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Objective: Recent studies have demonstrated that sleep not only facilitates memory con-
solidation but also benefits more complex cognitive skills such as decision-making in young 
adults. Older adults use different decision strategies compared with young adults, which 
leaves the role of sleep in older adults’ decision-making unclear. We investigated the age-by- 
sleep effect on decision-making.
Methods: We recruited 67 young adults (ages 18 to 29 years) and 66 older adults (ages 60 to 
79 years) and randomly assigned them into the “sleep” or “wake” study condition. They were 
given a modified Iowa gambling task to perform before and after a 12-hour interval with 
sleep or wakefulness.
Results: Using the typical model-free analysis, we found that young adults’ between-session 
performance improved greater than that of older adults regardless of the sleep/wake condi-
tion. Furthermore, older adults with longer total sleep time showed a greater improvement in 
the selection of one “good” deck. To further examine the sleep effect on age-related 
differences in cognitive processes underlying decision-making, we conducted computational 
modelling. This more fine-grained analysis revealed that sleep improved feedback sensitivity 
for both young and older adults while it increased loss aversion for older adults but not for 
young adults.
Conclusion: These findings indicate that sleep promotes learning-based decision-making 
performance via facilitating value representation, and such modulation is distinct in young 
compared to older adults.
Keywords: decision-making, the Iowa gambling task, sleep, aging, computational modelling

Sleep is vital for humans, and we spend about one-third of our lives in sleep. It 
plays a profound role in a variety of physiological systems that maintain our health 
and promote cognitive function across domains.1,2 Both sleep and cognitive func-
tion of older adults alter with advanced age.3–5 While previous research has 
extensively focused on age differences in the sleep-related effects on emotion, 
memory,1,6–8 and executive function,9 little is known about age-related differences 
in sleep modulation effects on decision-making.

Among the widely used decision-making paradigms, the Iowa gambling task 
(IGT)10 has been adopted to uncover the relationship between sleep and decision- 
making, as it involves a feedback learning component that is often influenced by 
sleep.11,12 Specifically, the IGT requires participants to have reinforcement learn-
ing ability to distinguish advantageous and disadvantageous decks. The advanta-
geous decks offer small immediate gains but even smaller losses in the long term, 
resulting in an overall net gain. While the disadvantageous decks produce large 
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immediate gains but even larger losses in the long term, 
leading to an overall net loss. To maximize earnings, 
participants have to consider gains and losses, long-term 
and short-term payoffs, as well as uncertainty about out-
comes. In sleep studies, poor IGT performance was often 
reported in the context of sleep deprivation13,14 and sleep 
disorders.15,16 Correspondingly, normal sleep was found 
to be beneficial to IGT performance in young adults. 
These studies used the “am-pm” experimental design, in 
which participants had either a 12-hour interval with sleep 
(in the sleep condition) or with wakefulness (in the wake 
condition) between the first test and the re-test. For exam-
ple, Pace-Schott et al17 found that after a 12-hour interval, 
participants’ performance, indexed by their net scores, 
were improved more in the sleep condition compared 
with that of participants in the wake condition.

Although older adults exhibit cognitive declines and 
neurobiological impairments with aging, they can still be 
identified as adaptive decision-makers with the ability to 
distinguish advantageous decks from disadvantageous 
decks.18–20 However, to achieve this comparable perfor-
mance as young adults, older adults may utilize different 
strategies based on the capacity of their cognitive 
resources. For instance, young adults had more strengths 
in learning and memory, while older adults had a more 
accurate representation of gains and losses.18 Moreover, 
older adults were more conservative in exploratory beha-
viour than that of young adults.21 Since these age differ-
ences were observed in the cognitive processing 
underlying the IGT, we speculate that the sleep effect on 
decision-making could be modulated by age.

The typical analysis for the IGT is usually focused on the 
comparison of net scores between conditions, which is often 
averaged by blocks of 20 trials.22–24 However, this traditional 
analysis approach does not provide detailed trial-by-trial 
information, therefore, is insufficient for a more thorough 
examination of decision strategy. Recently, reinforcement 
learning (RL) models have been adopted to break down the 
trial-by-trial performance of the IGT into cognitive compo-
nents, such as feedback learning, memory, sensitivity, and 
response consistency,25,26 that may enrich our understanding 
of the cognitive processes underlying decision-making. In 
this study, we applied the RL models to investigate the sleep 
effect on decision-making modulated by age.

The overarching aim of the present study is to examine 
whether sleep contributes to the performance of IGT, and 
whether and how this potential sleep effect is modulated 
by age. We conducted both model-free and model-based 

analysis to examine decision strategies used by young and 
older adults. Moreover, we investigated the association 
between IGT performance and sleep characteristics in 
order to explore the possible mechanisms underlying the 
age-by-sleep effect.

Methods
Participants
We recruited 68 young adults (aged 18–29) from 
a university and 70 older adults (aged 60–79) from adjacent 
communities. Older adults were independent community- 
dwelling adults with a mean score of 28.9 ±1.13 in the mini- 
mental state examination (MMSE).27 Participants were all 
right-handed, had no history of psychiatric, neurological 
diseases, or sleep disorders, and had normal or corrected- 
to-normal vision. Five participants were excluded: three 
older adults with MMSE scores below 25, and two partici-
pants (one old and one young) with incomplete data record-
ing. Participants were randomly assigned to the wake or the 
sleep condition groups. Thus, the sample used for the fol-
lowing analyses included 67 young adults—33 in the sleep 
condition and 34 in the wake condition—and 66 older 
adults—32 in the sleep condition and 34 in the wake con-
dition. As shown in Table 1, participants in the wake and 
sleep conditions were well matched for demographic and 
neuropsychological characteristics across age groups. With 
respect to age differences, older adults were generally less 
educated and more morningness-oriented, and they had 
generally poorer subjective sleep quality. Considering the 
significant differences in education and circadian chrono-
type between the two age groups, we conducted additional 
analyses to control for these confounding variables. The 
significance of our results was not affected by these covari-
ates (see Supplementary Tables S1 and S5).

This study was approved by the ethics committees of 
the Faculty of Psychology, Southwest University 
(H17001), and was conducted in accordance with the 
Declaration of Helsinki. Participants provided informed 
consent prior to the experiment. Each participant received 
40 CNY (ca. 6 USD) for participation in the study, with 
the opportunity to earn up to an additional 40 CNY based 
on their performance in the task.

Materials and Procedure
The experiment consisted of two sessions (Figure 1A). The 
first session was conducted either in the morning (7:30– 
9:30 am; wake condition) or in the evening (7:30–9:30 pm; 
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sleep condition), and the second session was conducted 12 
hours later (following an interval of wakefulness or sleep). 
Participants in the wake condition were not allowed to have 
a nap before the re-test session. All participants were asked 
to provide a record of their sleep/daily activities of the 
previous night/daytime prior to each session. To monitor 

the sleep of participants in the sleep condition, they were 
asked to wear an actigraph (BodyMedia FIT LINK) on their 
non-dominant wrist during sleep. Sleep parameters, includ-
ing total sleep time (TST), sleep latency, and sleep effi-
ciency were obtained from Sense Wear Software 8.1 
(BodyMedia LINK).

Table 1 Participants’ Characteristics and Neuropsychological Data

YS (n = 33) 
M (SD)

YW (n = 34) 
M (SD)

YS vs YW 
t (p)

OS (n = 32) 
M (SD)

OW (n = 34) 
M (SD)

OS vs OW 
t (p)

Y vs O t (p)

Age (years) 20.58 (1.58) 20.29 (2.07) 0.63 (0.53) 66.22 (4.48) 67.50 (4.38) −1.15 (0.26) −78.97 

(2.35×10−112)

Male (%) 0.49 0.47 0.01a(0.91) 0.38 0.38 0.09a(0.76) 0.95a(0.33)

Education (years) 14.64 (1.64) 14.18 (2.11) 1.00 (0.32) 9.00 (2.31) 9.85 (3.04) −1.28 (0.21) 12.22 
(2.14×10−23)

Economic status 

(5-point)

2.94 (0.56) 3.06 (0.56) −0.89 (0.38) 2.94 (0.67) 2.85 (0.66) 0.52 (0.61) 0.99 (0.32)

Health status 

(5-point)

2.24 (0.75) 2.33 (0.78) −0.48 (0.63) 2.44 (0.84) 2.50 (0.90) −0.29 (0.77) −1.28 (0.20)

MMSE — — — 28.72 (1.40) 29.12 (0.77) −1.45 (0.15) —

MEQ 48.88 (7.11) 46.91 (7.04) 1.14 (0.26) 61.69 (8.29) 63.59 (5.40) −1.11 (0.27) −12.13 
(3.59×10−23)

PSQI 4.52 (2.03) 4.03 (1.47) 1.12 (0.27) 5.90 (3.05) 6.44 (3.50) −0.66 (0.51) −4.20 
(5.00×10−5)

TSTb (min) 322.21 (54.34) — — 318.31 (72.12) — — 0.25 (0.81)

Sleep latencyb (min) 13.21 (9.99) — — 19.69 (18.33) — — −1.78 (0.08)

Sleep efficiencyb (%) 83.17 (10.80) — — 79.80 (9.57) — — 1.33 (0.19)

Notes: aχ2 value. b Actigraph-measured sleep characteristics. 
Abbreviations: M, mean; MEQ, the morningness-eveningness questionnaire; MMSE, the mini-mental state examination; O, older adults; OS, older adults in the sleep 
condition; OW, older adults in the wake condition; PSQI, the Pittsburgh sleep quality index; SD, standard deviation; TST, total sleep time; Y, young adults; YS, young adults in 
the sleep condition; YW, young adults in the wake condition. Bold font indicates statistically significant result (p < 0.05).

Figure 1 Experimental procedure and design. (A) Experimental procedure. The first session was conducted either in the morning (7:30–9:30 am; the wake condition) or in 
the evening (7:30–9:30 pm; the sleep condition), followed by a re-test session 12 hours later. (B) Screenshot of the Iowa gambling task. The green bar shows the amount of 
money participants gained; the red bar shows the amount of money participants borrowed. In this example, the participant selected deck A and gained 100 CNY.
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The Iowa Gambling Task
In the present study, we adopted a well-known experience- 
based decision-making task, the Iowa gambling task 
(IGT)10,28 The computerized version of IGT was written 
with MATLAB 2018a (MathWorks) based on Psychtoolbox 
(www.psychtoolbox.org). As shown in Figure 1B, in each 
trial of the task, participants were asked to choose one of four 
decks (A, B, C and D) on a screen. Two of the decks (A and 
B) were disadvantageous decks with net losses in the long 
term, whereas two of the decks (C and D) were advantageous 
decks with net gains in the long term. Additionally, losses are 
more frequent in decks A and C (50%) than in decks B and 
D (10%). Each deck has up to 60 draws and the net gains/ 
losses increase with every 10 draws.29 Specifically, the net 
profit of decks A and B in the first 10 draws are −250 CNY, 
and it is increased by −150 CNY every 10 draws; the net 
profit of decks C and D in the first 10 draws are 250 CNY, and 
it goes up by 25 CNY every 10 draws. Participants were only 
told that sometimes they would gain and sometimes they 
would lose and that some decks might be better than others; 
they were not told which decks were good or bad. They were 
required to gain as much as possible, as total gain in the task 
would be converted into their monetary recompense for the 
study. There were two bars at the top of the screen, with the 
green bar showing the amount of money participants gained 
and the red bar showing the amount of money participants 
borrowed. The green bar was updated according to the out-
come after each selection. If participants’ amount of gain was 
less than 0, a load of 2000 CNY was added to the red bar 
automatically while the green bar was reset accordingly. 
Participants were informed of their net outcome (ie, the 
total amount of money gained minus the total amount of 
money borrowed) at the end of the task. Participants com-
pleted 100 trials in each session, and the features of the four 
decks were kept the same across the two sessions to avoid 
reversal learning.

Data Analysis
We calculated the net score for each participant in each 
session, as net scores have been widely used in the IGT 
studies to quantify participants’ task performance.10,30,31 

To examine the feedback learning process, the 100 trials 
were divided into 5 consecutive blocks with each contain-
ing 20 trials. A net score was calculated by subtracting the 
number of draws of the disadvantageous decks from the 
number of draws of the advantageous decks [(C + D) – (A 
+ B)] for each block. The net scores were examined using 

a repeated-measure ANOVA, with age (young, old) and 
condition (sleep, wake) as between-subject variables, ses-
sion (test, re-test), and block (1–5) as within-subject 
variables.

Previous studies identified the decreasing selection of 
deck B as evidence of sleep beneficial effect on decision- 
making.22,23 Thus, we calculated the proportional change of 
each deck selection from session 1 to session 2 in order to 
examine whether the sleep-related improvement was deck- 
specific. A repeated-measure ANOVA with age (young, old) 
and condition (sleep, wake) as between-subject variables and 
deck (A, B, C, D) as a within-subject variable was performed. 
Next, we conducted correlation analyses between sleep and 
decision-performance changes. Statistical analyses were per-
formed using SPSS 26.0 (IBM Corporation, Armonk, 
NY, USA).

Computational Modelling
The IGT is a complex, experience-based, decision-making 
task involving multiple cognitive processes such as feed-
back learning, reward sensitivity, loss aversion, time 
insight, and exploration. Computational modelling is 
a useful tool for understanding task performance at 
a more nuanced level. Three commonly used and validated 
reinforcement learning models of the IGT were applied: 
the Prospect Valence Learning (PVL)-Decay model,32 the 
PVL-Delta model33 and the Value-Plus-Perseverance 
(VPP) model.34 The main difference between these models 
is how the expected value of each option updates over 
time.

The PVL-Decay and PVL-Delta Model
The concepts of PVL models include utility function, 
learning rule, and choice rule. Outcomes of decisions are 
evaluated according to the prospect utility function. The 
utility u tð Þ of outcome x tð Þ on the t trial is expressed as:

u tð Þ ¼ x tð Þα; x tð Þ � 0
� λ x tð Þj j

α
; x tð Þ<0

�

(1) 

where αð0<α<2Þ is a shape parameter, which determines 
sensitivity to outcome feedback, while λð0<λ<10Þ is 
a loss-aversion parameter, which determines sensitivity to 
losses versus gains. Higher α means greater sensitivity to 
feedback (i.e., giving higher subjective value to out-
comes). A value of λ<1 indicates higher sensitivity to 
gains other than losses, whereas λ>1 represents the 
opposite.
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These two PVL models are identical in utility function 
and choice rule but are different in learning rule. In the 
decay rule, the expected value for all decks is discounted 
in each trial, and the expected value of the selected deck is 
updated by its current utility. For example, the expected 
value of the jth deck in the (t + 1) trial, Ej t þ 1ð Þ, is 
updated as:

Ej t þ 1ð Þ ¼ A � Ej tð Þ þ δj tð Þ � u tð Þ (2) 

where Að0<A<1Þ is a decay parameter, which deter-
mines how much past expectancy is discounted; δj tð Þ ¼ 1 
when the jth deck is the selected deck, otherwise δj tð Þ ¼ 0. 
However, in the delta rule, only the expected value of the 
selected deck will be updated, and expected values of 
unselected decks remain unchanged, which is 
expressed as:

Ej t þ 1ð Þ ¼ Ej tð Þ þ A � δj tð Þ � u tð Þ � Ej tð Þ
� �

(3) 

where Að0<A<1Þ is a learning rate, which determines 
the weight of past experiences versus recent experiences. 
A high learning rate means recent outcomes have greater 
influence other than past outcomes on the expected value 
of the selected deck, whereas a low learning rate means 
the opposite. In addition, u tð Þ � Ej tð Þ is the prediction 
error. The softmax function35 was used as a choice rule 
to calculate the probability of selecting deckjin t þ 1trial:

Pr D t þ 1ð Þ ¼ j½ � ¼
eθ�Ej tþ1ð Þ

∑4
k¼1 eθ�Ek tþ1ð Þ

(4) 

θ tð Þ ¼ 3c � 1 (5) 

where the sensitivity θ changes over trials depending 
on the response consistency parameter cð0<c<5Þ. Greater 
c means the continuous selection becomes less random and 
more determined by expected deck utility. In sum, the 
PVL models have four free parameters: the feedback sen-
sitivity parameter α, the loss-aversion parameter λ, the 
learning rate A in the PVL-delta model and the decay 
parameter A in the PVL-decay model, as well as the choice 
sensitivity c.

The VPP Model
The VPP model is an updated version of the PVL-delta 
model, which consists of the same utility function, learn-
ing rule and choice rule but combines an additional psy-
chological process, perseverance (ie, win-stay-loss-switch 
choice behaviour), and is expressed as:

Pj t þ 1ð Þ ¼
k � Pj tð Þ þ εp;

k � Pj tð Þ þ εn;

�
x tð Þ � 0
x tð Þ<0 (6) 

where kð0<k<1Þ is a perseverance decay rate, which 
determines participants’ decay of tendency to select the 
deck j in each trial; εpð� 1<εp<1Þ or εnð� 1<εn<1Þ is 
the outcome impact parameter, depending on whether the 
outcome of selected deck j in the t trial is positive (i.e., 
gain) or negative (i.e., loss). Specifically, positive εp or εn 

means a persistent tendency (i.e., to select the same deck 
in the next trials) while a negative value means a switching 
tendency (i.e., to select other decks in the next trials). The 
VPP model also assesses the persistence and maximization 
of expected utility as two basic but independent psycholo-
gical processes. A weighted average of these two processes 
is used in the choice rule to determine the probability of 
selecting deck j in the t þ 1trial (i.e., the next trial), which 
is expressed as:

Vj t þ 1ð Þ ¼ ω � Ej t þ 1ð Þ þ 1 � ωð Þ � Pj t þ 1ð Þ (7) 

Pr D t þ 1ð Þ ¼ j½ � ¼
eθ�Vj tþ1ð Þ

∑4
k¼1 eθ�Vk tþ1ð Þ

(8) 

where ωð0<ω<1Þ determines the weight of expected uti-
lities of deck and 1 � ω determines the weight of perse-
veration process. A value of ω>0:5 indicates the expected 
utilities of the deck have more weight while a value of 
ω<0:5 indicates the perseveration of the deck has more 
weight. In sum, the VPP model has eight free parameters: 
the feedback sensitivity (α), the loss aversion (λ), the 
learning rate (A), the gain impact (εp), the loss impact 
(εn), the perseverance decay rate (k), the choice sensitivity 
(c), as well as the reinforcement learning weight (ω).

Model Fits and Comparisons
Model fitting and parameter estimation were performed for 
each session in each group using a hierarchical Bayesian 
analysis approach based on the implemented algorithms 
using the hBayesDM R package (https://cran.rproject.org/ 
web/packages/hBayesDM/index.html). Four chains were 
used, each of which comprised 2000 iterations; the initial 
half of each chain was discarded as burn-in (1000 samples 
× 4 chains = a total of 4000 samples).36 Model fits were 
assessed using the Widely Applicable Information 
Criterion (WAIC).37 This index is a “more fully Bayesian 
approach”38 that uses point-by-point log-likelihood poster-
ior predictive density, and a penalty term is used to control 
the trade-off between goodness of fit and complexity of the 
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model. Smaller WAIC indicates better model-fit, and the 
overall fitness is assessed by the sum of WAIC in each 
group for each model.

Model-based estimates (mean) for parameters were 
analyzed using repeated-measure ANOVAs with age 
(young, old), condition (sleep, wake) as between-subject 
variables, and session (test, re-test) as a within-subject 
variable. Bonferroni correction with p < 0.05/8 = 0.0063 
were applied for multiple comparisons. Moreover, we 
performed correlation analyses between sleep characteris-
tics and parameters estimation from the winning model to 
investigate individual differences in the relationship 
between sleep and cognitive processes underlying IGT.

Results
Model-Free Analyses on the Net Score
The net score was examined using a 2 (age: young, old) × 
2 (condition: sleep, wake) × 2 (session: test, re-test) × 5 
(block: 1–5) repeated-measure ANOVA, with age and 
condition as between-subject variables, session and block 
as within-subject variables. As shown in Figure 2A, all 
groups showed an increased tendency of net score as 
a function of learning, resulting in significant main effects 
of block (F4, 130 = 19.18, p = 2.48 × 10−12, partial η2 = 
0.13) and session (F1, 130 = 37.55, p = 1.01 × 10−8, partial 
η2 = 0.23). In addition, there was a significant interaction 
of age × session (F1, 130 = 7.78, p = 0.006, partial η2 = 
0.06). The Bonferroni-corrected simple effect analyses 
showed that young adults’ net scores showed greater 
between-session increases (Msession1 = 0.004, SD = 0.28; 
Msession2 = 0.25, SD = 0.40; p = 3.73 × 10−9) than those of 
older adults (Msession1 = 0.06, SD = 0.32; Msession2 = 0.16, 
SD = 0.25; p = 0.02). No other significant main effects or 
interactions of net score were observed.

For the proportional change of each deck selection, a 2 
(age: young, old) × 2 (condition: sleep, wake) × 4 (deck: 
A, B, C, D) repeated-measure ANOVA with age and con-
dition as between-subject variables, deck as a within- 
subject variable was performed. The analysis revealed 
a significant main effect of deck (F3387 = 17.13, p = 5.83 
× 10−9, partial η2 = 0.12) and an interaction of age × deck 
(F3387 = 9.61, p = 2.20 × 10−5, partial η2 = 0.07). 
Bonferroni-adjusted pairwise comparisons showed that 
young adults reduced the selection of the disadvantageous 
deck B more than older adults (p = 2.56 × 10−4) while 
increased the selection of the advantageous deck C more 
compared with older adults (p = 3.40 × 10−5; Figure 2B).

Correlation analyses revealed that the TST was posi-
tively correlated with increases in the selection of advan-
tageous deck D in older adults (r = 0.53, p = 0.002; 
Bonferroni corrected) but not in young adults (r = −0.10, 
p = 0.57; Figure 2C). The difference between these two 
correlations was significant (z = 2.65, p = 0.008). No other 
significant correlation between sleep characteristics and 
changes in deck selection survived after multiple compar-
ison correction (see Supplementary Table S2 for all corre-
lation results).

Together, the analyses of net scores suggest that young 
adults experienced a greater feedback learning effect than 
older adults in general, manifested as greater performance 
improvements from session 1 to session 2. Specifically, 
young adults demonstrated a greater decrease in their 
selections from disadvantageous deck B and greater 
increases in their selections from advantageous deck 
C. However, the evidence of an impact based on condition, 
ie, sleep versus wake, was relatively weak, only manifest-
ing as the positive correlation between the TST and the 
increased selection of advantage deck D in older adults.

Computational Modelling
Model Fitting and Comparison
As shown in Table 2 and Supplementary Figure S1, model 
comparisons suggested that the VPP model (WAICsum = 
59,244.57) provided the best model-fit relative to the PVL- 
Decay (WAICsum = 66,136.71) and the PVL-Delta model 
(WAICsum = 62,746.38) in all 4 groups and 2 sessions. In 
addition, we performed model simulation for the VPP 
model for each session of each participant based on their 
parameter estimates to evaluate model fit.39 Real data and 
simulated data of the number of each deck selection in 
each session showed strong correlations (ps < 0.001; 
Supplementary Figure S2).

Parameter Comparison
We extracted model parameters from the winning model, ie, 
the VPP model, to compare specific cognitive processes 
underlying decision-making assumed by the model among 
groups. Parameter estimates of the VPP model are provided 
in Supplementary Table S3, and the other two models are 
summarized in Supplementary Table S4. In the following, 
we reported the 2 (age: young, old) × 2 (condition: sleep, 
wake) × 2 (session: test, re-test) repeated-measure ANOVA 
results of parameter estimates (ie, α, the feedback sensitivity 
and λ, the loss aversion) that had significant interaction 
effects of age × condition × session after Bonferroni 
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correction, which reflected the mediation effect of age on the 
association between sleep and decision-making.

α: Feedback Sensitivity
Feedback sensitivity results yielded the significant main 
effects of session (F1, 129 = 248.57, p = 7.10 × 10−32, partial 
η2 = 0.66), condition (F1, 129 = 286.75, p = 1.39 × 10−34, 
partial η2 = 0.69) and age (F 1129 = 800.62, p = 3.59 × 10−57, 
partial η2 = 0.86). Moreover, there was a two-way interaction 
of age × condition (F 1129 = 360.75, p = 3.47 × 10−39, partial 

η2 = 0.74) and a three-way interaction of age × condition × 
session (F 1129 = 359.98, p = 3.85 × 10−39, partial η2 = 0.74).

As shown in Figure 3, Bonferroni-adjusted pairwise com-
parisons showed that feedback sensitivity for young adults 
increased significantly in the sleep condition (MYS1 = 0.07, 
SD = 0.01; MYS2 = 0.10, SD = 0.08; p = 0.002), but decreased 
significantly in the wake condition (MYW1 = 0.56, SD = 0.08; 
MYW2 =0.09, SD = 0.02; p = 1.12 × 10−77). For older adults, 
feedback sensitivity increased significantly in the sleep con-
dition (MOS1 = 0.04, SD = 0.02; MOS2 = 0.12, SD = 0.05; p = 

Figure 2 (A) The net score in five 20-trial blocks for four groups in session 1 and session 2, respectively. (B) The proportion change in the selection of each deck (A, B, 
C and D) from session 1 to session 2. Performance improvement is manifested as the decreased selection of disadvantageous decks (A and B) and increased selection of 
advantageous decks (C and D). (C) The correlation between total sleep time and the proportion of selection change of advantageous deck D. *** p < 0.001. 
Abbreviations: n.s., not significant; OS, older adults in the sleep condition; OW, older adults in the wake condition; YS, young adults in the sleep condition; YW, young 
adults in the wake condition.
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7.41 × 10−11), whereas there was no significant difference 
between two sessions in the wake condition (MOW1 = 0.02, 
SD = 0.001; MOW2 = 0.02, SD = 0.004; p = 0.94).

λ: Loss Aversion 
Loss aversion showed significant main effects with session 
(F 1,129 = 21.91, p = 7.00 × 10−6, partial η2 = 0.15) and age (F 
1129 = 106.36, p = 1.48 × 10−18, partial η2 = 0.45). Moreover, 
there were a significant two-way interaction of age × condi-
tion (F 1129 = 20.56, p = 1.30 × 10−5, partial η2 = 0.14) and 
a three-way interaction of age × condition × session (F 1129 = 
20.73, p = 1.20 × 10−5, partial η2 = 0.14).

As shown in Figure 4, Bonferroni-adjusted pairwise com-
parisons showed that for young adults, there was no signifi-
cant difference between two sessions in the sleep condition 
(MYS1 = 0.32, SD = 0.02; MYS2 = 0.34, SD = 0.17; p = 0.63), 
whereas loss aversion was decreased significantly in the 
wake condition (MYW1 = 0.73, SD = 0.46; MYW2 = 0.05, 

SD = 0.001; p = 4.15 × 10−30). For older adults, loss aversion 
was increased significantly in the sleep condition (MOS1 = 
0.02, SD = 0.001; MOS2 = 0.27, SD = 0.18; p = 1.87 × 10−7), 
whereas there was no significant difference between sessions 
in the wake condition (MOW1 = 0.12, SD = 0.005; MOW2 = 
0.09, SD = 0.01; p = 0.53). Unfortunately, no correlation 
between sleep characteristics and model parameters survived 
after multiple comparison correction.

Discussion
To the best of our knowledge, this is the first study to 
investigate age differences in the sleep-related modula-
tion effects on experience-based decision-making. With 
typical net score analysis, we only found a salient age 
difference on the feedback learning effect, illustrated as 
young adults selecting fewer disadvantageous decks and 
more advantageous decks in the re-test session compared 
with older adults. Nevertheless, with a more fine-grained 

Figure 3 Group-level and individual-level feedback sensitivity α changes after sleep or wakefulness interval for young and older adults. *** p < 0.001. 
Abbreviations: n.s, not significant; OS, older adults in the sleep condition; OW, older adults in the wake condition; YS, young adults in the sleep condition; YW, young 
adults in the wake condition.

Table 2 Widely Applicable Information Criterion (WAIC) Scores of Each Model for Each Group

Session 1 Session 2 WAICSUM

WAICYS WAICYW WAICOS WAICOW WAICYS WAICYW WAICOS WAICOW

PVL-Decay 8103.68 8333.15 7934.05 8344.20 7077.46 7584.00 7499.57 7870.27 62,746.38

PVL-Delta 8368.62 8551.21 8067.52 8740.29 8052.83 8060.46 7877.33 8418.45 66,136.71
VPP 7800.61 7982.52 7291.17 7872.58 6763.10 7104.79 7025.38 7404.42 59,244.57

Abbreviations: OS, older adults in the sleep condition; OW, older adults in the wake condition; PVL, prospect valence learning model; VPP, value-plus-perseverance model; 
YS, young adults in the sleep condition; YW, young adults in the wake condition. Bold font indicates the best fitting model.
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analysis considering the underlying cognitive processes, 
age-by-condition interactions were observed in feedback 
sensitivity (α) and loss aversion (λ), illustrated by sleep 
improving feedback sensitivity for both young and older 
adults (Figure 3) while increasing loss aversion in older 
adults but not in young adults (Figure 4). Together, these 
findings indicate that sleep plays a distinct role in the 
modulation of decision-making in both young and older 
adults.

Enhancement of Feedback Sensitivity 
Following Sleep
Due to the complexity of IGT, the behavioural analysis of net 
scores may not be sufficient to reflect the underlying psycho-
logical processes.25,26 Therefore, in the present study, we 
further conducted computational modelling to break down 
the decision-making process in the IGT into multiple cogni-
tive components, which could then be assessed and asso-
ciated with the effects of sleep and aging. Consistent with 
previous studies,26,32,34,40 we confirmed that the VPP model 
provided the best model-fit relative to the other two models 
(ie, the PVL-Delta and PVL-Decay model).

Among model parameters provided by the winning 
model, an age-by-condition interaction was observed in 
the feedback sensitivity. Feedback sensitivity is an index 
of how sensitive an individual is to the changes in 

monetary outcomes. A closer inspection of data revealed 
that post-test sleep increased both young and older adults’ 
feedback sensitivity in the re-test, while the feedback 
sensitivity decreased in young adults but was retained in 
older adults who had a wakefulness interval (Figure 3). 
According to the synaptic homeostatic hypothesis,41,42 the 
role of sleep is to downscale synaptic strength to a baseline 
level and allow the organism to learn afresh the next day. 
In the case of IGT, decision-making is based on informa-
tion processing of feedback and prior experience. 
Participants with post-test sleep may have synaptic down-
scaling to the pre-test level and corresponding promotion 
of synaptic competition leading to an increase of feedback 
sensitivity the next morning regardless of age. On the 
contrary, during wakefulness, individuals interact with 
the environment and acquire information from it, possibly 
leading to an increase in synaptic strength in many brain 
circuits, consuming energy and space; thus, the ability of 
the brain to acquire new information may be weakened 
after long-term wakefulness.

Indeed, we found that young adults’ feedback sensitivity 
decreased after a 12-hour period of wakefulness (Figure 3). 
According to their daily activity records (Supplementary 
Table S6), young adults were primarily involved in activities 
with high cognitive load, such as studying in class, doing 
homework, or playing video games during post-test wakeful-
ness. These activities occupy cognitive resources and may 

Figure 4 Group-level and individual-level loss aversion λ changes after sleep or wakefulness interval for young and older adults.*** p < 0.001. 
Abbreviations: n.s, not significant; OS, older adults in the sleep condition; OW, older adults in the wake condition; YS, young adults in the sleep condition; YW, young 
adults in the wake condition.
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cumulatively decrease synaptic plasticity, ultimately leading 
to the declines of feedback sensitivity in the re-test. Using 
reversal learning paradigms, previous studies found that 
young adults were less sensitive to feedback under sleep 
deprivation, showing impairments of adaptive decision- 
making ability.43,44 Similarly, our results suggested that 
although a 12-hour wakefulness did not affect young adults’ 
net scores in the IGT, it made them less sensitive to feedback. 
Of note, this wakefulness influence on feedback sensitivity 
was modulated by age. Older adults’ daily activity records 
showed that they often engaged in relatively low-cognitive- 
load activities, such as doing housework, walking, and parti-
cipating in social activities (Supplementary Table S6). These 
activities may have less impact on cognitive-dependent 
synaptic plasticity, therefore allowing us to observe retained 
feedback sensitivity at re-test in older adults. These findings 
imply that the alterations of feedback sensitivity not only 
depend on the length of wakefulness but also the content of it 
(how people spend that time).

Alteration of Loss Aversion Following 
Sleep
In the VPP model, loss aversion is an index of how much 
an individual is averse to losses relative to preference 
toward gains at the same magnitude. Higher loss aversion 
suggests that an individual is more sensitive to losses than 
to gains. The value range of loss aversion in this study is 
consistent with previous studies.32,40 Similar to the find-
ings of feedback sensitivity, our findings showed that loss 
aversion decreased with post-test wakefulness in young 
adults but was retained in older adults. On the other 
hand, sleep sustained young adults’ loss aversion whereas 
it boosted older adults’ loss aversion in the re-test. 
Although the negative information leads to an aversion, 
a higher loss aversion, helping us be alert to losses and 
danger, plays a vital role in our survival during evolution. 
Here, our finding supported that sleep facilitates young 
adults retaining their alertness to negative information.

As for the older adults, according to the socioemotional 
selectivity theory (SST), older adults attend to prioritize 
current goal related to emotional satisfaction as they 
approach the end of life. One aspect of this optimization 
may involve reducing negative arousal45,46 and a general 
decrease in sensitivity to negative feedback during infor-
mation processing.47 With regard to decision-making, in 
line with the prediction from the SST, older adults exhib-
ited a preserved function of the anticipation of rewards but 

showed a relative reduction in activation during loss 
anticipation.48 Similarly, findings were found with 
a reinforcement learning paradigm that older adults 
showed more decision-making noises compared to 
younger counterparts when learning from negative 
feedbacks.49,50 The increased noises and decreased antici-
pation of loss may lead older adults to make more high- 
risk choices, manifested as choosing more disadvanta-
geous decks in the IGT. Importantly, the current study 
found that sleep could promote older adults’ feedback 
sensitivity and loss aversion, both of which are essential 
components of error prediction. Thus, compared with 
younger counterparts, older adults may need to “sleep on 
it” more when it comes to an important or difficult deci-
sion in daily life.

In addition, the IGT has been used as a testing tool of 
the somatic marker hypothesis (SMH).28,51 The SMH 
assumes that in complex and uncertainty environments, 
emotional reactions (ie, somatic makers) produced by pre-
vious experience of the emotional feedback following 
selection could promote rational decision-making in the 
long term. Specifically, it helps avoiding disadvantageous 
selections. However, this hypothesis has been disputed in 
the field.52,53 Several researches suggested that with the 
temporary emotion regulation, participants cannot adopt 
rational strategies to maximize their long-term profits in 
the IGT.30,54 In line with these findings, we found that 
sleep facilitated participants’ loss aversion; however, this 
emotion-related regulation did not translate into perfor-
mance improvement.

Change of Model-Free Index Following 
Sleep
Our results showed that sleep might not directly contribute 
to the performance improvement in the IGT in terms of net 
score in young adults, which is inconsistent with previous 
studies.22,24 The inconsistencies may be attributed to the 
characteristics of IGT and the relatively low monetary 
amount involved in our study. For example, Abe et al24 

used a variant version of IGT with 10-times higher feed-
back monetary amounts relative to the original version10,28 

and fewer trials (reduced from 100 trials to 60 trials). 
These alterations may increase the task difficulty and 
correspondingly provide enough room for the subsequent 
potential post-sleep enhancement. In our study, we 
adopted the modified version of IGT29 and found there 
were 6 young adults in the sleep condition reached the 
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highest net score (ie, 1) in the second block of session 2, 
implying that the ceiling effect of young adults’ perfor-
mance may lead to a lack of sleep-wake difference in the 
current study. Indeed, using the original IGT, Pace-Schott 
et al17 found that sleep protective effect was only observed 
in the poor performance participants (ie, remained both 
advantageous decks by 80 selections) but not in the super-
ior performance participants (ie, had emptied one of the 
advantageous decks by 80 selections). Together, previous 
sleep-related learning studies suggested that the beneficial 
effect of sleep could depend on the degree of prior sleep 
learning.17,55 Although the current study cannot offer 
direct evidence supporting this hypothesis, the notion of 
the difficulty of IGT being linked to sleep effect offers 
a potential avenue for future research aimed at connecting 
sleep and age interactive effects on decision-making.

We found that older adults with longer TST showed 
a larger increasing of selection of advantageous deck D, 
indicating a positive role of sleep in decision-making in 
older adults. The loss frequency of deck D is lower (10%) 
compared with another advantageous deck C (90%). Thus, 
the deck D is a more gain-framed deck. Previous research 
demonstrated age differences on negative bias in the con-
text of IGT,18 and our results extended it and showed that 
this age-related bias also existed in the modulation effect 
of sleep on decision-making. We did not find any associa-
tion between sleep characteristics and performance change 
in young adults. One possible reason is that while the 
actigraph can provide basic sleep parameters such as 
TST and sleep efficacy, it cannot recognize specific sleep 
stages (ie, N1, N2, N3, and REM). The improvement in 
young adults may be stage-dependent. Furthermore, 
a recent study showed that the theta activity during REM 
sleep is positively correlated with performance improve-
ment with deck B in young adults.23 It is possible that the 
cortical activity rather than the sleep quantity could predict 
young adults’ decision changes.

Limitations
Despite our novel findings on the effects of sleep and 
aging on decision-making, some potential limitations of 
this study need to be taken into consideration. First, we 
instructed participants to keep their regular sleep and avoid 
any tea, caffeine, or alcohol consumption during the whole 
experiment period. Indeed, participants reported zero caf-
feine or alcohol use in their self-report afterwards. 
Nevertheless, at-home sleep manipulation is less control-
lable than lab-based sleep studies. Future research could 

repeat this finding in a laboratory environment. Second, 
young adults exhibited different circadian rhythms and 
lifestyles compared to older adults, yet our study required 
them all to complete the IGT at the same times of the day 
(ie, 7:30–9:30 am in the morning or 7:30–9:30 pm in the 
evening). Nevertheless, the significance of the results was 
not changed when we controlled for participants’ MEQ 
scores that reflected morningness/eveningness tendencies 
(Supplementary Table S1 and S5). In order to further 
eliminate the influence of circadian rhythms, future studies 
could consider to adopt the “am-pm-am” compared with 
“pm-am-pm” design7,17 to control the influence of sleep- 
wake cycle. Third, although older adults’ subjective sleep 
quality (reflected by PSQI scores) was poorer than that of 
young adults, objective sleep quality as reflected by the 
actigraph data did not show any age-related difference. 
Both groups showed shorter TST than their usual routine. 
The actigraph-measured short TST may be due to the early 
time used for the beginning of experiment—7:30 in the 
morning— which may be different from the habitual 
wake-up time of participants (especially for young adults). 
However, participants performed the task more than 30 
minutes after getting up, and there was no significant 
between-session difference in response times for the IGT 
in sleep groups. Thus, the differences found in the current 
study might not be attributed to the differences in 
alertness.

Conclusions
To conclude, as the first study to examine age differences 
in the sleep-related modulation effect on decision-making, 
we found that sleep following exposure yielded more 
optimal decision strategies, reflected as increased feedback 
sensitivity in both age groups. Of note, this sleep effect 
was modulated by age such that older adults who had post- 
test sleep exhibited greater loss aversion, suggesting that, 
compared with younger counterparts, older adults may 
need more “sleep on it” time before making decisions in 
life. Future studies may consider the use of model-based 
EEG or fMRI to examine the neural mechanisms that 
potentially underlie the sleep-dependent modulation effect.
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