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Abstract: Obstructive sleep-disordered breathing (SDB), which includes primary snoring
through to obstructive sleep apnea syndrome (OSAS), may cause compromise of respiratory
gas exchange during sleep, related to transient upper airway narrowing disrupting ventilation,
and causing oxyhemoglobin desaturation and poor sleep quality. SDB is common in chronic
disorders and has significant implications for health. With prevalence rates globally increas-
ing, this condition is causing a substantial burden on health care costs. Certain populations,
including people with sickle cell disease (SCD), exhibit a greater prevalence of OSAS. A
review of the literature provides the available normal polysomnography and oximetry data
for reference and documents the structural upper airway differences between those with and
without OSAS, as well as between ethnicities and disease states. There may be differences in
craniofacial development due to atypical growth trajectories or extramedullary hematopoiesis
in anemias such as SCD. Studies involving MRI of the upper airway illustrated that OSAS
populations tend to have a greater amount of lymphoid tissue, smaller airways, and smaller
lower facial skeletons from measurements of the mandible and linear mental spine to clivus.
Understanding the potential relationship between these anatomical landmarks and OSAS
could help to stratify treatments, guiding choice towards those which most effectively resolve
the obstruction. OSAS is relatively common in SCD populations, with hypoxia as a key
manifestation, and sequelae including increased risk of stroke. Combatting any structural
defects with appropriate interventions could reduce hypoxic exposure and consequently
reduce the risk of comorbidities in those with SDB, warranting early treatment interventions.
Keywords: obstructive sleep apnea, sickle cell, polysomnography, desaturation, MRI,

airway, adenoids

Introduction

This review aims to explore the relationship between sleep-disordered breathing
(SDB) and health in the general population, and to focus on anemias, including
sickle cell disease (SCD). We address three key areas. Firstly, we review reports
including polysomnography (PSG) and limited channel sleep studies undertaken in
the general population of adults and normally developing children. We subse-
quently compare these sleep studies against those in children and young adults
with anemia, specifically SCD. Secondly, we review MRI head and neck studies to
compare structural anatomical variations in the upper airway in populations exhi-
biting a high prevalence of SDB. We identify and summarise potential targets for
treatment for SDB in patients with anemia such as SCD. Finally, we discuss the
implications of SDB for patients with SCD to understand the importance of
managing this population.
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Normal respiratory physiology in

sleep

In typically developing children, as well as in adults, small
changes in arterial oxygen saturations (SaO,; <2%
decrease), typically measured by pulse oximetry (SpO,),
and partial pressure of carbon dioxide (pCO,; 4-6 mmHg
increase), from end-tidal capnography, are common during
sleep. This is related to the reduced metabolic demands of
sleep, resulting in lower respiratory and pulse rates, and
changes in breathing patterns and muscle tone,' which
differ between wakefulness and sleep, and during the
different stages of sleep. To limit physical activity in
response to the vivid dreams of rapid eye movement
sleep, inhibition of tonic muscle tone in respiratory inter-
costal muscles occurs in this stage of sleep, reducing lung
capacity to its lowest levels and making the upper airway
more susceptible to resistance and collapse. This is usually
not a problem in children with adequate upper airway
space and normal sleep. However, even in typically devel-
oping children, average oxygen saturations are lower dur-
ing sleep than when awake.

Clinical algorithms have relatively low sensitivity and
specificity for diagnosing SDB.? PSG is the gold standard
for monitoring sleep, and includes measurements of electro-
encephalography (EEG), electrooculography (EOG), and
electromyography (EMG), to determine sleep stages and
limb movements. Respiration in sleep is also assessed,
with measurements of electrocardiography (ECG), oronasal
airflow, thoracic and abdominal respiratory effort, pulse
oximetry, and snoring. End-tidal pCO, from capnography
and video recordings are also often made. Many centers
now use cardiorespiratory or limited polygraphy studies as
screening or diagnostic tools, as PSGs are expensive. The
limited polygraphy studies exclude EEG, EOG, and EMG,
so cannot specifically define sleep stage or sleep quality, but
give a reasonable estimation of SDB severity and response
to treatment.’ Oxygen saturation studies (pulse oximetry),
sometimes recorded with a measure of pCO, (oxicapnogra-
phy), cannot be used to diagnose SDB, but are used for
screening and risk assessment in some circumstances.*

The limited population-based normative data, lack of
consensus regarding respiratory event scoring parameters
between full PSG and limited channel studies, and changes
in standards over time®’"® have been significant barriers to

description of respiration in normal sleep in infants,”'*

11,12

children and adults.'>'"* However, the American

Academy of Sleep Medicine (AASM) now have consensus

definitions for scoring polysomnographic studies,®® and
overnight oximetry, particularly for mean or median across
the whole night. These can be compared across studies using
oximeters that reduce motion artifact, although summary
statistics may not fully describe hypoxic exposure and thus
graphical solutions are under development.'®> We will present
here literature using pre-AASM and post-AASM scoring.

There are few daytime or overnight oxygen saturation
data from the general population living at sea level. In a
population-based study of adults in Tromse, Norway, 6.3%
of 6317 adults aged 38—87 years had a daytime saturation
of <95%'® and mortality over the subsequent 10 years was
higher in this group than in those with Sp0,>96%.'" In
350 normal adults, minimum overnight saturation was
90.4+3.1% with a median of 96.5%%1.5%."® Overnight
saturation does appear to decrease with age (Table 1).

In children, average daytime oxygen saturations >95%
are considered normal,'” and values below this seen acutely
are associated with signs suggesting illness.”® Overnight

9,10

medians or means are typically >97% in infants and

21724 rarely dipping to less than 90% in sleep in

21-25

children,
typically developing children, although lower mini-
mum values are seen in normal infants.'® Nocturnal oxygen
desaturation (NOD) is not the norm in infants, children, or

adults under the age of 60 years (Table 1).

Sleep-disordered breathing
Defining normal respiratory patterns in sleep paves the way
for the definition of abnormal respiratory patterns in sleep.
PSG features of pediatric OSAS differ from adults.
Children may have obstructive hypoventilation (persistent
partial upper airway closure, sometimes with paradoxical
breathing or increased work of breathing, with elevated
pCO,) rather than frank obstructive apneas or hypopneas.?,
In addition, they are less likely to arouse from apnea,
hypopnea, or oxygen desaturation. In both adults and chil-
dren, severity of OSAS is classified according to the num-
ber of obstructive apneas and hypopneas recorded per hour
of sleep and reported as an Apnea/Hypopnea Index (AHI)
or Obstructive Apnea/Hypopnea Index (OAHI).
Obstructive SDB/OSAS is a condition caused by nar-
rowing or obstruction of the upper airways that disrupts
ventilation, causing oxyhemoglobin desaturation and often
reduced sleep quality. There is a spectrum of obstructive
SDB,*” ranging from primary snoring through upper air-
ways resistance syndrome, to the more severe obstructive
sleep apnea syndrome (OSAS).?® Identifying obstructive
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SDB is important as there are significant impacts on health
related to the condition, and thus a significant global
burden on health care services. In adults, OSAS correlates
with increased incidence of cardiovascular and autonomic
dysfunction, cerebrovascular complications, metabolic
derangements, insulin resistance, malignancy, and overall
reduced quality of life,>” while the effect on cognition and
behavior®® is of concern in children.

The prevalence of SDB in the general adult population
ranges between 9% and 38% and may be as high as
49%.%%31733 Risk factors for development of the condition
include obesity, male gender, increasing age, menopause,
genetics, ethnicity, craniofacial abnormalities, as well as
lifestyle factors such as alcohol consumption and
smoking.>'”? OSAS is a worldwide condition with
remarkably similar prevalence profiles across continents,
including North America, Europe, Australia, and Asia.>!
There seem to be distinct associations, however, between
geographical regions related to the condition — population
demographics may play a role.

SDB is less common in typically developing children
than in adults, with prevalence of obstructive SDB in the
general pediatric population ranging from 1% to 5%'"-3¢~°
and depending in part on the diagnostic method and thresh-
old, both of which continue to be debated.

Archetypally most studies, regardless of methodology
and populations studied, have found that central apneas
(pauses in breathing, typically not related to airway
obstruction) are more common than obstructive apneas
and hypopneas in children, with indices (number of
events/hours of sleep) of close to 1/hr and <0.5/hr, respec-
tively. This is highlighted in Table 1, which shows the
normal ranges for PSG variables in children from a selec-
tion of studies using pre-AASM scoring.*>>>74! AHIs >1
are probably abnormal, as are pCO2 values of >50mmHg.

In addition to the tabulated pre-AASM studies, the
Scholle studies****
ing to clearly describe sleep using AASM criteria in typi-
children

developmental stages across different age groups. In this

were particularly pertinent in attempt-

cally developing according to Tanner
prospective study of PSG in 209 healthy German children
of White ethnicity, aged 1-18 years, obstructive apneas
and hypopneas were very rare, with mean OAHI of 0.0
across all age groups. Central apneas were more common
but decreased with increasing age.

Obesity is the primary risk factor associated with
OSAS in adults and is an increasing component factor in
children. Upper body obesity may directly augment

narrowing of the upper airway* Studies have shown that
the dimensions of neck and waist circumference predict
OSAS severity in adults.*

The most common cause of OSAS in children is con-
sidered to be narrowing of the upper airway due to ade-
notonsillar hypertrophy,'' with more recent data indicating
that it may also be related to airway size and structure.*’ '
During childhood growth and development, the upper air-
way is a site for progressive alteration, including changes

in growth of tissues®>>*

as well as functional adaptations
in neuromuscular tone and ventilatory drive.>>>® Within
this time, augmented growth of the adenoids or tonsils
could predispose children to upper airway obstruction,
principally during sleep.>*>* It has been proposed in stu-
dies that assessed the mechanical properties of the upper
airway, including ventilatory responses to resistive load-
ing, that the upper airway of children is more resistant to
collapse compared to adults.”®*®° Conversely, the dysfunc-
tional soft palate, due to relative hypotonia, in young
children without concomitant disorders could also be con-
sidered as a cause of obstructive sleep apnea, mostly
resolving spontaneously with increasing age. There could
be additional contributing factors to developing OSAS and
therefore anatomical dimensions of tissues may play a
more significant role in maintaining airway patency, parti-
cularly during different stages of growth and development.

Regardless of the variability of the diagnostic criteria
for obstructive SDB, the prevalence is elevated in certain
pediatric populations. This includes children with anemia,
such as SCD, in which previously reported prevalence
rates range from 5% to 79%.°'%3

There is arguably a three-pronged approach to under-
standing the pathophysiological factors involved in OSAS
by addressing: i) anatomical factors, ii) upper airway col-
lapsibility, and iii) obesity.** There have been challenges
in exploring these factors and thus identifying the genetic
and environmental risk factors associated with SDB in
these populations, due to relatively few studies that
include contemporaneous controls assessed against the
gold standard polysomnography.

Effect of ethnicity on SDB

There are few data comparing the prevalence of SDB
between ethnic groups, with lack of data in important
populations, including people of African origin, who are
typically reported in manuscripts as Black. Several of the
studies enrolled a relatively high proportion of people of
African origin®**®37 but not all reported any differences in
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SDB prevalence across ethnicities. Traeger” included
48% Black children, Montgomery-Downs*' included
23.1% and 38.3% Black children in respective age brack-
ets, Rosen®’ included 41% Black children, and Bixler*’
included 13.8% Black children. However, Verhulst®*
included 95% White children while the studies of Uliel**
and Moss>> involved only White children.

There are potentially important differences in preva-
lence of SDB in populations of various ethnicities.***’
Rosen reported an increased prevalence of SDB in Black
children in her prospective, cross-sectional, population-
based study.’’ Eight hundred and fifty children aged 8—
11 years of age, 41% Black and 46% pre-term (<36 weeks
gestation), were enrolled, with equal numbers of White
and Black pre-term children. Home cardiorespiratory poly-
graphy studies and Child Sleep Questionnaires were col-
lected. Defined as an OAHI >5 or an OAI >1, Black
children were four to six times more likely to have
OSAS (8.7%) than White children (2.2%). Regardless of
race, OSAS was three to five times more likely in pre-term
(7.4%) than full-term (2.4%) children. Black children were
more likely to snore and tended to have higher body mass
index. There are relatively few data in populations from
the Indian subcontinent or China, in whom craniaofacial
anatomy may play a more important role than obesity.®®

“Normal” sleep is different in children of different

2 .
366 and socio-

ethnicities,”” as well as for different ages,
economic circumstances. However, due to lack of awareness
or other limitations, many published studies have not taken
into account these factors, making the classification of “nor-
mal sleep” in children problematic. When interpreting litera-
ture findings for a specific demographic, we must take into
account a// confounding factors present within that popula-
tion — including confounders that the authors may not have
addressed. This requires particular attention if comparing
ethnicities exposed to different environments, eg, Africans
living in Africa vs people of African origin living in a Western
country. This highlights a significant limitation in our assess-
ment of this topic but highlights the need for further, well-
designed studies that take into consideration confounding
factors and the reflection of a “true” demographic.

Genetic factors, including underlying conditions, may
be responsible in part for the association between ethnicity
and increased prevalence of obstructive SDB. For
instance, the underlying mechanisms for adenotonsillar
hypertrophy and differences in airway size and structure
might be different for particular populations and ethnicities
that exhibit a higher prevalence of OSAS. Alterations in

the dimensions and shape of the airway may occur in
people with anemia secondary to hemoglobinopathies®’
eg, SCD,® and other anemias, including thalassemia,®’
as well as Down syndrome®’ and disorders of bone, such
as achondroplasia and osteogenesis imperfecta, or of soft
tissue, such as mucopolysaccharidoses.®®

In order to explore this, we present an overview of
some of these conditions, particularly illustrated by an
array of anemia-related disorders and their association
with obstructive SDB, before focusing upon SCD and the

implications involved with this condition.

Populations with higher prevalence
of OSAS

Down syndrome

Children with Down syndrome have a high incidence of
OSAS,*7° considered to be related to a combination of ade-
notonsillar hypertrophy and reduction in the size of the airway
in relation to midface hypoplasia and a small jaw. There is
some evidence for an effect of OSAS on memory
consolidation”' and attention’” in this population. Uong stu-
died a Down syndrome population without OSAS to assess this
population for predisposition to OSAS.”* They found a smaller
mid and lower face skeleton — ie, smaller mental spine to clivus
length, hard palate length, and mandible volume in the Down
syndrome group. They also found a smaller airway volume in
Down syndrome compared to healthy children.”* Adenoid and
tonsil volumes were smaller in the Down syndrome group,
whereas the tongue, soft palate, pterygoid, and parapharyngeal
fat pads were of a similar size to healthy children. Hence, the
size of the upper airway is proportionate to soft tissue crowding
due to these smaller craniofacial dimensions.

Conditions with abnormal bone or

connective tissue

Other conditions involving abnormal development of bone or
connective tissue from an early age, including achondroplasia,
Pierre—Robin syndrome, and Prader—Willi syndrome, may be
associated with a small airway related to differences in growth
of the mandible and maxilla. In addition to the effect of large
tonsils and adenoids, these anatomical differences may play a
role in the development of central SDB,**”* but the pathophy-
siology may be complex.’>’® Central apneas may be related to
pressure on the brainstem and cervical spinal cord related to
foramen magnum stenosis. However, there are relatively few
large series comparing the anatomy of the upper airway in
these patients to matched controls.
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Anemias

Iron deficiency, chronic renal failure, and other chronic
diseases, such as B-thalassaemia and SCD, are common
causes of anemia. Defects of red cell stability, deformabil-
ity, and metabolism cause a wide range of anemia for
which the genetic basis is understood. B-thalassemia and
SCD affect 400,000 newborns each year, with several
million affected worldwide. Hereditary spherocytosis and
pyruvate kinase deficiency are less common, but for all
anemias, a wide variety of comorbidities are well recog-
nized and are considered to occur via a variety of mechan-
isms. The possibility that OSAS and/or NOD play a role
has received only modest consideration. The association
between anemia and SBD, however, is not well
understood.

The normal adult hemoglobin (HbA) consists of two a
and two B globin chains combined with a heme molecule.
Modifications of the normal structure of hemoglobin can
occur through point mutations in the globin gene.”” Heme
production requires adequate iron stores. Anemia is
defined as a hemoglobin concentration below 10-13 g/
dL, dependent on gender, age, race,”® and with a higher
threshold at altitude.”” It affects
worldwide® and is frequently associated with poor health.

1.6 billion people

Red cell disorders are therefore a significant burden to
health services, with complications impacting quality-of-
life and employment opportunities. Low hemoglobin, red
cell destruction, and disturbed iron homeostasis lead to
alterations in tissue oxygenation and chronic damage to
the kidneys, brain, lungs, and heart. However, despite the

overlap in the range of complications,®’"'

the possibility
that comorbid SDB might play a role in complications of

anemia has received relatively little attention.

Iron deficiency anemia

There are very few reports including sleep studies in iron-
deficient patients in any age group, although there is a
probable association with periodic leg movements.®* In
adults with newly diagnosed OSAS, iron levels were
lower and hepcidin levels were higher compared with
controls.**> Treatment of anemia with erythropoietin and/
or iron was associated with improvement in SDB in adults
with chronic heart failure.®*

Thalassemia

Homozygous a-thalassemia is typically lethal. In B-thalas-
semia, erythropoiesis is limited because of a genetically
determined (due to many autosomal recessive genes)

inability of the bone marrow to synthesize beta globin
chains. The condition is common in the Mediterranean.
OSAS has been described in a child with B-thalassemia
intermedia.®> Extramedullary hematopoiesis appeared to
have obstructed the nasopharynx on the CT scan.
Treatment with hydroxyurea and blood transfusion was
associated with relief of symptoms after six weeks.*> In
a study of 10 Israeli patients with B-thalassemia major
(n=6) or intermedia (n=4), arousals were common and
were induced by periodic limb movements. There was no
evidence for OSAS. Multiple sleep latency tests demon-
strated that there was objective daytime sleepiness.*® In
another study of 120 children with severe p-thalassemia,
19 (15.8%) snored habitually, of whom 16 had PSG. Ten
had OSAS on PSG, which was moderate to severe in six.
All 10 had adenoidal hypertrophy and eight had tonsillar
enlargement. Those with OSAS had higher serum ferritin
compared to those without OSAS. Reactive lymphoid
hyperplasia was seen in all six patients who had
adenotonsillectomy.®® Thalassemia patients have typical
craniofacial characteristics with a relatively wide maxilla
and nose. In one study, three features, including two invol-
ving the position of the hyoid bone, as well as tongue
length, were shorter in patients with B-thalassemia.®” The
middle airway space was also significantly wider and there
was a trend for a wider inferior airway space in these
patients.

Congenital dyserythropoietic anemia

Congenital dyserythropoietic anemias are rare autosomal
recessive disorders of erythropoiesis typically requiring
frequent transfusion. Type 1 is common in Bedouin
Arabs living in the Negev desert in Israel. One study
looking at 10 of these children and adolescents from one
extended Bedouin family found that arousals were com-
mon in this condition, mainly related to periodic limb
movements, but there was little evidence for OSAS.5¢ A
PubMed search found no papers on OSAS in other rare
hereditary anemia, namely Fanconi anemia, Diamond-
Blackfan syndrome, hereditary spherocytosis, or pyruvate
kinase deficiency.

Sickle cell disease

SCD is a multi-organ disease with multifaceted pathophy-
siological mechanisms — the simplicity of the genetic
mutation that causes SCD belies the complexity of the
disease’s pathophysiology.®® The sickle cell trait, which
originated in West and Central Africa centuries ago,
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appears to have arisen as an evolutionary adaptation of
natural selection on genetic resistance to malaria.*® From
Africa, the gene spread along the Mediterranean, through
Persia and India, and across the Atlantic. More recently,
with migration, it has spread to Europe.”® SCD is now the
most common genetic condition at birth in England,
affecting 1 in every 2000 live births.”! Pre-conception
counseling and invasive prenatal diagnosis are available
but not all couples want these options for a condition with
a wide spectrum of outcomes. With increased migration
rates and successive generations of people living with
SCD, there will be an increasing prevalence of SCD in
many countries. Considering the morbidity and mortality
associated with SCD, a greater understanding of the com-
plications of the disease and the development of new
interventions and therapies is paramount in order to treat
this population adequately.

SCD is caused by a genetic mutation of a single base
pair change, adenine to thymine, in the 6th codon of the f
chain, which results in the alteration of one amino acid
(glutamine acid to valine) in position 6 of the B chain of
hemoglobin, producing hemoglobin S (HbS; sickle
hemoglobin).”* SCD is an autosomal recessive genetic
condition. “Sickle cell anemia” is the term used when
both B globin chains exhibit the abnormal HbS (ie, homo-
zygous for sickle hemoglobin (HbSS)). These patients tend
to have a worse prognosis and are often symptomatic. The
expression “sickle cell disease” includes any genotype
where one abnormal HbS B globin chain is inherited with
a different abnormal B globin chain that commonly inter-
acts with it. There are many identified hemoglobin var-
iants, but the most common are HbC or Hb B-thalassemia
(B* or B%), HbO Arab, HbD Punjab, and HbS Antilles. An
abnormal HbS beta globin chain plus a normal HbA beta
globin chain constitutes “sickle cell trait” (HbAS).
Heterozygotes, ie, those with sickle cell trait, typically do
not exhibit symptoms and may not be aware they carry the
gene. Hbp’-thalassaemia may be as severe as HbSS,
whereas HbSC and HbB" thalassemia tend to be milder.
With increasing global migration, there is an increase in
combination traits, such as HbBSth, HbE/ath, for which
the full range of phenotypic traits is yet to be determined.

When sickle red blood cells (RBCs) become deoxyge-
nated, the HbS becomes insoluble and produces polymers
that aggregate into tubular fibers. These enlarge and
deform the RBCs, giving the RBC the characteristic sickle
shape. Upon restoration of normal oxygen tension, the
cells do not necessarily return to normal shape and are

left with reduced solubility and elasticity. In addition,
RBCs in SCD are typically stiffer compared with normal
RBCs. In SCD, RBCs may become dehydrated, which
increases the propensity of HbS to polymerize when
deoxygenated.

There are three broad ways that HbS contributes to the
pathophysiology of the disease. Firstly, the deformed
shape and rigidity can lead to vascular obstruction and
consequently ischemia. Secondly, the membrane damaged
RBCs lead to increased adherence to, and damage of, the
vascular endothelium and thus promote a proliferation of
white blood cells, cytokines, growth factors, and coagula-
tion proteins, which together increase vascular obstruction.
Thirdly, membrane damage causes hemolysis — RBC
breakdown. In a healthy person, an RBC survives 90—
120 days in the circulation. However, due to the abnormal
structure, sickle red blood cells only survive 10-20 days
until they are sequestered by the spleen, thus resulting in
hemolysis.

The cardinal features of SCD are chronic hemolytic
anemia and complications related to recurrent vaso-occlu-
sion. One of the strongest precipitants of vaso-occulsion
(or polymerization of sickle hemoglobin) is oxygen desa-
turation, which has been associated with increased risk of

a number of complications,®!

including central nervous
system events.”** Oxygen desaturation in SCD is in
part due to the presence of dyshaemoglobins such as
carboxyhemoglobin and methemoglobin, which are
increased during intravascular hemolysis but fail to trans-
port oxygen. SDB/OSAS is often comorbid with SCD,
potentially exposing patients to additional hypoxia. Many
adults and children with SCD experience at least some
degree of nocturnal oxyhaemoglobin desaturation, which
could be as a consequence of OSAS; other potential causes
include pulmonary disease, shunting at cardiac or pulmon-
ary level” or the decreased oxygen affinity for hemoglo-
bin S.”® There is a good case for diagnosing obstructive
SDB and NOD in SCD as evidence is accumulating that
upper airway obstruction and the degree of oxygen desa-

9798 as well as the rate

93,100,101

turation affects cognitive function

61,99 -

of complications, including stroke.

Pathophysiology of sleep-disordered
breathing in sickle cell anemia

Our knowledge of the pathophysiology of SDB and NOD
in the SCD population is limited. Hypotheses, which are
not mutually exclusive, include the following:
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(i) hypoventilation due to chronic lung disease,'*?
(ii) presence of OSAS,*?
(ii1) left ventricular diastolic dysfunction,103
(iv) pulmonary hypertension'®*
(v) shunting at cardiac or pulmonary level,”

(vi) presence of dyshemoglobins'®®

The most common cause of OSAS in children with SCD is

adenotonsillar hypertrophy,”®'%%!%7

the same primary cause
identified for the general pediatric population. However, the
underlying mechanisms for adenotonsillar hypertrophy and
differences in airway size and structure might be different for
SCD with OSAS compared with non-SCD children with
OSAS, hence the higher prevalence in this specific pediatric
SCD population. For instance, in SCD, adenoid and tonsillar
hypertrophy might be as a consequence of a compensatory

108,109

mechanism for functional asplenia, or as a conse-

quence of upper respiratory infections due to limited opsoni-

108,109 Dyifferences  in

zation of bacterial pathogens.
craniofacial development due to atypical growth trajectories
or extramedullary hematopoiesis should be considered. This
includes variants of maxillary structure in the vertical, hor-
izontal, and transverse planes; poor lip seal; and imbalance in
the function of the orofacial muscles, particularly the man-
dibular elevator and depressor muscles, which may lead to
upper airway obstruction and mouth breathing.

There are two crucial questions related to OSAS in

children with SCD that are yet to be resolved:

(i) What factors differ between children with SCD
with and without OSAS, after matching for adeno-
tonsillar size?

(ii) When similar groups of children undergo adeno-
tonsillectomy, why is the outcome better in some
children than others?

Literature exploring OSAS in adults with SCD is markedly
limited in comparison to OSAS in children with SCD.''%!''?
Sharma''® and Whitesell''' conducted small studies evaluat-
ing SDB in adults with SCD suggesting prevalences of 44%
and 50%. Due to improvements in genetic screening and
clinical management, the trend in life expectancy for SCD
is increasing. Our knowledge of SDB in an adult SCD
population, therefore, needs to be broadened to appropriately
treat this novel population; extrapolating data from childhood
studies is inadequate.

There may be other contributory factors within the
upper airway to SDB in the SCD population that could

be targeted for potential therapy. For example, central
sleep apnea (CSA), or central sleep apnea syndrome
(CSAS), distinct from obstructive SDB, is a sleep-related
disorder which is also associated with a reduction in blood
oxygen saturation. In CSA, the effort to breathe is dimin-
ished or absent, typically for 10-30 s either intermittently
or in cycles. There are very few data on CSA or CSAS in
SCD and the possibility that coincidental Chiari malfor-
mation plays a role has received little attention.''>!''
Further discussion of this is beyond the scope of this
review but warrants further research.

Regarding sleep studies in children with SCD, Strauss et
al reported a novel study on the prevalence of SDB in Black
children with and without SCD, measuring PSG outcomes
in 36 subjects with SCD (aged 6.9+4.3 years) and 36 pre-
sumably Black control subjects (aged 6.6+3.4 years).”® It
was part of a more comprehensive investigation on the
prevalence, contributory mechanisms, and pulmonary and
vascular consequences of oxygen desaturation in children
with SCD at the Children’s Hospital of Philadelphia
(CHOP). Strauss et al identified a greater prevalence of
OSAS in SCD (7/36; 19.4%) compared to healthy children
(0/2; 0%), with increased arousals (13.7+4.7 events/hr vs
10.8+3.8 events/hr, P<0.05), lower arterial oxygen satura-
tion nadir (84.3%+12.3% vs 91.2%+4.2%, p<0.05), and
increased peak end-tidal CO, (53.4+8.5 mm Hg vs 42.3
+5.3 mm Hg, P<0.001) in the SCD group.’® In contrast to
the data from Rosen’s population-based study’’ but in line
with the previous data from CHOP,>> none of these, pre-
sumably Black, control children had OSAS.

The Sleep Asthma cohort (SAC)**'*? is an ongoing long-
itudinal study of children with SCD aged 418 years, resident
in the United States of America or the United Kingdom, who
have undergone PSG regardless of symptoms related to
sleep. A cross-sectional analysis of baseline data was col-
lected as part of the SAC study from eligible patients aged 4—
18 years who were HbSS or compound heterozygotes for
HbSB,-thalassaemia zero (HbSB®). The study was designed
to evaluate the contribution of sleep abnormalities and
asthma to SCD-related morbidity. Of 243 children (median
age 10 years, 50% male, 99% Black, 95% HbSS), OSAS
defined by obstructive AHI at cut points of >1 or >5, was
present in 100 (41%) or 25 (10%) children, respectively. In
multivariable analyses, habitual snoring and lower daytime
oxygen saturation were risk factors for OSAS.

OSAS therefore appears to be four to six times more
common in Black children than White children®’ and is
particularly prevalent in those with SCD. Based on data
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available, in addition to adenotonsillar hypertrophy, differ-
ences in facial features and upper airway anatomical
structure>®-115:116

OSAS.

probably play a role in the prevalence of

Anatomy of the airway

Anatomical dimensions were compared between ethnic
groups in a study that found increased tongue area and soft
palate length in adult African-Americans.''” OSAS may be
more closely related to these soft tissue dimensions in Black
adults,''® who have generalized leptoprosopic facial shape
(longer facial height with less depth) while White adults with
OSAS tend to have brachycephaly (shorter, wider skull and
pharynx dimensions). Investigating anatomical variation of
the upper airway and related structures is therefore a funda-
mental area of OSAS research in all populations.

We will now review studies that have explored structural
components of the upper airway using imaging, primarily
MRI, as well as other clinical methods. Again, we need to
be mindful when interpreting these studies as the literature
on SDB in SCD rarely includes matched control children of
African origin without SCD. Additionally, the majority of
PSG studies of children with SCD have selected patients
with symptoms.®!-*19%1% Socioeconomic and environmen-
tal factors should also be taken into account,’” including air
pollution,'*® smoking, and poor nutrition, as well as the
genetic influences which apply to all populations.

Anatomical variations of the upper
airway and associated structures
Imaging the upper airway in normal

growth and development

There are relatively few studies that explore developmental
changes of the upper airway in normally developing children
and they exhibit some contradictory findings. Arens et al
found that the lower face skeleton had a strong linear correla-
tion with age and height of their healthy subjects aged 1-11
years.'?! The measurements for mental spine to clivus length
and intermandibular length delineated the mid and lower face
skeletal dimensions. As the mid and lower face skeletal
dimensions increased in size with increasing age and/or
height, the size of the upper airway tissues within this demar-
cated space also grew at a constant proportion. Therefore, no
age-related growth velocities for any tissue contributing the
airway were found; this included adenoidal and tonsillar
tissues, as well as the size of the tongue, soft palate, tonsils,
parapharyngeal fat pads, and pterygoids. Additionally,

nasopharyngeal airway dimension grew at a constant propor-
tion to skeletal growth. A study with similar outcomes for
this age group by Vogler et al (2000), using comparable
methodology, also found that the adenoid pad grew at a
constant proportion to age, up to 10 years, with the largest
size reached aged 7—10 years.'*? Their study, however, con-
tinued beyond this age and subsequently the growth velocity
diminished until 60 years old.

In contrast to these findings are studies by Fujioka et al and
Jeans.>” Fujioka et al found that adenoid:nasopharyngeal (AN)
ratio, demarcated on lateral skull radiograph, did exhibit some
age-related growth velocity during childhood.”® The AN ratio
typically increased from 1.5 months to 1 year 3 months, reach-
ing its highest value at 4 years 6 months, after which it
gradually decreased until 12 years 6 months and subsequently
decreased dramatically at 15 years 6 months. The study also
proposed that linear measurements of the adenoids and naso-
pharyngeal airway that generate an AN ratio greater than 0.8
were related to a subjective assessment of subjects with
enlarged adenoids. These findings were corroborated by
Jeans et al using lateral neck cephalometry.®® Although they
found a constant growth velocity of the total nasopharynx area
between 3 and 11 years, they noted a mild reduction in the area
of the nasopharyngeal airway between 3 and 5 years that
occurred simultaneously with a mild increased growth velocity
of the soft tissues. Thereafter, nasopharyngeal airway contin-
ued to grow linearly with no further increase in soft tissue
within the nasopharyngeal distribution. This AN ratio mea-
surement could warrant further research, particularly with the
advent and accessibility of superior imaging modalities com-
pared to the standard plain radiograph that was used originally.

While there are some discrepancies, these studies gen-
erally show a similar trend of constant proportion of growth
of the upper airway and its structures up to 10 years old. It
is interesting to note the reduction of nasopharyngeal air-
way with simultaneous increase in soft tissues at age 3-5
years, considering that OSAS is commonly diagnosed
around a similar age.''*”*° This may indicate a mechanism
that predisposes to OSAS — a narrowed nasopharynx due to
overgrowth of soft tissues, such as the adenoids. Hence,
making the AN airway measurement is important.

It would be interesting to see whether the growth trajectory
for SCD children matches the growth trajectory for normal,
healthy children. Any apparent age-related growth velocities in
SCD could provide further information for risk stratifying for
SDB. Imaging of the anatomical dimensions of the upper air-
way in developing children and young adults may provide
insight into structural growth changes linked with SDB and
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specific populations — focusing upon the aforementioned
regions of interest, including the nasopharyngeal airway, AN
airway ratio, and mid to lower face skeletal dimensions, eg,
mental spine to clivus length. The imaging modality that is
widely available and most appropriate in reproducing three-
dimensional innate images of soft tissues, such as those com-
prising the upper airway structure, is MRI. This generates a
medium for comparison of upper airway anatomical measure-
ments between patient groups.

Employing MRI to assess the structure of

the upper airway in OSAS populations
The advent of MRI has led to greater understanding of
growth and development of the upper airway during child-
hood. MRI provides an innately scaled, three-dimensional
image of the tissues of the upper airway. Advantages
include the avoiding of ionizing radiation in a pediatric
population and the superior resolution for soft tissues
compared to radiographs.’>>® There are limitations includ-
ing the comparatively long acquisition time of an MRI
scan compared with a lateral neck X-ray or CT scan,
which may precipitate motion artifact. Additionally, some
studies used sedation or anesthesia as part of their protocol
in young children, which could potentially lead to diminu-
tion of muscle tone impacting on airway measurements.
A literature search using the terms “obstructive sleep

LR I3

apnea”,

LRI

adenoids”, “airway”, and “MRI” was performed
to explore methods used for measuring regions of interest
in the upper airway in pediatric OSAS populations.

Table 2 compares the anatomical landmarks used by
each study to demarcate the upper airway with particular
regions of interest, and Table 3 describes the key features
of each of these studies. The previously mentioned ima-

ging studies have been included for comparison.

MRI of the upper airway: comparison
between healthy controls against OSAS

populations
Several studies, as illustrated in Tables 2 and 3, found upper
airway anatomical differences between OSAS and non-OSAS

populations. The volume/area/size of the upper airway was

47-50
S,

smaller in subjects with OSA! and in adults, the volume

of the lateral pharyngeal walls was larger in OSAS>' The

47,49,50,123,124 49,50,123

adenoids, tonsils retropharyngeal nodes,

30123 and parapharyngeal fat pads®

deep cervical nodes,
were larger in OSAS. The soft palate®” and the total soft tissues

were found to be larger in OSAS.”' The volume of the

mandible was similar in the control and OSAS groups in
some studies,”’ but smaller in the OSAS group in others.
Regarding the tongue in patients with OSAS compared with
controls, it was found to be either similar in children*” or larger
in adults.’ Abdominal visceral fat was greater in OSAS.*
In a study using respiratory-gated MRI under sedation,
Arens et al found a smaller upper airway cross-sectional area,
particularly during inspiration, in children with OSAS.'*
Airway narrowing occurred during inspiration without evi-
dence of complete airway collapse, while airway dilatation
occurred during expiration. The magnitude of the fluctua-
tions in cross-sectional area during tidal breathing was sig-
nificantly greater in OSAS compared to healthy children.
Patini conducted a systematic review'>° to assess the effec-
tiveness of MRI in evaluating upper airway structures in chil-
dren with OSAS and, after strict exclusion parameters were
applied (initially 1170 titles for possible inclusion), a meta-
analysis was performed on three of the studies of patients with
OSAS and controls: Arens,*” Arens,”® and Cappabianca.'**
The studies showed differences in minimum retropharyngeal
cross-sectional area, nasopharyngeal airway, combined upper
airway volume, tonsillar, and adenoid cross-sectional and volu-
metric indices. In addition, in the latter study, midsagittal cross-
sectional area of the soft palate was higher, mandibular volume
was lower, and the vertical position of the hyoid bone was
significantly lower in the OSAS group compared with
controls.'** There were also differences in the position of the
maxilla and the mandible, in both cases in the sense of
retroposition.'** The results suggested that MRI could be a
useful tool in pediatric OSAS populations for calculating the
total volume of the upper airway structures and thus enabling
diagnostic examination and clinical management in practice,
as it allows assessment of regions of interest that appear to
contribute to obstruction — lumen, soft, and skeletal tissue.

MRI of the upper airway — comparison
between healthy controls against SCD

populations and association with OSAS

To our knowledge, there is only one MRI study that evaluates
the upper airway in children specifically with SCD with com-
parison to OSAS. Strauss et al found that children with SCD
tended to have a smaller upper airway and larger adenoids,
retropharyngeal nodes, and deep cervical nodes.*® Only lym-
phoid tissues were measured in this study. In terms of sleep
studies, as previously referenced, Strauss et al identified a
greater prevalence of OSAS in SCD (19%) compared to
healthy children (0%).° They found that in children with
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Table 2 Highlights which anatomical landmarks were used by studies using MRI as the modality for measuring regions of interest

MR slice orientation [Measurement Arens 2001 [Uong 2001 |Arens 2002 [Arens 2003 [Schwab 2003 |Arens 2005 |Schwab 2006 | Arens 2011 |Cappabianca 2012 [Nandalike 2012 [Strauss 2013 [Schwab 2015 [Tong 2016
[Tonsils (max csx) X X X X X X
Intertonsillar width X
Plerygoids X X X X X
X X X X X
X X X X X X
Axial Cross Section X X X
X X X X
X X X
X X X X X
X
X X
X X X X X X
X X X X X
X X X X X
X X X X
Hard palate X X X
Combined nasopharyngeal and oropharyngeal airway X
Saggital Cross Length hard palate X X
‘Section Mandible size (mental spine-clivus) X X X
Nasopharynx X X X X X X
Oropharynx X X
Combined palatine tonsils X X
Lingual tonsil X
Combined retropharyngeal nodes, X X
Head and neck subcutaneous fat X
Hypopharynx/Laryngopharynx X
Adenoids X X X X X X
Tonsils X X X X X
Tongue X X X X X X X X
Soft palate X X X X X X X X
Mandible X X X X X
Pharyngeal airway X X X X X
Parapharyngeal fat pads X X X X
3D Volumes o bined pafatine tonsis X X
Combined retropharyngeal nodes X
Head and neck subcutaneous fat X
Nasopharynx X X
Oropharynx X X
Hypopharynx/Laryngopharynx X
Combined nasopharyngeal and oropharyngeal airway | X X X

SCD, higher AHI, lower arterial oxygen saturation nadir,
increased peak end-tidal CO,, and increased arousals corre-
lated with upper airway lymphoid tissue size.

In a clinical study including subjects with SCD, Salles et al
found a positive correlation between height/age z score and
cervical circumference.''® The presence of nocturnal oxygen
desaturation was associated with cervical circumference and
abdominal circumference. There was a negative correlation
between oxygen desaturation and maxillary intermolar dis-
tance and mandibular intermolar distance, ie, in SCD subjects
that exhibited nocturnal oxygen desaturation, smaller maxilla,
and mandible measurements were noted (measured using
cephalometry, not MRI).

In summary, children with OSAS typically tended to
have smaller sized airways and larger lymphoid and soft
tissues compared to children without OSAS. Determining
the proportion of growth of the upper airway and related
structures for children with anemia such as SCD could
potentially provide novel targets for therapies, particularly
regarding the size of the lower facial skeleton.

Hypotheses stemming from the
literature: considerations for potential

treatment targets for SDB

The findings in the literature suggest it is plausible that people
with OSAS have smaller sized airways due to smaller lower
facial skeleton (eg, smaller mandible) and thus exhibit

overcrowding within a defined area — rather than purely having
enlarged adenoids and tonsils.

AN ratio

It is also possible that it is the relationship between the
size of the adenoid to the nasopharyngeal airway, ie, the
AN ratio, that is most important. Adenotonsillectomy is
based on the assumption that hypertrophic adenoids and
tonsils are the cause of OSAS and thus removal should
alleviate symptoms. Differences in AN ratio may suggest
why adenotonsillectomy is ineffective in some patients.
For instance, if the adenoids are removed but this has little
effect on the AN ratio, this may be because, even though
the adenoids appeared hypertrophic, the nasopharynx was
sufficiently large enough to combat this; hence there was
no therapeutic effect from targeting this one factor alone.

Thus, an alternative treatment option could aim to target a
combination of factors associated with OSAS, as highlighted
in these studies: a triad of lymphoid tissue hypertrophy, air-
way volume distribution, and lower facial skeleton.

Lymphoid tissue hypertrophy

Children with OSAS show increased nasal and orophar-
yngeal inflammation with increased local and systemic
inflammatory markers and pro-inflammatory cytokines
which enhance lymphoid tissue proliferation.'*” Novel
combat these effects include anti-

therapies to
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inflammatory agents, such as leukotriene receptor antago-
nists. Montelukast, a leukotriene receptor antagonist, has
been used in trials and has shown a significant reduction in
adenoid size and respiratory-related sleep disturbances.'?®
Leukotriene receptors LT1-R and LT2-R showed increased
protein expression within adenoid tissues and there were
also increased levels of LTB4, LTC4, LTD4, and LTE4
within adenoid tissue.'*®'?° However, similarly to adeno-
tonsillectomy, there is the possibility of adenoid regrowth.
Studies combining adenotonsillectomy and Montelukast as

a postsurgical agent look promising.'?’

Volume of airway

Arens et al showed that regional analysis of the upper airway
in children with OSAS was most restricted where adenoid
and tonsils overlap.*® However, segmental analysis revealed
that the upper airway was restricted throughout the initial
two-thirds of its length and that the narrowing was not in a
discrete region adjacent to the adenoids or tonsils, but rather
in a continuous fashion along both. Documenting the distri-
bution of the volume throughout the airway, rather than just
the value of the volume, could be important in understanding
this disease process in both healthy populations and those
with underlying diseases.

Lower facial skeleton

Craniofacial differences

Arens et al and Cappabianca found that the mandible was
smaller in children with OSAS.*”'** Populations that exhibit
craniofacial abnormalities, with a higher incidence of OSAS,
include Down syndrome, Treacher Collins syndrome,
Crouzon syndrome, Apert syndrome, and Pierre Robin

4
syndrome.’

Uong et al found that Down syndrome subjects
were more likely to have smaller mental spine to clivus
lengths.”® Therefore, exploring these anatomical measures as
potential targets for further research could be warranted.
Although it can be studied using MRI, the lower facial skele-
ton has received relatively little attention in populations at risk
of OSAS. It would be interesting to ascertain whether there are
any differences in craniofacial morphology owing to extrame-
dullary hematopoiesis in chronic anemias and to determine
whether growth of the mandible and maxilla matches the
trajectory in comparison to healthy, typically developing chil-
dren — ideally with sequential MRI into adulthood.

Lower facial skeletons in SCD
Salles et al showed smaller maxilla and mandible measure-
ments, measured using cephalometry, in SCD subjects

who exhibited nocturnal oxygen desaturation.''® Studies
have shown craniofacial differences in the SCD population
exhibiting mandibular retrusion, maxillary protrusion with
elongated vertical development, and generalized pro-
nounced protrusion of the midface. Skeletal immaturity
and impedance of growth alongside angular bony defor-
mities are commonly seen in patients with SCD."*® Anoxic
events potentially precipitate premature closure of the
epiphysis, whereas craniofacial structure abnormalities
could be due to extramedullary hematopoiesis.”*' Studies
have shown that patients with SCD have reduced z-scores
for weight for age, height, elbow breadth, skinfold thick-
ness, and mid-upper arm circumference, that are indicative
of global growth deficit. Interestingly, studies have
reported lower levels of vitamin D in this population,
which were associated with morbidity. Vitamin D supple-
ments might promote growth to combat these anatomical
defects.

If genetic disposition is also explored, there could be
interventions based on this. A study by Arun et al evaluated
MYO1H gene polymorphisms and haplotypes as risk factors
for mandibular retrognathism and identified a single-nucleo-
tide polymorphism rs3825393 to be associated with mandib-
ular retrognathism.'** Previous studies have shown that there
are distinct combinations of myosin heavy chain isoforms in
the masseter muscles and that these muscle combinations
may have mutual effects on bones. SCD patients may have
a genetic predisposition for mandibular retrognathism influ-
encing their susceptibility to develop OSAS.

Techniques including mandibular advancement or man-
dibular distraction osteogenesis for treatment of retro-posi-
tioned mandibles or mandibular hypoplasia have produced
promising results in children with OSAS with improvement
in flow limitation.'** These oral jaw repositioning devices
are relatively new and not commonly used in the pediatric
population. In addition to adenotonsillectomy, alternative
methods for treatment include nasal corticosteroid spray or
Montelukast, and continuous or bi-level positive airway
pressure (CPAP; BiPAP). Exceptionally rare cases may
require tracheostomy.

SDB and complications of SCD — implications for
treatment?

SDB and NOD have been associated with increased inci-
dence of vaso-occlusive crisis, stroke, neurocognitive defi-
cits, nocturnal enuresis, cardiovascular, and autonomic
dysfunction in SCD.???7-103:1347136 However, there are few

studies looking at mechanisms which might lead to
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evidence-based treatment. Employing MRI to understand
the distribution of the volume throughout the airway, rather
than discrete values, as well as demarcating growth of
related upper airway structures and craniofacial morphol-
ogy, could improve understanding of the disease process
and potentially ameliorate the severe sequelae of OSAS in
populations such as SCD. OSAS causes episodes of deox-
ygenation, which increases the amount of hypoxemia, and
therefore increases the risk of complications. Combatting
the structural defects associated with obstructive breathing
with appropriate interventions could reduce the proportion
of time spent with significant oxygen desaturation and con-
sequently reduce the complications in this population.®!

Stroke and OSAS/NOD in SCD as an example

The prevalence of cerebral infarction, both overt and covert in
people with SCD, is much greater than compared to the healthy
population.’*” Case reports in the 1980s suggested that OSAS
was a risk factor for stroke in SCD."**'3% A cohort study
showed that nocturnal hypoxemia predicted central nervous
system events.”>'*" Interestingly, stroke appears to be more
common in those with a longer history of upper airway
obstruction.'®

A laboratory study by Setty et al reported that the
release of cellular mediators in hypoxemia, and the rela-
tionship between anemia and oxyhemoglobin desaturation,
suggested that cerebral vasculopathy and stroke might
occur through hypoxia-mediated pathways.'*' In patients,
high cerebral blood flow on transcranial Doppler appears
to be associated with low daytime oxygen saturation.'**!+?
Abnormal magnetic resonance angiography was associated
with NOD in another study.'**

Huang et al highlighted that children with SCD without
OSAS have more prominent upper airway reflexes than
children with SCD without OSAS.""> Reduced upper air-
way neuromuscular reflexes may contribute to the increased
upper airway collapsibility in SCD children with OSAS.
The study speculated that cerebrovascular disease in chil-
dren with SCD may predispose to abnormal regulation of
upper airway muscles during sleep, therefore increasing the
risk of OSAS in this population. The question is: does
cerebrovascular disease predispose to OSAS or does
OSAS-inducing hypoxia lead to cerebrovascular disease?

Conclusion

SDB is more common in Black ethnicities, and even more
prevalent in those with SCD. SDB has significant implica-
tions for health leading to chronic and debilitating

diseases. There appear to be structural differences in the
airway between those with and without OSAS, as well as
between ethnicities. OSAS populations tend to have smal-
ler airways, larger lymphoid tissues, and smaller lower
facial skeletons demarcated by measurements of the mand-
ible and mental spine to clivus. There appears to be an
increased prevalence of OSAS in SCD populations with
hypoxia as a key manifestation which appears to increase
the risk of complications, including stroke. Understanding
a potential relationship between the AN ratio, lymphoid
hypertrophy, airway volume distribution, and lower cra-
niofacial structure could potentially help to stratify those
children most at risk of OSAS. Combatting any structural
defects with appropriate interventions could reduce the
duration spent in hypoxemia and consequently reduce the
risk of comorbidities in this population, therefore warrant-
ing early treatment interventions.

Abbreviation list

AN, adenoid to nasopharynx ratio; AASM, American
Academy of Sleep Medicine; AHI, Apnea/Hypopnea
Index; BiPAP, bi-level positive airway pressure; BMI,
body mass index; CAI, central apnea index; CHOP,
Children’s hospital of Philadelphia; CPAP, continuous
positive airway pressure; CSA, central sleep apnea;
CSAS, central sleep apnea syndrome; CT, computed
tomography; ECG, electrocardiography; EEG, electroen-
cephalography; EMG, electromyography; EOG, electro-
oculography; ETpCO,, end-tidal partial pressure carbon
dioxide; HbA, normal adult haemoglobin; HbAS, sickle
cell trait haemoglobin; HbSS, homozygous sickle cell
haemoglobin; MRI, magnetic resonance imaging; NOD,
nocturnal oxygen desaturation; Non-REM, non rapid eye
movement sleep; OAHI, Obstructive Apnea/Hypopnea
Index; OSAS, obstructive sleep apnea syndrome; pCO?2,
partial pressure carbon dioxide; PSG, polysomnography;
RBC, red blood cell; REM, rapid eye movement sleep;
RIP, SAC,
sickle Sleep Asthma Cohort study; SaO2, arterial oxygen
saturation; SCA, sickle cell anaemia (HbSS); SCD, sickle
cell disease (HbSS, HbSC, HbSPthalassemia); SDB,
sleep disordered breathing; SpO2, pulse oximetry oxygen

respiratory inductance plethysmographys;

saturation.
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Supplementary materials

Figure S| (A) Adenoidal measurements. “A” represents distance from A' point of maximal convexity, along inferior margin of adenoid shadow to line B,drawn along
straight part of anterior margin of basiocciput. “A” is measured along line perpendicular from point A' to its intersection with B. (B) Nasopharyngeal measurement. “N” is
distance between C' posterior superior edge of hard palate, and D', anteroinferior edge of sphenobasiocciptal synchondrosis. When synchondrosis is not clearly visualised,
point D' can be determined as site of crossing posteroinferior margin of lateral pterygoid plates P and floor of bony nasopharyndx.

Note: Reprinted from Radiographic evaluation of adenoidal size in children: Adenoidal-nasopharyngeal ratio. Am | Roentgenol, Fujioka M, Young LW, Girdany BR, the
American Journal of Roentgenology 133(3), Copyright© 1979, American Roentgen Ray Society.*>
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Figure S2 (A) Anatomical outlines of an axial T| image at the level of the maximal tonsillar area of a control Subject. Transverse black arrow represents the intermandibular
distance. (B) Anatomical outlines of a midsagittal T1 image of a control subject. Oblique black arrow represents the mental spine-clivus oblique distance.

Note: Reprinted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. Arens R, McDonough M, Costarino AT, Mahboubi S,
Tayag-Kier CE, Maislin G, et al. 2001. Magnetic resonance imaging of the upper airway structure of children with obstructive sleep apnea syndrome. Am ] Respir Crit Care
Med. 4. 698-703. Official journal of the American Thoracic Society.*’
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Figure S3 (A) Tl-weighted axial image at the retropalated level (right) and segmented regions of interest (left) of a control subject. (B) Midsagittal T|-weighted image with
mental spine-clivus distance shown (right) and segmented regions of interest (left) of a control subject.

Note: Reprinted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. Uong EC, McDonough |M, Tayag-Kier CE, Zhao H,
Haselgrove ], Mahboubi S, et al. 2001. Magnetic resonance imaging of the upper airway in children with Down syndrome. Am ] Respir Crit Care Med. 163. 731-736. Official
journal of the American Thoracic Society.”®
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Figure S4 (A) Mid-sagittal T|-weighted image with mental spine-clivus oblique line shown (white line). Linear measurements were obtained along this line. (B) Axial TI-
weighted image at the level of maximal tonsillar cross-sectional area. Note the transverse intermandibular line (white line) passing the center of each tonsil. Linear
measurements were obtained along this axis. Maximal oropharyngeal width was obtained on this plane (dotted white line).

Note: Reprinted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. Arens R, McDonough JM, Corbin AM, Hernandez ME,
Maislin G, Schwab R, et al. 2002. Linear dimensions of the upper airway structure during development: Assessment by magnetic resonance imaging. Am | Respir Crit Care
Med. 165.117-22. Official journal of the American Thoracic Society.'?'

Figure S5 Left: three-dimensional display of an upper airway and its centerline in a subject with OSAS. Top right: gray-level two-dimansional scene of the cross-section of the
airway orthogonal to the centerline at marker locations: A = adenoid; A + T = adenoid and tonsil overlap; T = tonsils; E = epiglottis. Bottom right: plot of the cross-sectional
area function.

Note: Reprinted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. Arens R, McDonough JM, Corbin AM, Rubin NK, Carroll
ME, Pack Al, et al. 2003. Upper airway size analysis by magnetic resonance imaging of children with obstructive sleep apnea syndrome. Am | Respir Crit Care Med. 167. 65—
70. Official journal of the American Thoracic Society.*®

Normal

Figure S6 (A) Midsagittal magnetic resonance image (MRI) of a normal subject, demonstrating the upper airway regions: retropalatal (RP) — from the level of the hard
palate to the caudal margin of the soft palate; and retroglossal (RG) — from the caudal margin of the soft palate to the base of the epiglottis. Soft palate, tongue, airway,
mandible, and subcutaneous fat are denoted with arrows. Fat is bright (white) on an MRI. (B) Representative three dimensional upper airway volume in a patient with sleep
apnea (left) and in a normal subject (right). Note that the upper airway volume is smaller in the RP region than in the RG region in both subjects and that the length of the
total airway and the individual regions (RP/RG) is not equivalent between the apneic and normal subjects. Airway volume is smaller in the RP region in this apneic subject
compared with the control subject; airway volume is similar in the RG region in this apneic subject compared with the control subject.

Note: Reprinted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. Schwab R|, Pasirstein M, Pierson R, Mackley A,
Hachadoorian R, Arens R, et al. 2003. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am |
Respir Crit Care Med. 168. 522-30. Official journal of the American Thoracic Society.”'
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Figure S7 (A) Midsagittal magnetic resonance image demonstrating the four ascending levels for analysis (thick dotted lines). Level | is 4 mm above tip of epiglottis. (B)
Dynamic changes in cross-sectional area at midtonsillar level (level 2) during tidal breathing (5-vol increments of inspiration [ins], 5-vol increments of expiration [Exp]) of
control subjects (top panels) and subjects with OSAS (bottom panels). Note difference in anteroposterior (A-P) and lateral airway dimension.

Note: Reprinted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. Arens R, Sin S, McDonough JM, Palmer JM, Dominguez T,
Meyer H, et al. 2005. Changes in upper airway size during tidal breathing in children with obstructive sleep apnea syndrome. Am | Respir Crit Care Med. 171. 1298-304.
Official journal of the American Thoracic Society.IZS

Airway

Figure S8 Volumetric reconstructions from a series of 3-mm contiguous axial magnetic resonance (MR) images of the mandible (gray), tongue (orange/rust), soft palate (pink/
purple), lateral parapharyngeal fat pads (yellow), and lateral/posterior pharyngeal walls (green) in a normal subject (top panel) and in a patient with sleep apnea (bottom panel).
The upper airway is larger in the normal subject than in the patient with apnea. In addition, the tongue, lateral parapharyngeal fat pads, and lateral pharyngeal walls are larger
in the patient with apnea.

Note: Reprinted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. Schwab R|, Pasirstein M, Kaplan L, Pierson R, Mackley A,
Hachadoorian R, et al. 2006. Family aggregation of upper airway soft tissue structures in normal subjects and patients with sleep apnea. Am ] Respir Crit Care Med. 173.
453-63. Official journal of the American Thoracic Society."'5

Figure S9 Upper airway, soft tissues, and mandibular reconstructions. Head and neck surface rensering with three-dimensional reconstructions of the upper airway, soft
tissues, and mandible of a subject with obstructive sleep apnea syndrome in various views: lateral (top left), anterior oblique (bottom right). Airway (light blue), tongue (brown),
mandible (white), nodes (red), and deep cervical nodes (green).

Note: Reprinted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. Arens R, Sin S, Nandalike K, Rieder |, Khan Ul, Freeman
K, etal. 201 |. Upper airway structure and body fat composition in obese children with obstructive sleep apnea syndrome. Am | Respir Crit Care Med. 183. 782-787. Official
journal of the American Thoracic Societ)'.4'9
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Figure S10 (A) CSA oropharyngeal airway. (B) Combined upper airway volume, T| weighted axial scan. (C) Transverse line perpendicular to the floor passing through the
hyoide to nasion, to sella to supramentale. (D) Midsagittal palatal CSA.

Note: Reprinted from Int | Pediatr Otorhinolaryngol, 77(1), Cappabianca S, laselli F, Negro A, et al., Magnetic resonance imaging in the evaluation of anatomical risk factors
for pediatric obstructive sleep apnoea-hypopnoea: a pilot study, 69—75, Copyright 2013, with permission from Elsevier.'%*

Figure SI1 (A) Left 4 images. Mid sagittal (top) and axial T2-weighted images at the level of the nasopharynx (bottom), of a patient before (left) and after (right)
adenotonsillectomy. Solid white arrows indicate adenoid tissue (gray) and dotted arrows indicate nasopharyngeal airway.Note residual adenoidal tissue and larger airway
after adenoidal tissue and larger airway after adeniodectomy. In this example, a 29% reduction in adenoid volume was noted on MRI. (B) Right 2 images. Axial T2-weighted
images at the level of the oropharynx of a patient before (left) and after (right) adenotonsillectomy. Solid white arrows indicate tonsillar tissue (gray) and dotted arrows
indicate oropharyngeal airway. Note the larger airway and small left residual tonsil tissue after tonsillectomy.

Note: Reprinted from CHEST, 142(1), Strauss T, Sin S, Marcus CL, Mason TBA, McDonough JM, Allen JL, et al., Upper airway lymphoid tissue size in children with sickle cell

disease, 94-100, Copyright 2012, with permission from Elsevier.*®

Figure S12 MRI volumetric analysis of lymphoid tissue volumes in an OSA
patient (green-upper jugular lymph nodes, orange-tonsil tissue, red-retropharyn-
geal lymph nodes, magenta-adenoid tissue). (A) Three dimensional reconstruc-
tion of lymphoid tissue using Amira® software. (B) Axial T2-weighted DICOM
image with lymphoid tissue tracings. (C) Coronal T2-weighted DICOM image
with lymphoid tissue tracings. (D) Sagittal T2-weighted DICOM image with
lymphoid tissue tracings.

Note: Nandalike K, Shifteh K, Sin S, Strauss T, Stakofsky A, Gonik N et al,
Adenotonsillectomy in obese children with obstructive sleep apnoea syndrome:
magnetic resonance imaging findings and considerations, SLEEP, 2013, 36, 6, 841-
847, by permission of Oxford University Press.'*

Figure S13 Upper airway, soft tissues, and mandibular reconstructions. Head and
neck surface rendering with three-dimensional reconstructions of the upper airway,
soft tissues, and mandible of a subject with obstructive sleep apnea syndrome in
various views:lateral (top left), anterior oblique (top right), superior oblique (bot-
tom left) and posterior (bottom right). Airway (light blue), tongue (brown), mand-
ible (white), soft palate (blue), tonsils (yellow), adenoid (magenta), retropharyngeal
nodes (red), and deep cervical nodes (green).

Note: Copyright ©2003. John Wiley and Sons. Reproduced from Parikh SR,
Sadoughi B, Sin S, Willen S, Nandalike K, Arens R. Deep cervical lymph node
hypertrophy: A new paradigm in the understanding of pediatric obstructive sleep
apnea. Laryngoscope. 2013;123(8):2043-9.'%
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Figure S14 Anatomical definitions of upper airway landmarks on midsaggital and axial slices with 3D reconstruction of regions of interest.

Note: Reprinted with permission of the American Thoracic Society. Copyright © 2020 American Thoracic Society. Schwab R], Kim C, Bagchi S, Keenan BT, Comyn FL,
Wang S et al. 2015. Understanding the anatomic basis for obstructive sleep apnea syndrome in adolescents. Am ] Resp Crit Care Med. 191. 1295-1309. Official journal of the
American Thoracic Society.'*’

Figure S15 3D surface renditions of objects: np (nasopharynx), op (oropharynx), mn (mandible), tn (tonsils), tL & tR (left and right (tonsil), fp (fat pad), ad (adenoid), tg
(tongue).

Note: Copyright ©2016. PLoS One. Reproduced from Capovilla G, Beccaria F, Montagnini A, et al. Tong Y, Udupa JK, Sin S, Liu Z, Wileyto EP, Drew A et al. MR Image
Analytics to Characterize the Upper Airway Structure in Obese Children with Obstructive Sleep Apnea Syndrome. PLoS One 2016; | 1(8):e0159327.'%®
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