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Purpose: An increase in resting motor threshold (RMT), prolonged cortical silent period 
duration (CSP), and reduced short-latency afferent inhibition (SAI), confirmed with previous 
transcranial magnetic stimulation (TMS), suggest decreased cortical excitability in obstruc-
tive sleep apnea syndrome (OSAS). The present study included MRI of OSAS patients for 
navigated TMS assessment of the RMT, as an index of the threshold for corticospinal 
activation at rest, and SAI as an index of cholinergic neurotransmission. We hypothesize 
to confirm findings on SAI and RMT with adding precision in the targeting of motor cortex 
in OSAS.
Subjects and Methods: After acquiring head MRIs for 17 severe right-handed OSAS and 
12 healthy subjects, the motor cortex was mapped with nTMS to assess the RMT and SAI, 
with motor evoked potentials (MEPs) recorded from the abductor-pollicis brevis (APB) 
muscle. The 120%RMT intensity was used for the SAI by a paired-pulse paradigm in 
which the electrical stimulation to the median nerve is followed by magnetic stimulation 
of the motor cortex at inter-stimulus intervals (ISIs) of 18–28 ms (ISIs18-28). The SAI control 
condition included a recording of MEPs without peripheral stimulation. Latency and ampli-
tude of MEP at RMT at 120%RMT for eleven different at ISIs18-28 were analyzed.
Results: The study showed a significantly lower percentage deviation of MEP amplitude at 
ISIs(18-28ms) from the control condition between OSAS and healthy subjects (U=44.0, 
p=0.01). The intensity of stimulation at RMT was significantly higher in OSAS subjects 
(U=55.0, p=0.04*). Correlation analysis showed that BMI significantly negatively correlated 
(ρ=−0.47) with MEP amplitude percentage deviation in OSAS patients.
Conclusion: The nTMS study results in increased RMT, and reduced cortical afferent 
inhibition in OSAS patients for SAI at ISIs18-28, confirming previous findings of impaired 
cortical afferent inhibition in OSAS. Future nTMS studies are desirable to elucidate the role 
of RMT and SAI in diagnostics and treatment of OSAS, and to elucidate the usefulness of 
nTMS in OSAS research.
Keywords: short-latency afferent inhibition, obstructive sleep apnea, transcranial magnetic 
stimulation, motor evoked potentials, primary motor cortex, transcutaneous electrical nerve 
stimulation

Plain Language Summary
Obstructive sleep apnea syndrome (OSAS) contributes to changes in brain functioning 
previously confirmed by neuropsychological and neuroimaging studies. For the past 30 
years, transcranial magnetic stimulation (TMS) was used to investigate sleep to understand 
its physiology, and in OSAS research to investigate corticospinal excitability during apneas 
as well as in OSAS patients during the awake state. TMS studies to date indicate decreased 
cortical excitability in OSAS, confirmed by reduced cortical silent period duration (index of 
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an inhibitory gamma-aminobutyric acid activity in the motor 
cortex), increased resting motor threshold (RMT) (index of the 
threshold for corticospinal activation at resting), and reduced 
short-latency afferent inhibition measures (SAI) (index of choli-
nergic neurotransmission). However, the major obstacle in rele-
vant TMS investigations of OSAS was to locate precisely the 
magnetic coil over the motor cortex. It has been reported that the 
motor target cortical area is considerably widespread in tradi-
tional TMS, and when combined with MRI-based navigation, it 
permits more precise stimulation of structural areas of the motor 
cortex. The present study for the first time included MRI data of 
OSAS patients for the navigated-TMS (nTMS) assessment of the 
RMT and SAI phenomena. Our nTMS study provided findings 
on increased RMT, as well as the reduction of cortical afferent 
inhibition in OSAS tested with the SAI protocol. We believe the 
study contributed to the field of TMS research of OSAS by 
including MRI data and nTMS technology and confirmed the 
previous findings related to SAI and RMT in OSAS patients 
conducted with traditional TMS. It would be highly recom-
mended to explore in future studies the role of the potential 
neurophysiological markers, such as RMT and SAI in early 
detection and therapy outcomes (ie, CPAP). Further nTMS stu-
dies are also needed to investigate the performance of OSAS 
patients on other experimental protocols investigating cortical 
inhibition, facilitation, and cortical plasticity (ie, MEP recruit-
ment curve, paired associative stimulation (PAS)) with psycho-
motor and cognitive performance, to clarify the usefulness of 
nTMS in OSAS research.

Introduction
The obstructive sleep apnea syndrome (OSAS) is character-
ized by repetitive upper airway obstructions that occur during 
sleep and are associated with a reduction in blood oxygen 
saturation,1,2 resulting in intermittent hypoxemia, sympa-
thetic excitation and sleep fragmentation.3–5 OSAS is asso-
ciated with a range of medical conditions such as 
hypertension, obesity, type 2 diabetes, depression, peripheral 
neuropathy, as well as with psychological and cognitive 
deficits.4–10 However, the pathophysiologic mechanisms of 
OSAS are still challenging to disentangle. Transcranial mag-
netic stimulation (TMS) studies proposed an altered motor 
cortical excitability as part of the mechanisms underlying 
OSAS in terms of a dysfunctional cortico-motoneuronal 
system.10–20 It has been suggested that the pattern of cortical 
excitability seems to be disease-specific rather than reflect 
a generic consequence of the sleep architecture disruption or 
sleep fragmentation.19

In sleep physiology of OSAS disorder, TMS is used for 
exploring motor cortical and corticospinal excitability by 

evaluating resting motor threshold (RMT), amplitudes and 
latencies of motor evoked potentials (MEPs), cortical 
silent period, intracortical inhibition and facilitation, trans-
callosal inhibition.13–19 So far, one TMS study performed 
by Nardone et al20 investigated cortical excitability in 
OSAS using the short-latency afferent inhibition (SAI) 
technique without including the magnetic resonance ima-
ging (MRI) data for the enrolled patient.

The SAI technique refers to an MEP inhibition produced 
by a conditioning afferent electrical stimulus applied to the 
median nerve at the wrist prior to TMS of the hand area of 
the contralateral motor cortex.21,22 Cortical afferent inhibi-
tion measured with the SAI protocol is thought to reflect the 
sensorimotor interaction and cholinergic activity of the 
cerebral cortex and is likely mediated by the GABAA 

receptor subtype bearing the α1-subunit.23–25 All TMS stu-
dies to date have indicated decreased cortical excitability in 
OSAS, confirmed by reduced cortical silent period duration 
(CSP), increased resting motor threshold (RMT), and 
reduced SAI.13,15-17,19,20

Nardone et al20 investigated SAI phenomenon in 
severe OSAS by determining median nerve-cortical TMS 
inter-stimulus intervals (ISIs) with the standard approach 
based on the latency of the N20 response of somatosen-
sory evoked potentials (SEPs).21,26 According to our 
knowledge, the present study for the first time used MRI 
data of OSAS patients and healthy subjects with navigated 
TMS (nTMS) technology to systematically investigate the 
SAI phenomenon in severe OSAS patients by exploring an 
eleven nerve-cortical TMS ISIs ranging from 18 m to 28 
ms (ISI(18-28)),25 control measurement (without peripheral 
stimulation) related to SAI protocol, and RMT investiga-
tion. With the hypothesis that OSAS is associated with 
impaired afferent cortical inhibition, we expected to con-
tribute to the field of TMS research of OSAS by including 
MRI data and nTMS technology to confirm the previous 
findings related to SAI20 and RMT16,17,19 in OSAS 
patients conducted with traditional TMS.

Methods
General Procedures
Severe OSAS patients and healthy adult subjects were 
included in nTMS study. After a diagnosis of severe 
OSAS in Split Sleep Medicine Center (SMC), and if ful-
filling all excluding and including criteria, the subjects 
(including recruited healthy subjects) were admitted to 
the University Hospital Split, Department of Diagnostic 
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and Interventional Radiology for magnetic resonance ima-
ging (MRI) of the head. The expert radiologist reviewed 
all the MRI findings and excluding one female subject in 
whom lesion was detected in the occipital region and was 
referred to continue further examinations at the 
Neurosurgical Department.

Participants
We studied seventeen adult OSAS patients (thirteen males 
and four females); mean age 55±12 years, with severe 
apnea (Apnea-hypopnea index – AHI ≥30 h−1) diagnosed 
at the Split SMC centre following whole-night polysom-
nography (PSG) or polygraphy (PG). Eleven OSAS 
patients were with High School Degree and six of them 
with Graduate Degree. A diagnosis of OSAS was defined 
in accordance with the guidelines of the American 
Academy of Sleep Medicine (AASM) and the European 
Sleep Research Society (ESRS)27 and was given by expert 
certified sleep medicine – physician specialist. The sub-
jects with severe apnea were included in the nTMS study 
after being diagnosed and with no initiation of continuous 
positive airway pressure (CPAP) therapy. Exclusion cri-
teria for present nTMS study were following: (1) age 
younger than 18; (2) contraindication to TMS (ie, presence 
of metal objects like a denture or cardiac pacemaker); (3) 
history of psychiatric, neurological, or respiratory disease; 
(4) abnormal findings during oto-rhino-laryngological 
examination; and (5) epileptic seizures, or a history of 
epileptic seizures. The comorbidity that was tolerated for 
OSAS patients to be included in the study was the pre-
scription of antihypertensive medication (10 patients), 
analgetics (one patient), diabetes medication (three 
patients), immunosuppressive medication (one patient), 
and antihistaminics (one patient).

OSAS subjects included in this study underwent an 
initial medical history interview, physical examination 
with anthropometric measurements, and neuropsychologi-
cal evaluation.28,29 Body weight and height were measured 
using a calibrated scale (Seca, Birmingham, UK) while 
subjects wore light clothes. Body mass index (BMI) was 
calculated as body weight (kg) divided by height squared 
(m2). Excessive daytime sleepiness was assessed using the 
self-administered Epworth Sleepiness Scale (ESS) for the 
OSAS diagnostics as well as before TMS procedure.30 The 
Edinburgh Handedness Inventory was used to evaluate the 
hand dominance.31

For the healthy subject group, 12 healthy subjects (six 
males and six females; mean age 46±10) were recruited 

from a pool of healthy subjects, which previously partici-
pated in nTMS studies at the Department of Neuroscience, 
University of Split School of Medicine; or were recruited by 
advertisement. All healthy subjects underwent screening 
with the STOP-BANG Questionnaire,32, and a Croatian 
version of the ESS and STOP questionnaire for evaluation 
of risk for OSAS.30 The results of the screening tools 
indicated a low risk of OSAS in the group of healthy 
subjects, according to STOP-BANG and STOP question-
naires and low daytime sleepiness (Epworth = 2 (0–24)).

Polysomnography (PSG) and Polygraphy 
(PG)
Whole-night in-laboratory PSG (Alice 5LE or Alice PDX, 
Philips Respironics, Eindhoven, Netherlands) or whole-night 
unattended polygraphy (PG) (PolyMesam, MAP, 
Martinsried, Germany) was performed in OSAS patients. 
PSG recordings included electroencephalography, electroocu-
lography, mental and tibial electromyography, electrocardio-
graphy, nasal airflow, pulse oximetry, thoracic and abdominal 
movements, and snoring intensity (ALICE 5LE, Philips 
Respironics, Eindhoven, the Netherlands). PSG recordings 
included nasal airflow, pulse oximetry, thoracic and abdom-
inal movements (Somnocheck, Weinmann, Hamburg, 
Germany; Alice PdX, Philips Respironics, Eindhoven, the 
Netherlands; Embleta, Natus Neuro, Middleton, WI, USA). 
Acquired data were evaluated in agreement with AASM and 
ESRS guidelines by a certified sleep physician.3,33 Sleep 
evaluations of less than 6-h duration were discarded, and in 
such cases, the PSG/PG was repeated on a later occasion. 
Apnea was defined as a complete cessation of respiratory 
airflow for a minimum duration of 10 s. In contrast, hypopnea 
was identified as a decrease in airflow by more than 50% 
from the baseline for at least 10 s, both combined with 
a reduction in hemoglobin oxygen saturation of at least 3%. 
The Apnea-hypopnea index (AHI) was defined as the average 
number of apneas and hypopneas per hour of sleep (Table 1). 
Oxygen desaturation index (ODI) was calculated as the num-
ber of significant oxygen saturation (SpO2) drops of 3% or 
more per hour of sleep.

nTMS Study Protocol
Electromyographic Recording
Subjects were first prepared by gently abrading the skin and 
cleaning it with acetone and alcohol. Electromyography 
(EMG) was recorded from the right abductor pollicis-brevis 
(APB) with a pair of self-adhesive surface electrodes 
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(Ambu® Blue Sensor BR, BR-50-K/12, Ballerup, Denmark) 
in a belly-tendon montage (Figure 1). The reference electrode 
for the APB was placed on the metacarpophalangeal joint of 
the thumb (Figure 1). Electrodes were attached to the 
Nexstim EMG electrode cable with a 1.5 mm touch-proof 
female safety connector (DIN 42–802) and connected to 
6-channel EMG and one common ground EMG Amplifier 
(external module) with TMS-artefact rejection circuitry. The 
following were characteristics of the EMG used in testing as 
a component of the NBS (Nexstim NBS System 4, Nexstim 
Oy, Helsinki, Finland) system: sampling rate equal to 3 kHz 
(per channel), resolution of 0.3 µV, the scale between −7.5 
mV and 7.5 mV, common-mode rejection ratio (CMRR) > 90 
dB, peak-to-peak noise <5 µV and frequency band in the 
range of 10–500 Hz.

Electrical Stimulation of the Median Nerve
Conditioning stimuli were single pulses (200 µs duration) 
of electrical stimulation applied with a stimulating bar 
electrode. The stimulating bar electrode, manufactured by 
ADInstruments (North America), had flat disks and 
a 30 mm spacing of 9 mm contacts, and the anode was 
positioned distally (Figure 1). The intensity of the 

conditioning stimuli was set at twofold the sensory thresh-
old, which was frequently a threshold for evoking a visible 
twitch of the thenar muscles. The conditioning stimulus to 
the peripheral nerve preceded the test magnetic cortical 
stimulus. For cutaneous afferents stimulation, ISIS 
Neurostimulator of manufacturer Inomed Medizintechnik 
GmbH (Version 1.0.2.0., Inomed Medizintechnik GmbH, 
Emmendingen, Germany) enabling a constant current sti-
mulation was used. The ISIS Neurostimulator is a USB- 
powered module used with stand-alone Windows-based 
PC software to deliver electrical stimulation. In the present 
study, the electrical stimulator as a stand-alone device was 
triggered by a script executed within Presentation software 
(Neurobehavioral Systems, Inc., Version 20.2) installed on 
an external personal computer. A standard BNC cable was 
customized to the needs of the study with a BNC connec-
tor on one end (connection to Trig in of the electrical 
stimulator) and a USB connector on the other (connection 
to the PC).

nTMS Assessment
Magnetic resonance imaging (MRI) of the head for all 
OSAS and healthy subjects was performed with 
a Magnetom Aera of 1.5 T strength (Siemens Healthcare 
GmbH, Erlangen, Germany). The recommended MRI pro-
tocol for nTMS brain reconstruction includes T1-weighted 
images, voxel size of approximately 1x1x1 mm, sagittal 
images recommended, axial and coronal supported, 
sequential scans of 1 mm thickness and 1 mm slice gap, 
with angulation less than ± 10 degrees. Navigated tran-
scranial magnetic stimulation (nTMS) was delivered using 
a figure-of-eight coil connected to a Nexstim TMS II 
stimulator module (integrated with mobile NBS chart) 
(Nexstim NBS System 4, Nexstim Oy, Helsinki, 
Finland). MRI images were obtained to suit the TMS 
requirements and were integrated into the nTMS system 
and used for 3D reconstruction of individual brain anat-
omy (3D optical tracking unit; Polaris® Vicra). 
Sophisticated real-time data processing allows the accurate 
display of the induced electric field (E-field) within the 
brain tissue. Targeting tools available on-screen are the 
following: a grid for systematic brain mapping, 
a targeting tool for optimal coil placement, an aiming 
tool for precise repetition of a given stimulus, and auto-
mated stimulation (location controlled). The subject wears 
an optical head tracker and, by using a pointer, 12 points 
are registered on the subject scalp. A figure-of-eight coil 
with winding diameter ca. 50 mm, and an outer winding 

Table 1 Demographic and Clinical Features for Studied Groups 
and Mann–Whitney U-Test Conducted to Test Statistical 
Differences Between OSAS Patients and Healthy Subjects for 
MEP Amplitude at ISIs(18-28ms), RMT 100% Intensity, RMT 120% 
Intensity, Electrical Stimulation Intensity, ESS, Age, Gender and 
BMI

Gender (F/M) OSAS 

Patients 

(N=17)

Healthy 

Subjects 

(N=12)

Group 

Differences

χ2 p

4/13 6/6 2.18 0.13

Median 

(IQR)

Median 

(IQR)

U p

MEP amplitude at  

ISIs(18-28 ms)

−9.5 (38.6) −35.7 (40.5) 44.0 0.01*

RMT intensity 38.0 (6.0) 35.5 (6.5) 55.0 0.04*

120%RMT intensity 45.0 (7.0) 43.5 (7.5) 58.0 0.06

Electrical stim. intensity 7.0 (2.0) 6.0 (3.0) 74.5 0.22

Epworth sleepiness scale (ESS) 7.0 (6.0) 2.0 (3.0) 18.5 <0.01*

Age 55.0 (12.0) 46.0 (9.5) 54.5 0.03*

BMI (kg/m2) 32.6 (10.2) 23.8 (3.8) 10.5 <0.01*

AHI (mean ± IQR) 47.5 ± 21.2 – – –

ODI (mean ± SD) 43.0 ± 23.3 – – –

Note: *Significant difference p<0.05. 
Abbreviations: F/M, female/male; IQR, interquartile range; MEP amplitude at ISIs 
(18-28 ms) (% deviation); ESS, Epworth sleepiness scale; ISIs, inter-stimulus inter-
vals; RMT, resting motor threshold (RMT); BMI, body mass index.
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diameter of ca 70 mm was used. The maximum E-field 
was 172 V/m below the Nexstim Focal coil in the sphe-
rical conductor model representing the human head. The 
magnetic stimulation was externally triggered by the same 
Presentation software script responsible for triggering 
electrical stimulation (Figure 2).

Experimental Protocol
At the beginning of nTMS investigations, baseline cortical 
excitability (RMT)34 was measured by inducing MEPs in the 
APB muscle by placing the coil tangentially over the central 
sulcus and targeting the omega shape structure (determined 
on sagittal and axial MRIs) of the precentral gyrus (primary 
motor cortex, M1) on 3D reconstructed brain. The RMT was 
performed by introducing the 30% of the maximal stimulator 
output and slightly increasing the intensity until MEPs are 
elicited in the APB muscle. A total of 10 to 20 MEP 

responses were collected, and 50% of the trials had peak-to- 
peak amplitude MEP amplitude of >50µV.34

After determining RMT, an intensity of 120% of max-
imum stimulator output was used to map the M1 hotspot for 
the APB muscle following peripheral electric stimulation of 
the median nerve at the wrist (Figure 2). Figure 2 depicts the 
APB hotspot with visualization of the direction of the coil 
orientation over the precentral gyrus for one subject. The 
conditioning stimulation (electric) preceded the test TMS 
single pulse over M1 at ISIs of 18, 19, 20, 21, 22, 23, 24, 
25, 26, 27, and 28 ms (Figure 2). The magnetic pulses were 
given in random order at these ISIs after the onset of electric 
stimulation in all subjects. Each session block consisted of 10 
trials with an inter-trial interval of 5.5 s. The control condi-
tion referred to TMS over the M1 without peripheral electric 
stimulation and was included at the beginning of each session 
in all subjects (Figure 2) using the 120% RMT.

Figure 1 Stimulation and recording techniques for SAI measurements. 
Notes: The TMS coil is positioned tangentially to the central sulcus over the left M1. Magnetic field inducing an electric field depolarizes pyramidal neurons in the M1 cortex 
with activation of the corticospinal system. The MEP responses were recorded from hand muscle (APB). Single MEP response from APB muscle is depicted on the EMG 
channel. The stimulating electrode was positioned over the median nerve at the wrist. 
Abbreviations: APB, abductor pollicis-brevis; EMG, electromyography; M1, primary motor cortex; Ch1, Ch2, Channels; GND, Ground.
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During nTMS, subjects were seated comfortably in 
a reclining, electronically controlled chair with their fore-
arm in a semi-pronated, resting position. All subjects were 
tested in the afternoon, between 1 and 3 pm, to manage the 
potential differences in both drowsiness and vigilance 
fluctuations, which might affect the level of cortical excit-
ability and related motor responses. The ceiling lights 
were always kept off during the experimental measures 
with nTMS. The head support was individually adjusted 
for providing a comfortable head position during the ses-
sion. Participants were instructed to avoid napping 
throughout the experiment, to remain relaxed entirely 
with the eyes open. Muscle relaxation was visually 
inspected by an examiner (author of the study) and was 
continuously visually monitored also by the subject giving 
him/her instructions on how to relax.

Data Analysis and Statistics
The MEP responses were analyzed using a custom-made 
script in MATLAB 2018b. The script was programmed to 
automatically read off latency and amplitudes (peak-to- 
peak) of individual MEP response with custom-made 
a novel algorithm for detecting MEP latency (submitted 
elsewhere for publication). We have used the standard 
peak-to-peak amplitude approach defined as the difference 
between the maximum and minimum value of the MEP 

response representing an accurate indicator for estimating 
the MEP amplitude oscillation.

The statistical data analysis was conducted using 
STATISTICA 12 (StatSoft, Inc., Tulsa, USA). Kolmogorov– 
Smirnov test and Mauchly’s Test of Sphericity were used to 
test assumptions for ANOVA testing and showed no departs 
from the normal distribution of MEP-APB latency values 
(MEP latency) for all conditions (control and ISIs of 18, 19, 
20, 21, 22, 23, 24, 25, 26, 27, 28 ms). Therefore, two-factorial 
repeated-measures ANOVA was performed to test whether 
ISIs as a within-subject factor and “group” (healthy subjects 
vs OSAS patients) as a between-subject measure had 
a significant influence on MEP latency.

Normality tests confirmed that MEP-APB amplitudes 
(MEP amplitudes) at several ISIs conditions were not well 
modelled by a normal distribution. Therefore, to identify 
the differences between healthy subjects and OSAS 
patients, the MEP amplitude data from all ISIs were trea-
ted as univariate. In both groups separately (OSAS and 
healthy subjects) we averaged MEP amplitude results for 
all ISIs(18-28ms), but first, we performed Friedman’s 
ANOVA for dependent samples to ensure there were no 
differences in MEP amplitude between ISIs(18-28ms). Also, 
using a percentage deviation equation,35 we calculated 
how much the averaged ISIs(18-28ms) differ from the con-
trol condition in each group of subjects separately. The 

Figure 2 Diagram of paired-pulse paradigm for SAI investigation. 
Notes: The SAI is investigated by the paired-pulse paradigm in which the electrical stimulation to the median nerve at the wrist (1) is followed by nTMS of the M1 (2) at ISIs of 18 ms, 19 
ms, 20 ms, 21 ms, 22 ms, 23 ms, 24 ms, 25 ms, 26 ms, 27 ms, and 28 ms. A control condition was performed in each subject before the application of the paired-pulse paradigm. The 
figure depicts a 3D reconstruction of MRI with the M1 hotspot for APB muscle and positioning of stimulating bar electrode at the wrist with surface electrodes attached over the APB 
muscle in one subject. 
Abbreviations: APB, abductor pollicis-brevis; ISIs, inter-stimulus intervals; M1, primary motor cortex.
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statistical differences for MEP percentage deviation 
between OSAS patients and healthy were analyzed with 
the Mann–Whitney U-test for independent samples. 
Furthermore, Mann–Whitney U-test for independent sam-
ples was also conducted to test the statistical differences 
between OSAS patients and healthy subjects for other 
relevant clinical and demographic measures: age, BMI, 
ESS, RMT intensity, 120% RMT intensity, and electrical 
stimulation intensity. Spearman rank-order correlation 
(ρ)36 was used to measure dependence between MEP 
amplitude percentage deviation and age, gender and BM. 
The results were expressed as ρcoefficients. The differ-
ences were considered statistically significant when p was 
<0.05. The descriptive statistics were displayed as median 
value and interquartile range (IQR). The descriptive for 
MEP-APB amplitude and MEP-APB latency results were 
additionally displayed as the arithmetic mean and standard 
deviation (SD).

Results
The demographic and clinical features for OSAS patients 
and healthy subjects are presented in Table 1. Table 1 also 
shows the results of Mann–Whitney U testing for group 
differences in MEP amplitudes at ISIs(18-28ms), RMT inten-
sity, RMT 120% intensity, electrical stimulation intensity, 
ESS, age, and BMI. The intensity of stimulation at RMT 
was significantly higher in OSAS patients compared to 
control (U=55.0, p=0.04*) (Table 1). Statistical differences 
were also found for age (U=54.5, p=0.03*), BMI (U=10.5, 
p<0.01*) and ESS (U=18.5, p<0.01*) (Table 1). No sig-
nificant differences were found for MEP latency between 
groups (OSAS vs healthy subjects) (F1=3.26, p=0.10), nor 
between MEP latency at ISIs (control, 18 −28 ms) in each 
group (F11=1.14, p=0.33).

Furthermore, the Friedman test showed no differences 
in MEP amplitude between ISIs(18-28ms) for healthy sub-
jects (χ2=13.32, p=0.21) or OSAS patients (χ2=2.81, 
p=0.98). Since no significant differences were found 
between ISIs(18-28ms) in any group, the percentage devia-
tion from the control condition was calculated for MEPs at 
averaged ISIs(18-28ms) in each group. The results show 
a significant difference in the MEP amplitude percentage 
deviation from the control condition between OSAS and 
healthy subjects (U=44.0, p=0.01*) (Table 1, Figure 3). 
The median values indicated lower MEP amplitude per-
centage deviation from the control condition at 
ISIs(18-28ms) for OSAS patients compared to healthy sub-
jects (−9.5 < −35.7) (Tables 1 and 2, Figures 3 and 4).

Further, correlation analysis provided evidence that 
BMI significantly negatively correlated with MEP ampli-
tude percentage deviation in OSAS patients (Table 3). 
A significant negative ρ coefficient (ρ=−0.47) suggests 
that the higher the BMI, the lower the MEP amplitude 
percentage deviations from the control condition in OSAS 
patients.

Discussion
In the present nTMS study, we were able to demonstrate, 
by application of SAI protocol, a significantly lower per-
centage deviation of MEP amplitude from the control 
condition between OSAS and healthy subjects confirming 
the results of Nardone et al.20 We have also shown 
increased RMT in OSAS, which is accordance with pre-
vious TMS findings.16,17,19 All obtained data suggest that 
chronic OSAS condition decreases motor cortical excit-
ability in these patients.

Alterations in cortical afferent inhibition might indicate 
probable changes in cholinergic neurotransmission in 
OSAS patients.23,37-39 The cholinergic pathways play an 
important role in the activation of the motor cortex40,41 

and provide control over circuit dynamics underlying 
cognitive processing42 and respiratory control.43,44 Ponto- 
mesencephalic cholinergic neurons play a role in sleep- 
wakefulness, locomotor behaviour, and memory.45,46 In 

Figure 3 MEP amplitudes for OSAS patients and healthy subjects. 
Notes: Box plot presenting MEP amplitude percentage deviation from the control 
condition for OSAS patients and healthy subjects. The x-axis represents groups 
(OSAS and healthy subjects), the y-axis represents MEP amplitude (% deviation 
from the control condition).
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addition, preliminary pharmacological studies have shown 
beneficial effects of cholinergic medication (donepezil, 
physostigmine) in OSAS patients by improving the AHI 
index, oxygen saturation, and sleepiness.47,48 The reduc-
tion of cholinergic pontine projection might contribute to 
OSAS in neurological diseases.49,50

Our data regarding SAI results complement the find-
ings of Nardone et al20 and extend previous TMS findings 
mainly based on MRI data and nTMS technology, as well 
as the methodology for data analysis of MEP responses in 
SAI measurement. Nardone et al20 expressed MEP ampli-
tudes obtained at several ISIs as a percentage of the MEP 

amplitudes of the control MEP condition. In contrast, in 
the present study, MEP amplitude differences between 
OSAS and healthy subjects were explored by the averaged 
percentage deviation from the control condition. Further, 
previous TMS studies suggested a minor decrease in motor 
cortical excitability in OSAS confirmed through measures 
such as CSP, RMT, amplitudes, and latencies of MEPs in 
awake state and during apneas. The most robust finding 
confirmed by several studies was prolonged CSP,13,15-17, 

pointing to an increase of inhibitory gamma-aminobutyric 
acid activity in the motor cortex of OSAS patients. 
Furthermore, increased RMT16,17,19 in the awake OSAS 

Table 2 Mean Values (±SD) of MEPs Amplitude for Control Condition and ISIs(18-28 Ms) in OSAS Patients and Healthy Subjects

OSAS Patients Healthy Subjects

Control Condition ISIs(18-28ms) Control Condition ISIs(18-28)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

MEP amplitude (µV) 492.7 (± 238.7) 562.31 (±305.7) 801.0 (±311.9) 546.9(±301.9)

MEP latency (ms) 23.8 (±2.0) 23.8(±0.15) 22.3 (±1.8) 22.2 (±1.7)

Abbreviations: SD, standard deviation; µV, microvolts; ms, millisecond; ISIs(12-28), inter-stimulus intervals; MEP, motor evoked potentials.

Figure 4 Graphical presentation of mean and median MEP responses for control condition and ISIs(18-28ms) for one OSAS patient and healthy subject.
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patients, as well as reduced amplitudes and prolonged 
latencies of MEPs during the second non-rapid eye move-
ment (REM) sleep stage,13 also suggested depression of 
the motor cortical activity in OSAS. RMT reflects the 
excitability of corticomotor projections during muscle 
relaxation; therefore, several neural structures (cortical 
motor neurons, corticospinal pathways and the spinal 
structures) are excited by TMS.51 In the present nTMS 
study, we also confirmed increased RMT in OSAS, sug-
gesting that chronic OSAS condition decreases motor cor-
tical excitability in these patients. Lastly, BMI negatively 
correlated with MEP amplitude percentage deviation in 
OSAS patients. BMI is a well-established indicator of 
obesity and frequently used measure defining the severity 
of respiratory stress associated with OSAS.52

Our study has some limitations. The sample included 
severe OSAS patients (AHI>30/h), both males and 
females. We targeted only severe patients to have 
a convenient homogeneous sample and enrolled both 
sexes for several reasons: time restrictions for the recruit-
ment of OSAS patients, a limited number of severe OSAS 
patients, and a high percentage of positive TMS excluding 
factors (denture, cardiac diseases, neurological disease). 
Further, the reason why we could not introduce several 
neurophysiological measures like F-wave or central motor 
conduction like in the study of Nardone et al20 was the real 
situation that we did not use EEG-EP method to obtain 
SEP, but rather used MRI data and mapping of the motor 
cortex with nTMS and performing the SAI protocol by 
including eleven ISIs intervals (18 ms, 19 ms, 20 ms, 
21 ms, 22 ms, 23 ms, 24 ms, 25 ms, 26 ms, 27 ms, 
28 ms) at 120% RMT which was time-consuming. The 
entire experimental protocol laster approximately 2 h, and 
the subjects often tend to be anxious after 1 h. Also, in the 
present study, we did not correlate the results of cognitive 
and psychomotor results of neuropsychological testing 

with the SAI data20 since we plan to conduct additional 
nTMS study of these OSAS patients 1 year or several 
years after CPAP therapy. It was previously reported that 
CPAP therapy improves cognition and psychomotor 
performance.53,54 We believe that the correlation of SAI 
results before and after CPAP therapy will yield more 
understanding of SAI and its role as a potential marker 
of the CPAP treatment. Lastly, the reliability of the results 
might have been affected by the fact that the PSG/PG was 
not performed in healthy subjects. PSG/PG is a costly and 
time-consuming procedure, and it was shown previously 
that the STOP questionnaire reliably and accurately iden-
tifies subjects in the general population with increased risk 
of OSA.30,55 When considering the high sensitivity of the 
STOP questionnaire,56,57 which was also established in the 
recent study of our group,58 we decided not to perform 
PSG/PG in healthy subjects, to minimize medical costs 
and unnecessary medical procedures in subjects not at 
risk. Accordingly, if asymptomatic undiagnosed OSAS 
patients with no risk according to the above-mentioned 
questionnaires were still included in the healthy subject 
group, which is possible if PSG is not performed, this may 
interfere with the results only in a way to diminish the 
differences between OSAS and healthy subjects.

Since the main objective of the present study was not 
solely to investigate predictors of MEP changes, future stu-
dies may investigate specific measures that influence the 
MEP amplitude changes in the SAI protocol (ie, BMI, cog-
nitive, psychomotor) by considering the limiting factors of 
the present study. Furthermore, it would be curious to explore 
the role of potential neurophysiological markers such as SAI 
also in mild OSAS patients, which may have possibly sig-
nificance even in the early detection of OSAS. Moreover, 
future nTMS studies might investigate neurophysiological 
measures of cortical motor excitability like SAI in OSAS 
before commencing CPAP therapy and after a particular 
therapy time (ie, after 1 year or 2) to detect potential biomar-
kers of therapy outcome. Further, it is important to elucidate 
the MRI findings of silent signs of cerebrovascular disease in 
OSAS patients,58 but unfortunately, our nTMS protocol for 
MRI scanning was not like the one for detecting silent 
lacunar infarction and periventricular hyperintensity consist-
ing of T2-weighted images and fluid-attenuated inversion 
recovery (FLAIR) images. Even though our MRI protocol 
did not resemble MRI protocol needed for the detection of 
silent signs of cerebrovascular disease, we suggest future 
nTMS studies if possible to extend the traditional protocol 
for MRI scanning required for nTMS brain reconstruction to 

Table 3 Summary of Spearman Rank-Order Correlations for 
MEP Amplitude Percentage Deviation with Age, Gender and 
BMI in OSAS Patients

MEP Amplitude Percentage 
Deviation x

ρ 
Coefficient

p value

Age −0.28 p>0.05
Gender −0.028 p>0.05

BMI −0.45 p<0.05*

Note: *Significant difference p<0.05. 
Abbreviations: ρ (rho) coefficient, Spearman rank-order correlation; MEP, motor 
evoked potentials; BMI, body mass index.
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additional MRI protocols for detecting silent signs of cere-
brovascular disease, especially if studies aim to investigate 
SAI and cognition.59–61

Even though our nTMS study confirmed previous findings 
related only to SAI and RMT, it would be highly recom-
mended to use nTMS to investigate other neurophysiological 
protocols for assessment of cortical inhibition, cortical excita-
tion, and cortical plasticity, to elucidate the exact precision and 
usefulness of nTMS technology in OSAS research.62

Conclusion
The present nTMS study results in decreased RMT, as well 
as in the reduction of cortical afferent inhibition in OSAS 
tested with the SAI protocol, confirming previous findings 
related to SAI and RMT protocols in OSAS 
patients.16,17,19,20 The results provide further evidence for 
the role of impaired cortical afferent inhibition in OSAS 
pathogenesis, with MRI data and nTMS technology con-
tributing to more precise targeting of the motor cortex in 
OSAS patients compared to Nardone et al.20 The future 
nTMS studies investigating cortical inhibition, facilitation 
and plasticity, with the neuropsychological assessment will 
provide more understanding related to the precision of 
MRI-data combined with nTMS in OSAS research.

Abbreviations
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BMI, body mass index; CPAP, continuous positive airway 
pressure; EDS, excessive daytime sleepiness; ESS, 
Epworth sleepiness scale; MRI, magnetic resonance ima-
ging; MEP, motor evoked potential; ODI, oxygen index 
desaturation; OSAS, obstructive sleep apnea syndrome; 
PSG, polysomnography; PG, polygraphy; RMT, resting 
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