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Abstract: The crosstalk between host immunity and the external environment in the mucous 
membranes of the gastrointestinal and respiratory tracts in bronchial asthma has recently 
been scrutinized. There is compelling evidence that the microbiota at these sites may play an 
important role in the pathogenesis of this chronic airway disease. The appearance of bacteria 
early in life in the gut before dissemination to the airways plays a pivotal role in shaping 
mucosal immunity. Loss of microbial diversity or dysbiosis can result in aberrant immune- 
mediated inflammation and mucosal barrier disruption, which coincides clinically with the 
successive development of the “allergic march” in asthma. Microbial manipulation may be 
effective in curbing asthma development by indirectly preserving homeostatic epithelial 
barrier functions. The protective effects and mechanisms of immunity-microbiome crosstalk 
at mucosal sites require further investigation to identify therapeutic and preventive measures 
in asthma. This topical review aims to highlight new evidence that compromised epithelial 
barrier function, which results in deregulated crosstalk between the microbiome and host 
mucosal immune system, is an important disease mechanism in asthma. In the light of 
current COVID-19 pandemic, the collective findings on the impact of mucosal microbiota 
on the suceptibility to SARS-CoV-2 infection and severity of COVID-19 is explored. The 
possible therapeutic implications to target these abnormalities are further discussed. 
Keywords: asthma, COVID-19, SARS-CoV-2, dendritic cells, innate immunity, 
microbiome, barrier dysfunction

Background
Asthma is an airway disease that currently affects more than 300 million people 
worldwide.1 This chronic respiratory condition is characterized by a spectrum of 
clinical phenotypes and a range of underlying molecular mechanisms called 
endotypes.2 Consequently, this heterogeneous group of clinical presentations should 
not be thought of as a single disease but instead a spectrum of conditions with some 
overlapping characteristics. At the molecular level, asthma is divided into two 
categories: atopic and non-atopic asthma.3 Atopic asthma is characterized by type 
2 inflammation, driven by IgE hypersensitivity to aeroallergen, chemoattraction of 
granulocytes, hyper-activation of airway epithelial cells and subsequent remodeling 
of the epithelium.4 Besides these well-established mechanisms, recent evidence has 
implicated developmental microbial exposure in the pathogenesis of asthma.5

The “hygiene-hypothesis”, which was first proposed in 1989,6 suggested that while 
exposure to pathogens educates the immune system to avoid invoking allergic 
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reactions, an environment that is too clean increases the risk 
of developing atopic conditions. Pathogens are naturally 
acquired during development in several ways. For example, 
neonates are exposed to maternal vaginal and intestinal flora 
during childbirth, which are important for priming the early 
immune system (Figure 1).7 Furthermore, contact with soil 
and animals can increase exposure to pathogens during the 
early years of life.8 Unfortunately, the increased number of 
cesarean section deliveries and the loss of contact with soil 
and animals have interrupted these early exposures. 
Additionally, the use of antibiotics and acid-suppressing 
agents during the first 6 months of infancy has been asso-
ciated with a significantly increased risk of developing aller-
gic diseases and asthma.9

In congruence with this long-standing “hygiene 
hypothesis”, recent studies emphasize the novel role of 
the mucosal microbiome in the education of the immature 
immune system and, subsequently, in the development or 
prevention of allergic sensitization.10,11 The term micro-
biome refers to the collective genomes of all micro- 
organisms symbiotically existing within the human body. 
These organisms consist of bacteria, viruses, fungi and 
protozoa that take residence on the outer (skin, hair, nail) 
as well as inner mucosal surfaces (gastrointestinal and 
respiratory tracts) of the body. While previously thought 
to be sterile, our intestinal tracts are in fact replete with 
bacteria that have been acquired via early-life pathogen 
exposure.12,13 Similarly, the previously accepted idea of 

Figure 1 Early shaping of bronchial asthma by microbial exposure. Early-life microbial transfer occurs in utero and during childbirth (maternal intestinal and vaginal flora), 
during breast feeding (maternal milk microbiome) and contact with animals and soil (environmental microorganisms). These mechanisms allow colonization of commensals 
during early life. Failure to properly establish early symbiotic relationship with commensals results in dysbiosis and predisposes the host to allergic inflammation and 
bronchial asthma.
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“sterile lungs” has been challenged by the discovery of the 
respiratory tract microbiome, demonstrated by the intro-
duction of the lung tissues into the Human Microbiome 
Project.13,14 Disruption of homeostatic microbial coloniza-
tion at these sites results in an imbalanced microbiota and 
a loss of microbial diversity, termed dysbiosis, and is 
a shared etiology of emerging hypotheses about the role 
of microbiota in asthma development.15 This dysbiosis 
results in mucosal barrier dysfunction, which is 
a postulated cause and/or consequence of inflammatory 
processes in childhood asthma.16 Mechanistically, abnor-
mal microbial movement through those disrupted mucosal 
barriers and the subsequent aberrant interactions with the 
host immune system dictate, at least in part, susceptibility 
to focal as well as systemic inflammatory responses and 
asthma development.17,18 A better appreciation of how 
these mechanisms interconnect is critical for enhancing 
our understanding of the pathogenesis of asthma and aid-
ing the development of early intervention methods.

This topical review outlines the role of mucosal barrier 
dysfunction and details the mechanisms of crosstalk between 
the gastrointestinal-airway microbiome and mucosal immu-
nity in the pathogenesis of asthma. Finally, their potential 
therapeutic implications in asthma are discussed.

The Mucosal Epithelial Barrier
Gastrointestinal and Respiratory 
Epithelium
The intestinal mucosa is one of the largest surface areas in 
the body and comes into direct contact with the external 
environment.19 It serves the dual function of being semi-
permeable to water and nutrients while always preventing 
access of potentially harmful microbial organisms and large 
molecules from the lumen. Structurally, it consists of multi-
ple layers that form physical barriers (epithelial and muco-
sal layers) and immunological defenses (lamina propria). 
Each layer and their cellular components play different but 
complimentary roles in host barrier defenses (Figure 2).

On the luminal side, the epithelial layer is lined by a gel- 
like mucus coating that consists primarily of antimicrobial 
molecules (antimicrobial peptides secreted from Paneth 
cells and other glycosylated mucin proteins from goblet 
cells), secretory immunoglobulin A (sIgA), and nutrient 
metabolites such as short-chain fatty acids (SCFAs) 
(Figure 2). The mucus layer protects the delicate linings 
of the gut, and along with the microbial colonies residing 
here, it provides an interface between the epithelial layer 

and the exterior environment.20 The inner part of the mucus 
layer keeps the epithelium and intestinal crypts germ-free 
and in complete isolation from non-self antigens, while 
commensal organisms in the outer coat compete with patho-
genic organisms for nutrients and space.21

Similar to the gastrointestinal mucosa, the lung per-
forms the dual function of blocking potential pathogens 
and harmful substances while simultaneously allowing the 
exchange of gases across its barrier. The integrity of the 
environmental barrier is maintained by various factors that 
differ significantly in structure and function from one com-
partment of the airway to the other. These factors include 
a combination of airway epithelial cells, surfactants, and 
structural proteins. The surfactant system consists of differ-
ent types of secretory products of type II alveolar epithelial 
cells. They are formed by a distinct mixture of phospholi-
pids (90%) and protein (10%), which significantly contri-
butes to the regulation of airway fluid balance, airway 
clearance, resistance to inhaled agents, and other immuno-
modulatory functions in asthma (Table 1).22,23

Besides surfactants, airway junctional structures con-
sist of tight junctions (TJs) and an underlying layer, which 
further supports the barrier function, called the adherens 
junctions (Table 2).24,25

The Mucosal Immune System
The chief mediator of mucosal immunity in the gastroin-
testinal tract is the lamina propria, a specialized tissue that is 
rich in innate immune cells, notably dendritic cells (DCs), 
which reside in gut-associated lymphoid tissues such as the 
Peyer’s patch (PPs) of the small intestine.26 DCs patrol the 
mucosa and extend between epithelial cells via their elon-
gated pseudopods to reach remote areas. The subepithelial 
layer in the lungs is also rich in DCs and other immune cells 
that perform immune surveillance functions.

The host immune response recognizes various types of 
organisms and dictates the immune response according to 
the type or virulence of the organism.27 Despite the 
engagement of immune cells and the constant exposure 
to a large inoculum of commensal microbes, the mucous 
membranes are not usually inflamed.28 This innate 
immune response also provides the host with protection 
against pathogenic microbial invasions through the recog-
nition of pathogen-associated molecular patterns (PAMPs), 
such as double-stranded DNA in viruses, or bacterial cell 
surface structures, including lipopolysaccharides.29 

Sensing for invading microbes is mediated by pattern- 
recognition receptors (PRRs), such as Toll-like receptors 
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(TLR), NOD-like receptors, RIG-I-like-receptors and 
C-type lectin receptors (CLR), located on the surface of 
both intestinal epithelial cells and innate immune cells 
located in the lamina propria.29,30 Under basal conditions, 
PRRs are downregulated to prevent aberrant inflammatory 
responses; however, upon recognition of PAMPs, PRRs 
trigger a cascade of intracellular signaling pathways 
mediated by NF-κB, resulting in the production of cyto-
kines and chemokines, which activate neighboring DCs 
and macrophages.29,30 Stimulation of these innate immune 
cells activates plasma cells and provokes antibody 
responses, including mucosal sIgA production, which are 
transported to the mucus layer and engage in the neutrali-
zation and expulsion of unwanted microorganisms.31

Epithelial Barrier Dysfunction in Asthma
While mucosal barriers in healthy guts and lungs serve as 
impervious protective layers for the host, they can be 
damaged by inflammation, chemicals, and trauma, allow-
ing the infiltration of environmental stimuli through leaky 
membranes, creating an inflammatory response and sub-
sequent allergic ailments.32,33

Intestinal barrier disruption is characterized by paracel-
lular influx of intestinal bacteria-derived products, chiefly, 
lipopolysaccharides (LPS), into the systemic circulation. 
Direct contact with these microbial products triggers the 
activation of lamia propria DCs via TLR4-dependent signal-
ing pathways, causing the release of proinflammatory med-
iators that perpetuate barrier disruption.34 Sustained 

Figure 2 Immunity-microbiome crosstalks at gastrointestinal tract. Schematic diagram depicting the gut mucosa illustrated with the various structural and immunological 
barriers and defenses. The intestinal mucosa consists of an epithelial layer lined by an inner mucus layer and an underlying lamina propria. The epithelial layer forms a physical 
barrier, facilitated by intracellular tight junctions, various cell types and their secretory products. Paneth cells produce protective antimicrobial peptides, while goblet cells 
produce mucin, the major component of the mucus coating. The mucus layer is rich in microbial colonies, which can synthesize immunomodulatory molecules such as 
SCFAs. The lamina propria are rich in immune cells that play a fundamental role in immune surveillance. Dendritic cells transmit environmental signals to activated plasma 
cells to produce protective secretory immunoglobulin A (sIgA). A leaky intestinal barrier can lead to displaced food antigens in the lamina propria, which in turn can activate 
Th2 Cell and class-switch B cells to produce specific immunoglobulin E (sIgE) production, causing sensitization to food allergens.
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disruption of the intestinal barriers might allow the transloca-
tion of ingested allergens to the airway through a gut-lung 
communication pathway, and subsequent development of 
allergic/asthmatic responses.35 While also marked by 
a general increase in epithelial permeability, the pathological 
hallmark of airway barrier disruption is the infiltration of 
inhaled allergens. This translocation causes allergic sensiti-
zation and inflammation via activation of airway DCs.36 DCs 
recognize and transport these stimuli to adjacent lymph 
nodes, where they interact with T cells, resulting in 
T helper 2 (Th2)-skewed immunity. Th2 CD4+ T cells are 

responsible for directing B cells to switch to IgE production, 
resulting in the recruitment of mast cells and eosinophils and 
subsequent induction of an allergic response (Figure 3).

Besides environmental allergens, viruses and fungi 
are important stimuli that play a critical role in the devel-
opment of barrier disruption in asthma.37,38 During 
respiratory viral infection, interferons and the cytokine 
thymic stromal lymphopoietin (TSLP) can be produced 
by lung epithelial cells and lung fibroblasts through 
TLR3/7/8 signaling.38 In response to TSLP, IL-25 and 
IL-33 are produced in abundance and DCs are instructed 
to activate naïve T cells, causing Th2 polarization (Figure 
3). Additionally, TLR3 signaling disrupts barrier function 
through TIR-domain-containing adapter-inducing inter-
feron-ß (TRIF) activation, which loosens epithelial tight 
junctions.25 Consequently, the airway suffers from hyper-
responsiveness and airway remodeling. This interaction 
is believed to be the causative link between early child-
hood respiratory infections, such as respiratory syncytial 
virus, influenza and human rhinovirus, and subsequent 
asthma development. Unlike viruses, fungi predomi-
nantly interact with mucosal immune cells by engage-
ment of CLRs and RAGE (receptor for advanced 
glycation end products) as well as recognition of fungal 
proteases via PARs (protease-activated receptors).37 

Activation of CLR results in the production of inflamma-
tory and Th-2 polarizing cytokines, while stimulation of 
RAGE results in IL-33 production.39–41 Lastly, PAR acti-
vation on eosinophils and epithelial cells results in the 
release of granule proteins and IL-33/TSLP, 
respectively.42,43 Collectively, these diverse immunomo-
dulatory mechanisms allow microbes to hijack airway 
immune cells and instruct them to produce allergic med-
iators in order to perpetuate barrier dysfunction and pre-
dispose the host to asthma development.

The Mucosal Microbiome
Microbial communities are vital for maintaining human 
health. These organisms not only protect the host from 
diseases through competing against pathogenic organisms 
and preventing their invasion and growth but they also 
support other physiological and immunological functions 
of the host via their endogenous synthesis of nutrient 
metabolites and vitamins.44,45 Pathogenic microbes can 
be distinguished from commensal organisms as they 
carry specific adhesive and invasive molecules, such as 
adhesins and invasins, which enable them to adhere to and 
invade tissues, causing harm to the host.46 In contrast, the 

Table 1 Surfactants Involved in the Regulation of Airway Barrier 
Function

Molecules Types Function Regulator/ 
Influencer 
(Effect)

SP-A Collectins Immunomodulatory Binding IgE, pollen 
grain/Suppressing 

IL-8, histamine, 

T cell proliferation

SP-B Saposins Fluid balance, 

airway clearance

Downregulated by 

IL-4

SP-C Saposins Fluid balance, 
airway clearance

Downregulated by 
IL-5

SP-D Collectins Immunomodulatory Binding IgE, pollen 
grain, mite 

allergens/ 

Suppressing T cell 
proliferation

Abbreviation: SP, surfactant protein.

Table 2 Intercellular Structural Proteins Involved in the 
Regulation of Airway Barrier Function

Class of 
Structural 
Protein

Types Function Regulator/Influencer 
(Effect)

Tight 

junctions

Claudin 

Occludin

Epithelial 

junction

Oncostatin M gene 

(Disrupting TJ junction)

Adherens 

junction

E-cadherin 

Nectin

Epithelial 

junction

Caveolin-1 (Stabilizing 

E-cadherin, increasing 
TSLP)

Cytosolic 
plaques

α-catenin 
β-catenin 

ZO-1/2/3

Epithelial 
junction

Caveolin-1 (Stabilizing β- 
catenin)

Abbreviations: TJs, tight junctions; ZO, zonula occludens.
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inability of commensals to adhere to or invade the sterile 
epithelium makes the host tissue tolerant to their presence, 
as they can be easily washed off by mucus and expelled 
from the host through peristaltic movements in the gut or 
ciliary movements of the airway epithelium.46

Gastrointestinal Commensals
The gut is home to the largest microbial community. 
Although the importance of the gut microbiome in early 
infancy is well established, the timing of microbial assem-
bly in the infant gut remains elusive. Microbial colonization 
in fetal membranes had only been observed in the presence 
of infection, and, thus, it was believed to be a phenomenon 

that occurred due to infection, and not during normal 
pregnancies.47 These early analyses, which employed cul-
ture-based techniques and microscopy, showed that the 
meconium (earliest stool sample from infants) is free of 
bacteria in the majority of studied subjects.48–50 

Subsequent studies of the amniotic fluid also showed no 
evidence of bacterial growth in over 90% of the tested 
samples, suggesting that fetal development may occur in 
a bacteria-free environment.51,52

However, this hypothesis is now being challenged, as 
microbial assembly has recently been suggested to occur 
during the in utero phase.53 In this regard, populations of 
the Proteobacteria phylum, particularly the Enterobacter 

Figure 3 Immunity-microbiome crosstalks at respiratory tract. Airway epithelial barriers are protected by junctional structures and a family of surfactant proteins. Intact 
barriers and homeostatic interplay between commensals and innate immunity prevent the entrance of allergens and pathogens (left). In contrast, aberrant interaction 
between microbes, including viruses and fungi, with mucosal dendritic cells elicits an allergic inflammatory milieu that causes barrier dysfunction (right). This further allows 
translocation of inhaled allergens and pathogens, heightening Th2 inflammation. Microbes and TLSP from pathogen-activated epithelium primes mucosal dendritic cells to 
orchestrate T-cell production of Th2 cytokines, namely, IL-4, IL-5, and IL-13, via IL-25 and IL-33 signaling. IL-5 recruits eosinophils to the airway, while IL-4 and IL-13 activate 
B cells to develop into plasma cells that produce allergen-specific IgE and recruit mast cells to the tissues. These events ultimately perpetuate a vicious cycle of epithelial 
barrier dysfunction.
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and Escherichia/Shigella genera, were found in the amnio-
tic fluid, placenta and colostrum of a small cohort of 15 
mothers and their babies.54 Consistent with this observa-
tion, other studies confirmed the presence of many bacter-
ial species, such as Lactobacillus, Bifidobacterium, and 
Clostridium leptum, in placental tissues.54–57 

Furthermore, studies that examined the meconium of new-
borns delivered via both vaginal birth and C-section found 
no differences in the composition of the gut microbiome, 
suggesting that colonization of the gut occurs prior to 
delivery and is independent of the birthing method.58,59 

However, while these causal relationships appear to pro-
vide evidence that the fetal gut is not sterile, large scale 
and direct evidence of microbial assembly in utero is 
lacking and the developmental mechanisms of microbial 
colonization remain unclear. In fact, the largest single 
study of 320 placental samples to date has suggested that 
the presence of a microbiome in this tissue may be asso-
ciated with antepartum infection in the mothers, rather 
than via a homeostatic mechanism.60

Besides maternal vaginal and intestinal flora, breast 
milk also helps to seed the infant microbiome, as it is 
heavily enriched with microbes. In fact, a longitudinal 
study of mother-infant pairs reported that 27.7% of bene-
ficial bacteria present in the intestinal tracts of infants is 
obtained from the mother’s breast milk.61 The origin of the 
breast milk microbiome has been the subject of much 
debate. It was believed that the milk microbiome was 
a result of contamination from the mother’s skin during 
infant suckling, and many studies note the similarities 
between the adult skin microbiome and milk microbiome, 
particularly among the genera Staphylococcus and 
Corynebacterium.62 Furthermore, the discovery of anaero-
bic species, which are exclusively associated with the gut 
environment, in breast milk suggested that live bacteria 
from the maternal gut may travel to the mammary gland 
via interactions between epithelial cells, immune cells, and 
bacteria.63,64 Results regarding the composition of breast 
milk microbiota have been varied. Culture-based analyses 
isolated bacterial species belonging to 5 families: 
Micrococcaceae, Streptococcaceae, Corynebacteriaceae, 
Lactobacillaceae, and Neisseriaceae.65 In contrast, studies 
with more advanced sequencing technologies discovered 9 
core genera in breast milk, including Staphylococcus, 
Streptococcus, Serratia, Pseudomonas, Corynebacterium, 
Ralstonia, Propionibacterium, Sphingomonas, and 
Bradyrhizobiaceae.66 Nevertheless, Staphylococcaceae 

and Streptococcaeceae have been reported as dominant 
species within breast milk.67

Notably, breast milk feeding appears to significantly 
dictate the diversity of the infant gut microbiome. 
Consistent breastfeeding appears to favor Bifidobacteria 
and Bacteroides as the dominant species. In contrast, 
infants fed formula have an increased abundance of anae-
robes, such as Enterobacteriaceae, for long periods of 
time.68,69 Besides transferring microbes, breast milk pro-
vides other prebiotics that support beneficial bacterial 
colonization.70 For example, Bifidobacteria, Bacteroides, 
and Lactobacillus are adapted to utilize human milk oli-
gosaccharides (HMOs), while these complex glycans inhi-
bit the growth of other harmful bacteria.71,72 Furthermore, 
HMOs can prevent pathogen adhesion to intestinal epithe-
lium by serving as soluble glycan receptor decoys. 
Mechanistically, HMOs could resemble the structures of 
viral receptors and prevent adherence to cells, therefore 
preventing infection.73–75 Lastly, breast milk also contains 
immunoglobulins, which provide passive immunity to 
newborn infants. The prominent antibodies present in 
breast milk are IgA (90–95%), IgM (2–5%) and IgG 
(<1%).44,76 Along with microbes, the presence of these 
antibodies helps to shape the composition of the infant 
gut microbiota and promotes a symbiotic relationship 
within the host.77

Airway Microbiome
Similar to the gut, it is now widely accepted that lungs are not 
sterile, as was previously thought.78 Distinct airway microbial 
profiles begin to cluster immediately after birth.79 The 
sequence of events may start with bacteria colonizing the 
intestine early in life, prior to its appearance in the 
airways.80,81 Alternatively, it has been hypothesized that 
the lower airway microbiome is derived from that of the 
upper airway via either microbial aspiration or direct inhala-
tion, to a lesser extent.82–84 In healthy subjects, the respiratory 
microbiome has a low density and modest growth rate. With 
the use of new technologies such as next-generation sequen-
cing of the 16S ribosomal RNA gene, more than 2000 bacter-
ial genomes per cm2 were detected in bronchoalveolar lavage 
specimens from normal healthy lungs.85 Although there is still 
a relative lack of research performed on the microbiota in the 
lungs compared with that at other sites such as the gut, there is 
growing evidence of the uniqueness of the microbial commu-
nity in the respiratory tract. Nevertheless, some types of 
bacteria in the airways and intestine do overlap, with the two 
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most abundant phyla detected in both being Firmicutes and 
Bacteroidetes.80,81

Gastrointestinal-Airway Microbial 
Communication
Overlapping pathologies in intestinal and respiratory 
diseases suggest that a gut-lung communication path-
way may exist. Furthermore, patients with chronic gas-
trointestinal diseases have a higher prevalence of 
pulmonary diseases.86 However, the mechanisms by 
which the microbiota in the gut and lung interact are 
not fully understood. Russell and coworkers demon-
strated that a disturbance of the intestinal microbiota 
by vancomycin administration, which reduces gut flora 
diversity, early in life induced an increase in suscept-
ibility to sensitization and asthma later in life.87 

Interestingly, treatment of age-matched mice with strep-
tomycin did not lead to reduce microbial diversity, and, 
ultimately, these mice were no more sensitive to asthma 
induction later in life than untreated controls. This 
result suggests that temporary disturbance of the micro-
flora by the use of an antibiotic is not harmful unless it 
leads to a lasting perturbation of flora diversity. 
However, disturbances of the airway microbiota may 
also result in alterations of the intestinal microbial 
composition. In a study by Vital et al, allergic airway 
sensitization in a mouse model led to a shift in the 
intestinal microbial composition, demonstrating that 
the gut microbiota is dynamic and can be altered in 
response to airway insults.88 In support of this view, 
Wang et al found alterations in the gut microbial com-
position of mice after respiratory infection with 
influenza.89 Although the airway microbiota was not 
examined in these studies, the changes that occurred 
in the lungs in response to the gut or vice versa suggest 
that gut-lung axis communication works in both direc-
tions and may constitute a positive feedback loop.

Furthermore, the connection between food allergies 
and asthma development also supports the presence of 
a gut-lung mucosal crosstalk. In this regard, the leaky 
intestinal barrier may lead to mislocation of food anti-
gens into the laminal propria, causing inflammation and 
sensitization to food allergens.90 These antigens can be 
translocated via leaky membranes into the lung inter-
stitium, resulting in cross-susceptibility to food aller-
gies and asthma, or even occurring in succession, 

starting with food allergies and progressing later to 
asthma.91,92

Mucosal Immunity-Microbiome 
Crosstalk
Homeostatic Interaction During 
Development
Early microbial colonization in the GIT and other mucosal 
sites, such as the respiratory tract and skin, occurs in tandem 
with the development of the immune system. During early 
microbial assembly, the immune system is amenable to the 
colonization of organisms because of its immaturity. The 
relative lack of cytokine responses results in blunted inflam-
matory responses, allowing for the settlement and expansion 
of the microbiome in various niches.93 Moreover, during this 
early period of rapid development of the immune system, 
maternally derived IgA protects the newborn from 
infections.94 Interestingly, in mice, IgA production is influ-
enced by the gut microbial environment, as the microbiome 
contributes to the development and function of mucosal 
lymphoid structures, such as the PPs, which is the site for 
IgA production in the GIT.95,96 Indeed, mice raised in germ- 
free conditions have underdeveloped PPs and a reduced 
number of CD4+ T cells and IgA-producing plasma cells.96 

Conversely, the homeostatic role of IgA in regulating gut 
commensals has also been observed in humans. In this 
regard, IgA deficiency has been associated with an altered 
composition of gut microbiota and increased microbial trans-
location, leading to a depletion of anti-inflammatory species, 
such as Faecalibacterium, and overexpansion of the pro- 
inflammatory species Gammaproteaobacteria and 
Prevotella.97 Furthermore, intestinal DCs also play 
a critical role in microbial imprinting via mechanisms that 
involve sampling of microbes for antigen presentation and 
induction of protective IgA.98

Although IgA is the dominant antibody in the gut, IgM 
and IgG are also present. Their role is, however, less well 
characterized. While IgA and IgM are both produced 
locally by B cells, IgG is a circulating antibody that can 
gain entry into the gut through the binding of Fc 
receptors.99 Consequently, IgG induction is a result of 
systemic immune activation in response to non-self anti-
gens. As a result, IgG has been shown to target distinct 
microbial species, in contrast to IgA and IgM, which were 
shown to target the same microbial populations.100 

Commensal bacteria also provide supporting nutrient 
metabolites for the development of the immune system, 
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notably via their production of SCFAs. SCFAs exert anti- 
inflammatory activity on gastrointestinal membranes, 
boost antibody production and play a key role in the 
growth of the intestinal lining and the maintenance of its 
integrity.45 Furthermore, SCFAs can influence the differ-
entiation of certain immune cell populations and, there-
fore, have immunomodulatory properties. For example, 
SCFAs can skew T helper differentiation away from the 
allergenic Th2 phenotype and, thus, prevent the induction 
of allergic sensitization.45

Aberrant Interaction During Dysbiosis 
and Barrier Disruption
While perturbation of the intestinal microbiome has been well 
established as a cardinal feature of obesity and metabolic 
disorders,101 early gut dysbiosis has been linked to the devel-
opment of asthma. For example, infants with a reduced 
Bifidobacterial to Clostridium difficile (C. difficile) ratio 
have a significantly increased risk for asthma development 
in later childhood.102 This finding was mirrored in the 
KOALA birth cohort study of 957 infants in the 
Netherlands, which demonstrated that colonization of 
C. difficile in the feces at one month of age was significantly 
associated with the subsequent development of eczema, 
wheezing and asthma, as assessed by parent interviews and 
by the determination of specific immunoglobulin E (sIgE) 
levels from blood samples collected at 2 years of age.103 

Likewise, in a study of 117 children, colonization of 
Bacteroides fragilis at the age of 3 weeks was associated 
with a significantly increased risk for developing asthma at 
the age of 3 years.104 Furthermore, diminished intestinal 
microbial diversity in asthmatic children has been 
documented.105 The genera Lachnospira, Veillonella, 
Faecalibacterium, and Rothia were significantly decreased 
in the guts of infants at risk for asthma in the first 100 days 
of life.106 Changes in the abundance of Lachnospira and 
Clostridium neonatale in the first 3 months of life were also 
linked to asthma development during the pre-school period.107 

In addition, children with asthma presented a significantly 
lower abundance of the genera Faecalibacterium and 
Roseburia.108 Similar to the gastrointestinal tract, the airway 
microbiome also differs between healthy and diseased 
individuals.109 In asthmatic children, nasal secretion samples 
showed a distinct microbiota composition dominated by the 
genus Moraxella.110 Proteobacteria (Hemophilus, Moraxella 
and Neisseria) were also more frequent in the asthmatic 
bronchial tree than in that of healthy adults.85,111 Conversely, 

Bacteroidetes, particularly Prevotella, were significantly 
reduced in asthmatics.85 In addition to bacteria, the presence 
of human rhinovirus in the nasopharynx during early life can 
impact asthma development.112,113

Several studies have linked airway dysbiosis to asthma 
development through microbe-mediated alteration of the 
balance between Th2 and other immune signals. For 
instance, resident airway microbes have been shown to play 
a critical role in the regulation of basophil activation and IgE 
production,114 while Actinomycetaceae and Moraxella cat-
arrhalis are able to induce eosinophilia, epithelial damage 
and subsequent inflammatory Th2 cytokine expression (IL- 
33, IL-8).110 Streptococcus, Prevotella, and Neisseria species 
are also associated with a Th2 cytokine profile; however, this 
allergic inflammatory response is driven by macrophages and 
T cells.115,116 Other studies have also shown that 
Enterococcus faecalis can suppress Th17 immune responses 
and elevate symptoms of allergic asthma.117

Interestingly, the airway microbiota may also drive spe-
cific asthma endotypes and phenotypes.118 In this regard, 
the presence of eosinophilia during asthma has been shown 
to be related to changes in the microbiome. For instance, 
elevated eosinophil counts were documented in a study of 
321 neonates, whose airways are predominantly colonized 
by Streptococcus pneumoniae, Haemophilus influenzae, or 
Moraxella catarrhalis.119 Conversely, eosinophil abun-
dance in bronchial biopsies were found to be negatively 
associated with airway colonization of Proteobacteria, 
Neisseria, Bacteroides, and Rothia.120–122 Neutrophilia 
has also been linked to airway microbial alterations, char-
acterized by a general loss of diversity.121,122 A detailed 
dissection of the microbiome in these subjects revealed 
specific reduction in abundance of Streptococcus, 
Gemella, and Porphyromonas. Furthermore, Th2 inflamma-
tion, the signature of asthma, has been recently linked to 
fungal dysbiosis with specific enrichment of Trichoderma 
and Penicillium species.123

Collectively, the studies above provide evidence for the 
need to properly establish an early microbial colony in the 
mucosae during development so that homeostatic interac-
tion between the microbiome and mucosal immune system 
is maintained. Otherwise, a disrupted immune-microbiome 
crosstalk could generate inflammatory pathogenic factors 
that contribute to epithelial barrier dysfunction and asthma 
development. Notably, asthmatic Th2 cytokines, such as 
IL-4, IL-5, IL-13, and TSLP, can negatively impact airway 
epithelial barrier functions.124 In this regard, Xu et al 
demonstrated that IL-13 could suppress surfactant 
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D expression in the airway epithelium.125 Similarly, IL-4 
and IL-5 have been shown to inhibit the expression of 
other secretory airway barrier factors, such as surfactant 
B and C, two critical regulators of respiratory 
functions.126,127 Ahdieh et al also demonstrated through 
an in vitro study on human lung adenocarcinoma cells that 
both IL-4 and IL-13 decreased the expression of epithelial 
junction proteins, such as ZO-1 and occludin, resulting in 
barrier leakage.128 Furthermore, decreased caveolin-1 in 
adult asthma patients was correlated with increased 
expression of the pro-inflammatory cytokine TSLP.129

Of current interest, in the pathophysiology of COVID- 
19, microbiome alterations have been associated with sig-
nificant involvement of the respiratory and gastrointestinal 
tracts.130,131 In this regard, COVID-19 patients exhibit 
reduced bacterial diversity in the gut and reduction of 
healthy symbionts, in addition to an increase in the abun-
dance of pathogenic Streptococcus, Rothia, Veillonella, 
and Actinomyces.132 Consistent with this report, the gut 
microbiome of COVID-19 patients was documented with 
an enrichment of opportunistic bacteria (Clostridium, 
Actinomyces, and Bacteroides) and fungi (Candida albi-
cans, Candida auris, and Aspergillus flavus) and depletion 
of beneficial commensals, such as Eubacterium, 
Faecalibacterium prausnitzii, and Lachnospiraceae.133 

More importantly, the severity of the symptoms related 
to COVID-19 was linked to an expansion of pathogenic 
Clostridium and reduction of Alistipes and Bacteroides 
commensals. Limited information with regard to respira-
tory microbes have been documented in COVID-19 with 
the general consensus that opportunistic fungal and bacter-
ial infections are widespread in the lungs of patients suf-
fering from this disease.134,135 Specifically, Acinetobacter, 
Chryseobacterium, Burkholderia, Brevundimonas, 
Sphingobium, and Enterobacteriaceae are the predominant 
bacteria while Cutaneotrichosporon, Issatchenkia, 
Wallemia, Cladosporium, Alternaria, Dipodascus, 
Mortierella, Aspergillus, Naganishia, Diutina, and 
Candida are the prevalent fungi in the airways of 
COVID-19 patients.135 These collective findings highlight 
the impact of mucosal microbiota on the susceptibility to 
SARS-CoV2 infection and severity of COVID-19.

Therapeutic Implications
Currently, the mainstay of bronchial asthma treatment is to 
control airway inflammation through the use of inhaled 
corticosteroids (ICSs). Although the mechanism is thought 
to occur by reducing inflammatory cytokine levels, newer 

evidence points to the role of ICSs in stabilizing the air-
way epithelium and in promoting epithelial barrier 
synthesis.25 Interestingly, an increase in Proteobacteria 
in bronchial epithelial brushings from adults with mild to 
moderate asthma after ICS treatment has been 
reported.85,136 Corroborating studies also showed that the 
microbiome of ICS-responsive asthmatics is enriched with 
Neisseria, Moraxella, and Haemophilus.137 Therefore, 
ICSs may alter the lung microbiome by promoting the 
colonization of potentially pathogenic bacterial strains 
and subsequent ICS unresponsiveness.

In light of these findings, microbial manipulation may 
represent a novel therapeutic strategy in treating asthma, as 
microbiota seem to exert a considerable effect on the devel-
opment of epithelial barriers, local immunological responses, 
and even the responsiveness to the standard of care for this 
condition. In this regard, introducing certain commensal 
strains in the form of probiotic supplementation may reduce 
allergy and asthma risk. Bacteria used for probiotics mainly 
belong to lactic acid bacteria (Lactobacillus, Streptococcus, 
Enterococcus), Bifidobacterium, and non-pathogenic 
Escherichia coli.138 Specifically, administration of 
Lactobacillus rhamnosus has been shown to prevent asthma 
development.139 When asthmatic children were orally admi-
nistered a combination of Lactobacillus acidophilus, 
Bifidobacterium bifidum, and Lactobacillus delbrueckii sub-
species Bulgaricus, an improvement in lung function and 
a reduction in asthma exacerbations were observed.140 

Lactobacillus paracasei, Lactobacillus fermentum, and 
Lactobacillus gasseri could also alleviate asthma symptoms 
and decrease IgE levels in children.141,142 However, two 
meta-analyses of a total of 31 studies with over 5000 parti-
cipants separately found no significant changes in the risk of 
asthma with probiotic supplementation.143,144 These conflict-
ing data on the benefit of probiotics in asthma prevention 
may be related to individual differences in the ability to 
incorporate probiotics into the microbiome.145

Supplementing with prebiotics may provide the dietary 
support required for probiotics. Prebiotics are specific diet-
ary fibers that are used as a nutritional source for com-
mensal gut bacteria. These fermentable fibers are used by 
gut microbiota to produce SCFAs.146 Prebiotics were 
found to have a positive influence on microflora diversity, 
stimulating the growth and activity of beneficial bacteria in 
the colon.146,147 In one study, infants fed prebiotic formula 
had an intestinal microflora diversity closer to that of 
breastfed infants, with breastfeeding known to reduce 
allergy and asthma risk compared with that associated 
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with regular formulas.148 Bacterial lysates may also be 
beneficial as asthma therapeutics. In contrast to probiotics, 
bacterial lysates are not living organisms and, therefore, 
have only transient effects. For example, OM-85, an alka-
line lysate of 21 respiratory tract pathogens, was able to 
reduce disease exacerbations in asthmatic children.149–151 

Similarly, sublingual administration of a bacterial lysate 
tablet (PMBL) improved asthmatic symptoms.152 These 
bacterial compounds may exert immunoregulatory 
mechanisms in the gut, which can act on distant mucosal 
sites to reduce allergic inflammation and airway hyper-
reactivity. However, the evidence for the use of probiotics, 
prebiotics, or other microbial therapeutics for the preven-
tion of asthma is currently too weak for any recommenda-
tion to be drawn.144,153 Similarly, in light of the current 
COVID-19 pandemic, there is no clinical evidence of 
microbiota modulation for the treatment of this disease. 
Nevertheless, emerging speculations highlight the role of 
targeting microbiota as primary or adjuvant 
therapies.154,155 In this regard, microbiota modulators can 
be used to alleviate the GI distress and protect the respira-
tory system from opportunistic bacterial and fungal infec-
tions. Additional research is needed before a general 
recommendation can be provided to harness the therapeu-
tic powers of microbes in asthma and other emerging 
respiratory diseases.

Conclusions
In conclusion, the microbiota plays an important role in 
the development of protective barriers and mucous mem-
brane immunity. Correlations exist between immune- 
microbiome crosstalks, epithelial barrier dysfunction, and 
asthma development. There is likely to be positive feed-
back between allergic inflammation-induced dysbiosis 
that, in turn, further promotes further barrier dysfunction, 
which leads to increased displacement of allergens/ 
microbes to exacerbate the allergic response. A better 
appreciation of how these mechanisms interconnect will 
be crucial for enhancing our understanding of the patho-
genesis of asthma and aiding the development of early 
intervention and therapeutic methods.
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