNA for miR-613.93 

It also acts as a sponge for miR-10, thereby enhancing 
autophagy, which underlies the chemoresistance of PDAC 
cells to gemcitabine.94,95 Finally, SNHG15 and SNHG16 
are upregulated in pancreatic cancer samples and are asso-
ciated with progression in pancreatic cancer patients.96,97 

SNHG15 may help repress P15 and KLF2 expression,96 

while SNHG16 promotes cell proliferation, migration, and 
invasion of pancreatic cancer by sponging miR-200a-3p98 

and miR-218-5p.97 SNHG16 may also promote pancreatic 
cancer lipogenesis by directly regulating the miR-195/ 
SREBP2 axis.99

In short, many SNHGs have a significant predictive 
effect on the survival of pancreatic cancer patients, and 

can be used as a clinical prognostic marker in pancreatic 
cancer.

Ovarian Carcinoma
Ovarian cancer is the most lethal gynecological cancer in 
women globally.100 Despite recent improvements in cytor-
eductive surgery and chemotherapy, the 5-year survival 
rate of ovarian cancer is still approximately 40–50% 
owing to its late diagnosis and the development of 
chemoresistance.78 Therefore, understanding the molecu-
lar mechanisms of ovarian carcinogenesis may help 
improve diagnosis, therapy, and prevention.

Expression of SNHG1 is increased in human epithelial 
ovarian cancer tissues and cell lines compared to normal 
healthy tissues, and promotes the proliferation and inva-
sion of ovarian carcinoma cells through the regulation of 
EMT and the Wnt/β-catenin pathway.101,102 Meanwhile, 
GAS5 acts as a tumor suppressor and is expressed in low 
levels epithelial ovarian cancer samples.103,104 Indeed, 
GAS5 expression correlates with prognosis in epithelial 
ovarian cancer, including International Federation of 
Gynecology and Obstetrics (FIGO) stage, histological 
type, OS, and disease-free survival (DFS).103,104 In terms 
of its mechanism of action, GAS5 may block CCAAT/ 
enhancer-binding protein beta (CEBPB)-mediated tran-
scription of the growth/differentiation factor 15 (GD15), 
leading to decreased viability and increased apoptosis of 
ovarian cancer cells.105 GAS5 may also suppress the pro-
liferation of ovarian cancer cells by sponging miR-21106 

and miR-196a-5p,107 which regulate sprouty homolog 2 
(SPRY2) and homeobox A5 (HOXA5) expression, respec-
tively. GAS5 is also implicated in inflammasome formation 
and pyroptosis, but the underlying mechanism is 
unclear.108 Finally, GAS5 has been linked to chemoresis-
tance; in particular, GAS5 overexpression control the 
expression of poly(ADP-ribose) polymerase 1 (PARP1) 
by recruiting the transcription factor E2F4 to its promoter, 
which subsequently affects the mitogen-activated protein 
kinase (MAPK) pathway activity, further enhance the cis-
platin sensitivity of ovarian cancer cells.109

Upregulation of SNHG3 expression is associated with 
poor prognosis in ovarian cancer (including FIGO stage 
and LNM) and promotes proliferation and invasion by 
activating the GSK3β/-catenin signaling pathway.110 

Bioinformatics analysis has shown SNHG3 is related to 
energy metabolism in the “glycolysis”, “Kreb’s cycle”, 
and “oxidative phosphorylation” pathways, and to “drug 
resistance”.111 Similarly, SNHG5 has been implicated in 
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chemoresistance: paclitaxel-resistant ovarian cancer tis-
sues and cell lines have lower levels of SNHG5, while 
SNHG5 overexpression can enhance paclitaxel sensitivity 
(likely by sponging miR-23a).112

SNHG12 is also upregulated in ovarian cancer tissues 
and enhances the proliferative and migratory capacity of 
cells via sponging miR-129 and upregulating expression of 
SOX4 (a TF).113 In addition, DANCR levels are higher in 
ovarian cancer patients with worse tumor stage and 
accompanied by metastatic loci.114 DANCR binds directly 
to miR-145 and regulates vascular endothelial growth fac-
tor (VEGF) expression.115 Indeed, knockdown of DANCR 
impairs ovarian tumor growth by inhibiting tumor 
angiogenesis.115 In addition, DANCR may enhance the 
proliferation, migration, and invasion capacities of ovarian 
cancer cells by upregulating expression of the insulin-like 
growth factor 2 (IGF2)116 and downregulating UPF1 RNA 
Helicase And ATPase (UPF1) expression.114

Like SNHG12, SNHG14 is highly expressed in ovarian 
cancer tissues and associated with poorer OS.117,118 

SNHG14 may promote ovarian cancer cell progression 
by sponging miR-125a-5p117 and miR-219a-5p,118 or 
directly regulating the expression of DiGeorge syndrome 
chromosomal region 8 (DGCR8).119 SNHG15 and 
SNHG16 may also serve as oncogenes in epithelial ovarian 
cancer. SNHG16 has been shown to promote the prolifera-
tion, invasion, and migration of cancer cells via activation 
of the PI3K/AKT signaling pathway,120 while the role of 
SNHG15 is unclear.121 SNHG20 is also upregulated in 
ovarian cancer and is associated with shorter OS.122 

SNHG20 knockdown suppresses Wnt/β-catenin signaling 
activity and EMT-associated gene expression, thereby 
inhibiting ovarian cancer cell proliferation, migration, 
and invasion.123 Finally, the SNHG22 oncogene may reg-
ulate the miR-2467/Gal-1 axis to promote cisplatin- and 
paclitaxel-resistance of ovarian cancer cells.124

In a word, compared with other SNHGs, GAS5 regu-
lates the progression of ovarian cancer through various 
mechanisms, indicating its key role in the development 
of ovarian cancer.

Prostate Cancer
Prostate cancer is the most common malignancy in males 
and accounts for 10% of cancer-related deaths.78 

Androgen deprivation therapy (ADT) is the standard treat-
ment for patients with biochemical recurrence after pri-
mary treatment, or with locally-advanced or metastatic 
disease. However, the majority of cancers will eventually 

acquire ADT resistance and progress to castration-resistant 
prostate cancer (CRPC).125 Aberrantly expressed lncRNAs 
can be indicative of certain stages of prostate cancer pro-
gression, and may predict early progression or efficiently 
sustain tumor-related signaling pathways. Thus, lncRNAs 
may be applicable for the diagnosis of prostate cancer, as 
well as being potential criteria in the choice of therapy and 
new therapeutic targets of CRPC.126

SNHG1 upregulation in prostate cancer correlates with 
the Gleason score, T stage, and a short biochemical recur-
rence-free survival time.127 SNHG1 may promote prostate 
cancer cell proliferation by regulating the miR-199a-3p/ 
CDK7 axis128 and the miR-377-3p/AKT2 axis.129 

Conversely, GAS5 levels are reduced in prostate cancer 
tissues and cell lines.130–132 Low GAS5 levels are asso-
ciated with prostate-specific antigen level, Gleason score, 
and pathological stage.130–132

Most studies indicate that GAS5 inhibits the proliferation, 
migration, and invasion of prostate cancer cells, and pro-
motes apoptosis.130–132 In terms of its mechanism of action, 
GAS5 may act as a sponge for miR-103, which in turn, 
inactivates the AKT/mTOR signaling pathway, thus inhibiting 
prostate cancer cell proliferation.131 In addition, two single 
nucleotide polymorphisms (SNPs) located in the chromoso-
mal segment of GAS5 (rs55829688 and rs145204276) can 
increase GAS5 expression,133–135 and are associated with 
improved survival in prostate cancer.133 Patients with pros-
tate cancer and the GAS5 rs145204276 polymorphism are 
associated with a low risk of pathologic N stage and seminal 
vesicle invasion.135 Furthermore, patients with prostate can-
cer aged >65 years who carry the GAS5 rs145204276 poly-
morphism show decreased risk of clinical T stage, pathologic 
N stage, and lymphovascular invasion.135 Differential 
expression of GAS5 due to these SNPs likely affects the 
miR-21/programmed cell death 4 (PDCD4)/PTEN axis,133 

as well as the miR-1284/AKT133 and miR-1284/high mobility 
group box 1 (HMGB1)134 pathways. In addition, overexpres-
sion of miR-145 can upregulate GAS5 expression, although 
GAS5 overexpression (or silencing) has no effect on miR-145 
levels.132

Enhancing GAS5 expression may be particularly useful 
in androgen-sensitive prostate cancers.136 Indeed, mTOR 
inhibitors enhance GAS5 transcript levels in androgen- 
sensitive prostate cancer cell lines but have no effect on 
androgen-independent cell lines (which exhibit low endo-
genous levels of GAS5).136 As further evidence of its 
tumor-suppressing role, GAS5 is implicated in improving 
the radiosensitivity of prostate cancer cells. In particular, 
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GAS5 can enhance the α-Solanine-induced radiosensitivity 
of prostate cancer cells by negatively regulating miR- 
18a.137

Despite available evidence showing that GAS5 acts as 
a tumor suppressor, some studies report GAS5 may exist as 
an oncogene in prostate cancer. For example, Zhang and 
Chen et al.138,139 found GAS5 expression was higher in 
prostate cancer tissues than normal healthy tissues in both 
public databases and human tissue samples. In addition, 
functional analysis showed GAS5 knockdown inhibited the 
proliferation and cell cycle progression of prostate cancer 
cells, while promoting apoptosis.138 A bioinformatics analy-
sis also showed high expression of GAS5 correlated with 
poorer DFS in prostate cancer, and other studies show 
GAS5 may be involved in regulating translational elongation, 
protein biosynthesis, transcription, protein translation, and 
proliferation.138–140

SP1-mediated upregulation of SNHG4 can facilitate 
prostate cancer progression via the miR-377/zic family 

member 5 (ZIC5) axis.141 Similarly, SNHG6 overexpres-
sion was associated with shorter DFS in the Cancer 
Genome Atlas (TCGA) and Taylor datasets, with bioinfor-
matics analysis revealing SNHG6 is associated with 
“translation”, “nuclear-transcribed mRNA catabolic pro-
cesses”, “ribosomal RNA processing”, and “mRNA 
splicing”.142 SNHG7 is also significantly upregulated in 
prostate cancer tissue and cell lines,143,144 and correlates 
with the Gleason score, bone metastasis, pelvic LNM, 
TNM stage, and OS.145 In terms of its mechanism of 
action, SNHG7 knockdown was found to inhibit prolifera-
tion and promote CCND1-induced cell cycle arrest at the 
G0/G1 phase.144 SNHG7 can also promote EMT via reg-
ulating miR-324-3p and WNT2B, an important protein in 
the Wnt signaling pathway.143 Therefore, targeting the 
SNHG7/miR-324-p/WNT2B axis may represent a novel 
therapeutic strategy for prostate cancer treatment.

As SNHG12 acts as an oncogene, it may be a useful 
predictor of poor prognosis in prostate cancer. Indeed, 

Figure 2 Schematic diagram of the functional mechanism of SNHGs. (A) SNHGs can promote or inhibit expression of downstream target genes. (B) Transcription factors 
(TF) bind to the promoter and activate transcription of SNHGs. SNHGs can then act as competing endogenous RNA sponges to regulate transcription of downstream 
target genes (ie TF), forming a positive feedback loop. SNHGs regulate promoter methylation (C) or acetylation (D) of downstream target genes and regulate tumor 
progression.
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a study showed SNHG12 acts as a sponge for miR-195 and 
can activate the Wnt/β-catenin signaling pathway.146 

SNHG12 can also promote cell viability and inhibit apop-
tosis and autophagy of prostate cancer cells via regulating 
the expression of the G1/S-specific cyclin-E1 (CCNE1) by 
sponging miR-195.147 Bioinformatic analysis revealed 
higher expression of SNHG12 was enriched in the “P53 
signaling pathway”, “cell cycle”, “regulation of cell migra-
tion”, “cellular metabolic process”, “gene expression”, and 
“Notch signaling pathway”, and that SNHG12 may target 
miR-133b.148

The oncogene DANCR has also been shown to promote 
the invasion and migration of prostate cancer cells in vitro 
and the metastasis of tumor xenografts in nude mice.149 

Mechanistically, DANCR works synergistically with EZH2 
to downregulate the expression of the tissue inhibitor of 
metalloproteinases (TIMP) 2/3.149 Furthermore, downregu-
lation of DANCR can increase the paclitaxel sensitivity of 
prostate cancer cells by negatively regulating the expression 
of miR-135a.150 In addition, stimulation of the DANCR/miR- 
34a-5p axis enhanced docetaxel-resistance in prostate cancer 
via targeting JAG1, which in turn activates the Notch signal-
ing pathway.13 Finally, SNHG14,151 SNHG15,152 and 
SNHG20153 may all act as oncogenes in prostate cancer via 
targeting miR-613, miR-338-3p, and miR-6516-5p to pro-
mote cell proliferation, migration, and invasion.

In conclusion, SNHGs plays an important role in the 
process and embody diversified treatment strategies in 
prostate cancer, especially in CRPC.

Conclusion
This review highlights that the abnormal expression of 
SNHGs is significantly related to poor prognosis (eg TNM 
stage, LNM, OS, DFS) and function (eg proliferation, inva-
sion, migration, apoptosis, autophagy, and chemoresistance) 
in multiple endocrine-related cancers. Some SNHGs played 
similar roles in different tumors. For example, SNHG1, 
SNHG3, SNHG4, SNHG6, SNHG7, SNHG12, SNHG14, 
SNHG16, SNHG17, SNHG20 and SNHG22 promotes 
tumor growth as oncogenes, while GAS5 and SNHG9 played 
the role of tumor suppressor genes. In addition, SNHG5, 
DANCR, SNHG15 played a dual role, which have attracted 
more scholars’ attention. SNHGs could regulate the tumor 
process via various mechanisms, including direct regulation 
(promotion or inhibition) (Figure 2A), binding and being 
activated by TFs, acting as a ceRNA, activating different 
signaling pathways (Figure 2B), and regulating promoter 
methylation (Figure 2C) or acetylation of downstream target 

genes (Figure 2D). Both methylation and acetylation were 
histone modifications and their mechanisms were similar. 
The difference between them was that they bound and mod-
ified different histones, and then promoted or inhibited the 
expression of downstream genes. However, the SNHGs 
described in this review are only just the tip of the iceberg, 
and further mechanistic will be required as more SNHG 
family members are uncovered.
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