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Introduction: Sleep deprivation (SD) has a negative influence on mood and emotion 
processing, and previous studies have elucidated the impaired coupling within the default 
network (DN) after SD. However, the dynamic characteristic with high temporal precision 
was rarely investigated in the DN after SD.
Methods: Here, the resting-state EEG after nocturnal sleep (NS) and SD was collected from 
31 participants. The cortical electrical activities of the posterior cingulate cortex (PCC) and 
the anterior medial prefrontal cortex (aMPFC) were reconstructed applying the eLORETA, 
and the functional connectivity (FC) of PCC-aMPFC was calculated using the power 
envelope connectivity (PEC).
Results: Compared with NS, the power spectrums of the PCC and the FC of PCC-aMPFC 
were significantly reduced in the α band after SD. Interestingly, the impaired PCC-aMPFC 
integration was positively correlated with the decreased positive affect, implying that the DN 
plays a critical role in the subjective mood state. Our moderation analysis further revealed 
that the intensity of the DN posterior–anterior interaction moderated sleep loss and positive 
affect.
Discussion: Overall, the results reveal the strong relationship between the uncoupling of DN 
and the feeling down of mood. Our research may contribute towards a better understanding 
of the mood and cognition processing after sleep loss.
Keywords: resting-state EEG, sleep deprivation, α band, default network, affective state

Introduction
Sleep plays a vital role in our physical and mental health because it is one of the 
indispensable physiological activities of the human body. An approach to explore 
functions of sleep reversely is sleep deprivation (SD), which is a powerful experi-
mental manipulation to better clarify the links between sleep and affect. Generally, 
feeling down of mood was reported after SD in healthy subject.1,2 That includes 
two effects: reduced positive affective state and increased negative emotion.3 

Moreover, the loss of sleep could induce stress, anxiety, aggression and irritability 
to some extent.4,5 In all, SD has a deteriorating effect on mood states, which is 
usually measured with the Positive and Negative Affect Scale (PANAS).6 This 
scale divided the subjective mood state into positive affect (PA) and negative affect 
(NA). They are two relatively independent dimensions,6 and PA shows notable 
diurnal variation and is more unique to physiological hyperarousal than NA.7 

Therefore, compared with NA, PA is usually more sensitive to SD.8
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The psychological mechanisms and neural basis of the 
reduced mood are not understood yet. A promising inves-
tigation framework, which is based on functional magnetic 
resonance imaging (fMRI), focuses on brain networks.1 

These studies mainly adopt task designs, which based on 
emotional-related pictures or videos.9,10 Previous resting- 
state fMRI studies revealed that the default network (DN) 
is particularly affected by SD,11,12 inducing a double dis-
sociation within anterior and posterior midline regions of 
the DN.13 Specifically, SD induced decreasing functional 
connectivity (FC) between the posterior cingulate cortex 
(PCC) and the medial prefrontal cortex (MPFC).14

Here, we further hypothesized that after SD, the alterations 
within the DN could be related to mood state. We chose the 
PCC and anterior MPFC (aMPFC) as regions of interest 
(ROIs) mainly for three reasons. Firstly, they are the posterior 
and anterior midline cores of the DN.11 This study11 divided 
DN into one midline core (PCC-aMPFC) and two sub-sys-
tems, considering function and anatomy. Previous studies15,16 

showed that PCC-aMPFC exhibited the highest centrality 
within the DN circuit. Secondly, midline cores have some 
links with sleep. For example, previous researches suggested 
that SD has a negative impact on PCC and MPFC.12,15,17 In 
addition, decreased connectivity within PCC was related to 
later chronotype.18,19

Thirdly, many studies suggest that PCC and aMPFC are 
related to emotion.20–22 On the one hand, PCC has been 
pointed out as a pivotal for arousal and awareness,22 linking 
with emotion,21 and involving in affective symptoms of 
obstructive sleep apnea (OSA) or insomnia disorder.20 In addi-
tion, increased Gamma Aminobutyric Acid (GABA) levels in 
the PCC were thought to link with antidepressant and anti- 
anxiety.23 On the other hand, functional impaired MPFC might 
result in emotional deficits,10,24 and anterior DMN was impli-
cated in emotion regulation.18 More importantly, the core 
PCC-aMPFC subsystem entangles with emotion and intro-
spection on mental states.11 In a recent study, disrupted FC of 
PCC-mPFC may contribute to affective symptoms of bipolar 
disorder.25

To gain more detailed rhythmic characteristics than fMRI, 
the resting-state EEG technique was employed in our current 
study. The main advantage of electroencephalography (EEG) 
is its high sampling rate. Based on this advantage, we can 
extract various electrophysiological characteristics within a 
wide frequency band, from 0.1 to 40 Hz. Furthermore, using 
a source imaging method, for example, exact low-resolution 
brain electromagnetic tomography (eLORETA),26 EEG can 
provide electrophysiological information of FC between the 

aMPFC and PCC. We especially focused on the change within 
the α band (8–13 Hz) rhythm. The α band was chosen as the 
frequency band of interest due to its dominant activity during 
eye closure.27 Besides, the power of the α band is a good 
indicator of EEG vigilance, which was greatly impaired during 
SD.28 More importantly, waking α power has been correlated 
with the emotional state and the emotional content of dream 
reports.29

In this study, resting-state EEG was recorded after noctur-
nal sleep (NS) and SD from 31 participants. The cortical 
electrical activities of the PCC and aMPFC were reconstructed 
applying the eLORETA, and the FC of PCC-aMPFC was 
calculated using the power envelope connectivity (PEC). 
Both the power spectrum and FC were compared between 
NS and SD. We further conducted a moderation analysis to 
investigate the relationship between FC, sleep condition, and 
current mood state. We have three hypotheses for SD com-
pared with NS: 1. In the midline of DN, the α power will 
decrease; 2. The anterior-posterior DN FC will decrease; 3. 
Decreased FC might correlate with altered mood states. It may 
be a positive correlation for positive affect and a negative 
correlation for negative affect.

Methods
Participants
A total of 37 participants engaged in our study. Six participants 
were excluded because of sleeping more than half of the eyes- 
closed EEG recording time (more than 150 s), based on the 
manual sleep staging of a sleep expert. Exclusion resulted in 31 
valid right-handed participants (17 males), 20.16 ± 0.33 (M ± 
SEM) years old. All participants had no self-reported mental 
illness, anxiety or depression symptoms, recent cold symp-
toms, or sleep problems (such as insomnia, sudden wakeful-
ness or feeling difficult to breathe). This study was supported 
by the Ethics Committee of Southwest University, and all 
procedures were performed following the Helsinki 
Declaration. We explained the purposes and procedures of 
the study to participants in detail and informed consents were 
obtained before the experiment started.

Procedure
All participants visited the laboratory twice. For the 
first time, half of them arrived at 8 a.m. after sleep in 
the dormitory. For the second time, they arrived at 
10 p.m., then remained awake until the end of the 
experiment. The other half was in reverse order. 
During SD, participants have a 24-hour continuous 
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awake period, monitored by research assistants. They 
were forbidden to consume beverages or foods contain-
ing caffeine, tea or alcohol. Besides, they were not 
allowed to lie down, sleep or engage in vigorous phy-
sical activity. After SD day, the participant was sug-
gested to take a restorative sleep immediately, in their 
dormitory, or the nearby restroom provided by our 
sleep center. Both sleep conditions were monitored by 
an actigraphy wrist-watch (wGT3X-BT). The data from 
the actigraphy were analyzed by Actilife (https://www. 
theactigraph.com), to check the participant has a reg-
ular sleep or total SD in each condition. The interval 
between the two sleep conditions was at least seven 
days, and participants were required to keep their reg-
ular sleep habits throughout the experiment.

Resting-state EEG recordings and questionnaires fill-
ing were conducted in the morning. The EEG data were 
collected between 9.00 and 10.00 a.m., after electrodes 
were applied successfully with low impedance (<5 kΩ). 
After that, participants were instructed to keep their eyes 
closed for 5 minutes. Then, they filled out a sleep log30 

and Positive and Negative Affect Scale (PANAS).6 In 
addition, to ensure the experimental manipulation was 
successful, all participants were asked to complete a 5- 
minute psychomotor vigilance task (PVT)31,32 and the 
Stanford Sleepiness Scale (SSS).33 The SSS and PVT 
were used as indicators for subjective and objective 
sleepiness, respectively.

The sleep log was used to collect their sleep time 
and wake up time. The PANAS consisted of 20 items, 
and each item described an emotional state, for example, 
nervous. Participants rated from 1 (nearly no) to 5 
(extremely a lot). All items were attributed to two 
dimensions, namely NA and PA. As for the SSS, parti-
cipants chose one description from seven statements to 
evaluate their subjective sleepiness. For example, “feel-
ing energetic, vital, alert and awake” (statement one) 
and “always dreaming, falling asleep fast, giving up 
staying awake” (statement seven).

In PVT, a square frame centered in the screen. 
Participants needed to click the mouse as soon as the 
red number appeared in the box. And after some ran-
dom time, the number appeared again. The time length 
of PVT was 5 minutes. The lapses (the number of trials 
with response time > 500 ms) and mean reaction time 
(from trials with response time ≤ 500 ms and >100 ms) 
can objectively quantify the vigilance of subjects.34

EEG Data Acquisition and Data 
Preprocessing
EEG signals were recorded using 63 Ag/AgCl electrodes 
on an elastic cap, based on the international extended 
10–20 electrode placement system (Brain Products 
GmbH, Steingrabenstr, Germany). Two channels were 
used to record vertical and horizontal electrooculograms, 
and the impedance levels at all electrodes were kept below 
5 kΩ. The sampling rate was 500 Hz, and the FCz was 
utilized as the online reference channel.

Firstly, the sleeping EEG data needed to be identified. 
We selected six channels (F3, F4, C3, C4, O1, O2) for 
manual sleep staging. One sleep expert scored the EEG 
signal with a time window of 30 s, according to the 2017 
AASM manual.35 For example, N1 (non-rapid eye move-
ment Stage 1) is defined as attenuated α rhythm and rising 
mixed θ signal, accompanied by slow eye movements and 
a decrease in muscle tone. N2 (non-rapid eye movement 
Stage 2) was featured as the appearance of K-complexes 
and sleep spindles.

If the total time length of sleeping data exceeded half, 
then we discarded all the data from this subject. In this 
study, we deleted six participants because they fall asleep 
for more than 150 seconds. Among the 31 remaining 
subjects, nine of them showed signs of falling asleep 
after SD. We manually deleted 30 s sleeping data for 
seven participants and 60 s for two. In other words, all 
participants could stay wakefulness during the whole 5- 
minute eyes-closed resting-state data acquisition after NS, 
but only 22 participants can make that after SD, and nine 
could only stay awake for more than 150 seconds.

After deleting sleeping data and rejecting noisy data by 
manual, there were 225.13 ± 29.17 seconds of data 
remained in NS condition and 231.00 ± 38.08 seconds in 
SD condition. For bad electrodes, we interpolated its sig-
nal with its surrounding electrodes. As a result, we inter-
polated 2.38 ± 2.15 and 2.44 ± 2.26 electrodes in NS and 
SD conditions, respectively. Both valid data length and the 
number of bad channels had no significant differences in 
NS and SD conditions (paired t-test, p > 0.05).

Data preprocessing was performed using EEGLAB 
(version 2019_1, http://sccn.ucsd.edu/). The general pro-
cessing pipeline was applied, which included band filtering 
to 0.1–40 Hz, replacing bad channels with surrounding 
channels, every 4 seconds was divided into an epoch and 
rejection of artifact epoch by manual. Epochs with ocular, 
muscular, and other types of artifacts were identified and 
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then excluded from further analyses. Independent 
Components Analysis (ICA) was used to correlate the 
eye-movement artifact because eye movements are always 
identified as the biggest independent components in ICA 
decomposition. At last, the signal was re-reference to 
average.

EEG Source Imaging and FC
For resting-state EEG, we firstly used the exact low-reso-
lution brain electromagnetic tomography eLORETA,26,36 

to calculate the cortical electric neuronal activity distribu-
tions from EEG measurements. EEG source imaging was 
performed using the Fieldtrip http://www.ru.nl/donders/ 
fieldtrip,37 The EEG forward model is restricted to a 
high-density canonical cortical mesh, which was extracted 
from a structural MRI template of a neurotypical male in 
Fieldtrip software (http://fieldtrip.fcdonders.nl/download. 
php). The mesh has 8196 vertices, which was uniformly 
distributed on the gray-white matter interface. Each vertex 
is assumed to be one dipole, oriented perpendicular to the 
mesh surface. In this step, our input is the remained EEG 
signal of 61 electrodes, and the output is the reconstructed 
time course of 8196 vertices, constructing the whole brain 
cortical electric neuronal activity. Notice that the duration 
of the reconstructed time course in source space has the 
same duration as the scalp EEG.

Then, the power spectrums of each vertex varied from 
0.1 to 40 Hz were obtained using Welch’s method in 
MATLAB, with a frequency resolution of 0.2 Hz. Due to 
our special interest in the α band, the spectral density of 
8–13 Hz was averaged. Considering some arousal states 
(for example, SD), it is important to take the entire spectra 
range into account when comparing changes of specific 
frequency band.38,39 Therefore, we computed relative 
power instead of absolute power. Relative power was 
obtained by normalizing power in each frequency band 
with the overall average power in 0.1–40 Hz within each 
channel.

After that, we chose the PCC (in MNI coordinate 
(mm), x:-8, y:-56, z:26, Broadman Areas: 23, 3) and the 
aMPFC (x:-6, y:52, z:-2, Broadman Areas:10, 32) as 
ROIs. Each ROI was assumed as a sphere with a radius 
of 5 mm. In our EEG forward model, the number of 
corresponding dipoles (vertices) was 14 and 16 for the 
PCC and aMPFC, respectively. The power spectrums of 
PCC and aMPFC were the average spectrums of all the 
dipoles in each ROI.

For FC, we averaged the time course of all the dipoles 
within each ROI to represent the time course of an ROI. 
After that, the power envelope correlation40 was applied to 
calculate the interaction between these two ROIs. This is 
based on quantifying correlations between power envel-
opes of two ROIs. Firstly, the absolute values of the 
complex spectral estimates were squared and then loga-
rithmically transformed to render the power statistics more 
normal. After that, the Pearson’s linear correlation 
between the resulting power envelopes from the two 
ROIs was computed. More additional information and 
numerical simulations about PEC can be found in Hipp, 
Hawellek, Corbetta, Siegel and Engel.40

Statistical Analyses
For questionnaires and behavioral data, paired sample 
t-tests were conducted to compare the difference 
between the two conditions. The PANAS scale was 
divided into positive and negative affect subscales, and 
corresponding total scores were calculated, respectively. 
All PVT trials with response time ranged from 100 to 
500 ms were included in calculating the average 
response time.

For EEG data, the power spectrums of the PCC and 
aMPFC were compared using paired sample t-test in 
each frequency bin. We also conducted an additional 
t-test for the α band, which is the averaged spectrum 
between 8 and 13 Hz. A similarly paired sample t-test 
was conducted for the FC between PCC and aMPFC. 
Finally, as mentioned earlier, we concerned about the 
relationship between positive affect, negative affect and 
the PCC-aMPFC connectivity in the α band. After that, 
the Pearson correlation was conducted to explore the 
relations between these two variables under different 
conditions. In order to explore the moderation relation-
ship among SD, the PCC-aMPFC connectivity in the α 
band, and positive affect, we used the Process41 in SPSS 
(version 18) to analyze the underlying mechanism. The 
process is a plug-in in SPSS for mediation or modera-
tion analysis with up to more than 70 different models 
(visit https://www.processmacro.org/index.html for more 
information).

Results
Behavioral results
Descriptive statistics and paired t-test results of the SSS, 
PVT, the positive and negative affect of PANAS are 
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demonstrated in Figure 1. All the related values are listed 
in Table 1. Results suggested that the SSS and PVT (RTs 
and lapses) increased prominently after SD (t = −9.66, p < 
0.001; t = −4.54, p < 0.001; and t = −3.85, p < 0.001, 

respectively). Apart from that, positive affect of PANAS 
worsened significantly (t = 5.35, p < 0.001), but negative 
affect only showed a slight decrease trend (t = −1.67, p = 
0.105) when comparing SD with NS.

Figure 1 The values (M + SEM) of four parameters after nocturnal sleep (NS) and sleep deprivation (SD). ***p < 0.001. 
Abbreviations: SSS, Stanford Sleepiness Scale; PVT, psychomotor vigilance task; RT, reaction time; PA, positive affect; NA, negative affect; NS, nocturnal sleep; SD, sleep 
deprivation.

Table 1 The Demographic Variables and Four Behavioral Variables of the Experiment

Nocturnal Sleep Sleep Deprivation t value

Demographic Variables 17/14 males/females; 

Age: 20.16 ± 0.33 years old

None

Sleep log 7.61 ± 0.17 hours None None

SSS 2.44 ± 0.16 4.41 ± 0.13 −9.66***

PVT- Reaction Time 331.69 ± 4.66 ms 353.03 ± 4.24 ms −4.54***
PVT- Lapses 2.13 ± 0.41 4.61 ± 0.78 −3.85***

Positive Affect 28.50 ± 1.11 21.74 ± 1.23 5.35***

Negative Affect 17.62 ± 1.06 18.75 ± 1.06 −1.67

Notes: All data in the table were shown as M ± SEM. ***p < 0.001. 
Abbreviations: SSS, Stanford Sleepiness Scale; PVT, psychomotor vigilance task.
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Power Spectrums of PCC and aMPFC
The spectrum of the two ROIs is plotted in Figure 2. The 
frequency bands with significant differences were shaded 
(paired t-test, p < 0.05, FDR corrected). It revealed that the 
PCC was significantly different during delta, theta, and 
alpha bands. In comparison, that of aMPFC showed no 
significant change.

Due to our interest in the α band, the changes in the 
aMPFC and PCC at 8–13 Hz were shown as an embedded 
histogram in Figure 2. The results indicated that the power 
of the α band in the PCC was significantly reduced after 
SD (NS: 2.97 ± 0.21, SD: 2.28 ± 0.23, t = 3.13, p < 0.01, 

FDR corrected). Similarly, that of the aMPFC also 
decreased, with t = 2.14 and p = 0.04 (uncorrected. NS: 
0.76 ± 0.09, SD: 0.59 ± 0.04). However, this could not 
survive from multiple comparisons correction.

In addition, according to the power spectrum, the PCC 
also changed significantly in δ (1–3 Hz) and θ (4–7 Hz) 
ranges: δ band: NS: 3.19 ± 0.27, SD: 4.05 ± 0.33, t = 
−2.36, p < 0.05, FDR corrected; θ band: NS: 1.12 ± 0.08, 
SD: 1.66 ± 0.13, t = −4.20, p < 0.001, FDR corrected. In 
contrast, it seems that the aMPFC was not affected by SD: 
none of the two frequency bands mentioned above chan-
ged significantly.

Figure 2 Power spectrums of PCC (A) and aMPFC (B) after nocturnal sleep (NS) and sleep deprivation (SD). The red line represented NS condition, the blue line for SD, 
and the light blue and red shadows meant for standard errors. There were significant differences in the grey-shaded parts (two-tail paired sample t-tests, p < 0.05, FDR- 
corrected). The embedded histogram showed the power differences between aMPFC and PCC in the α band (8–13 Hz). **p < 0.05. 
Abbreviations: NS, nocturnal sleep; SD, sleep deprivation.
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PCC-aMPFC Connectivity and Its 
Relations with Mood State
The connectivity of each frequency bin between two mid-
line ROIs of DN ranged from 0.1 to 40 Hz is shown in 
Figure 3A. Correlations between PA and the FC are pre-
sented in Figure 3B and C.

Power envelope correlations implied that compared to 
NS, the FC of PCC-aMPFC decreased significantly in the 
α band after SD: t = 2.25, p < 0.05 (FDR correction). In 
addition, the PCC-aMPFC connectivity in the α band 
became significantly correlated with positive affect: r = 
0.46 and p < 0.05 (FDR correction). However, this pattern 

did not hold for NS, with r = −0.26 and p = 0.15. As for 
negative emotion, the PCC-aMPFC connectivity showed 
no significant correlations with NA under both sleep con-
ditions (NS: r = 0.29 and p = 0.12; SD: r = 0.10 and p 
= 0.60).

Moderating Effect of the PCC-aMPFC 
Connectivity
To understand the underlying moderating effect intuitively, 
we constructed a moderation model among sleep condi-
tions, the PCC-aMPFC connectivity, and the positive 
affect of PANAS, as illustrated in Figure 4.

Figure 3 The functional connectivity of aMPFC and PCC after nocturnal sleep (NS) and sleep deprivation SD (A), and the correlation scatter diagrams between the positive 
affect and PCC-aMPFC connectivity (B). The histogram embedded in Figure 3A illustrated the integration strength between aMPFC and PCC in the α band (8–13 Hz). The 
light blue and red shadows represented the standard error under SD and NS conditions, respectively. Gray shadow indicated statistically significant differences (paired t-test, 
p < 0.05, FDR-corrected). *p < 0.05. 
Abbreviations: PA, positive affect; NS, nocturnal sleep; SD, sleep deprivation.
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The moderating effect of the FC of anterior-posterior 
midline of the DN was significant: β = −0.32, p < 0.01, 
and sleep condition had significant effect on positive 
affect: β = 0.48, p < 0.001.

Discussion
To reveal a wide band electrophysiological characteristic 
of DN after SD, 31 valid participants were included in the 
resting-state EEG study. Consistent with previous studies, 
our behavioral data showed that subjective sleepiness 
(SSS) increased, and vigilance (PVT) decreased signifi-
cantly after SD.42 Besides, the PA of PANAS significantly 
decreased,42 while NA decreased slightly.8 This demon-
strated that our SD experimental manipulation was 
successful.

In addition, compared with between-subject design,13 

our within-subject experiments could greatly take out the 
effect of inter-individual variabilities, such as gender, 
chronotype or other sleep-related traits.43 Interestingly, 
compared with NS, the power spectrum of the PCC and 
the FC of PCC-aMPFC were significantly reduced in the α 
band after SD. In addition, the impaired PCC-aMPFC 
integration was positively correlated with the decreased 
positive affect, implying that the DN plays a critical role 
in the subjective mood state. Moderation analysis further 
revealed that the intensity of the DN posterior-anterior 
interaction moderated sleep loss and positive affect. 
Overall, the results reveal the strong relationship between 
the uncoupling of DN and the feeling down of mood. Our 

research may contribute towards a better understanding of 
the mood and cognition processing after sleep loss.

Decreased α Power in PCC
The α band power of the PCC declined significantly after 
SD, yet the aMPFC did not exhibit any notable change. To 
the best of our knowledge, this is the first study to reveal 
the energy changes of the PCC and aMPFC, across a wide 
frequency range (0.1–40 Hz). Previous studies have 
reported the decreased α power in parietal and occipital 
regions based on the scale surface EEG, and this is very 
relevant to our result.3,44 Nevertheless, although the rela-
tive power decreased, the PCC still showed an α dominant 
effect during the eyes-closed condition. In other words, the 
activity of the PCC declined after SD, which was identical 
to a previous fMRI study.45

One possible explanation for the α dominant effect 
could be the neurotransmitter: GABA. GABA is produced 
by the hypothalamus, which is considered the most impor-
tant brain region to regulate sleep.46 We speculated that 
after SD, the enhanced driving force of sleep might result 
from the increasing GABA secretion, which can system-
atically inhibit the α power.47

In contrast to α, the PCC presented raised power 
around δ and θ bands. More θ and less α activity were 
linked with a sleepier state,28 hence the frequency varia-
tions of the PCC were in line with the functional differ-
entiation of high and low-frequency bands. Furthermore, 
the ratio power between α and θ bands was widely utilized 

Figure 4 The moderation model among sleep conditions, the PCC-aMPFC connectivity, and the positive affect of PANAS. Functional connectivity between PCC and aMPFC 
in the α band was a moderator, and sleep condition and positive affect were independent and dependent variables, respectively. The path coefficients reported were 
standardized. **p < 0.01; ***p < 0.001.
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as EEG vigilance.28 The increase in θ and δ44 or the 
decrease of α power3 was accompanied by a decline in 
alertness and transition to drowsiness.28 Therefore, we 
speculated that the decrease of high frequency and 
increase of low frequency of PCC may reflect a state of 
lower vigilance after sleep deprivation.

Decreased Connectivity Within the 
Default Network
The PCC and aMPFC exhibited attenuated integration in the 
α band, and this may reflect an abnormal awake state caused 
by SD, considering the natural awake state is characterized 
by the strong posterior and anterior integration in the 
DN.48,49 The loss of connectivity often occurred when con-
sciousness was absent, such as descent to sleep,27 minimally 
conscious, and vegetative state patients.49 Preceding 
researchers believed that self-consciousness was associated 
with the DN.50,51 From this point of view, SD might weaken 
self-consciousness, accompanying damaged posterior and 
anterior integration within DN in the α band. Moreover, 
this decoupling may also imply cognitive impairment, con-
sidering a previous fMRI study,20 which suggested that aber-
rant posterior DN connectivity was associated with working 
and declarative memory.

As mentioned earlier, GABA is essential for sleep 
regulation,46 and we assumed that SD may cause abnormal 
GABA secretion because of increased sleep drive. 
Previous research showed that the inhibitory effect of 
GABA may result in decreases in neuronal activity and 
the intrinsic FC almost within the entire DN.52 

Specifically, they found that GABA is special to DN 
because they fail to associate any other network with 
GABA. Apart from that, many studies measured the 
GABA concentration at PCC,52,53 which may imply that 
the PCC is more sensitive to GABA than other brain 
regions. Consistently, our results showed that, compared 
to the aMPFC, sleep condition could have more influence 
on PCC. Thus, we speculated that the weakening connec-
tivity of PCC-aMPFC could be largely due to the reduced 
activity of the PCC.

Correlations Between FC and Positive 
Affect
We found that after SD, the midline integration of the DN 
in the α band became related to the subjective mood state, 
namely PA. This may indicate that only after SD, the 
midline cores of DN begin to take part in an affective 

state. Maybe we can view this as some compensation 
mechanisms after SD, though future study is required. 
Anyway, we suggested that SD-induced abnormal deacti-
vation in the midline DN might reflect an unhealthy men-
tal state. The decreased connectivity within DN, especially 
between PCC and aMPFC, was associated with multiple 
neuropsychiatric disorders, such as post-traumatic stress 
disorder (PTSD),54 schizophrenia,55 early life stress,54 

and major depression disorder.55 SD may disrupt the 
boundaries of the regular DN activity, therefore making 
the DN architectures fail to maintain brain functions to 
some extent.

The modulation model further illustrated the relation-
ships among these three variables: the connectivity 
strength of the PCC-aMPFC regulates the effect of sleep 
loss on PA. As the loss of midline connectivity in the DN 
intensifies, the effects of SD on PA will be stronger. 
Previous literature1 supported the negative effects of 
sleep loss on mood. Furthermore, we revealed that this 
phenomenon may be due to the moderating effect of the 
PCC-aMPFC connectivity of the DN in the α band. We 
believed that the SD-induced low PA could be the mood 
state basis for subsequent emotional responses. Moreover, 
the decrease in anterior-posterior connectivity within DN 
may impact emotional-related brain responses.

Limitations
Even though our research has made some unique 
advances, some limitations still exist. First, the narrow 
age range and would limit the generalization of research 
results. Future studies should consider the inclusion of 
middle-aged and older people to check for age effects. 
For example, whether the α dominant effect will be 
replaced in other age groups? Second, no polysomnogra-
phy (PSG) monitors to exclude sleep disorders. Later 
studies should have a strict screening of sleep quality, 
and consider taking the quality scores as an independent 
variable to test our correlation results and modulation 
model. In addition, only one questionnaire (PANAS) was 
used to measure the affective state after sleep restriction. 
Future research may consider applying some cognitive 
tasks, to further examine the effect of resting state on 
subsequent emotional cognition. Finally, we assumed that 
GABA may play a certain role after SD, but we did not 
test GABA directly. We should consider exploring the 
effect of GABA on α activity and FC after SD.
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Conclusions
In summary, sleep deprivation inhibits the activity of the 
PCC. It also reduces the midline integrity of the DN, 
within the dominant α band during the eyes-closed condi-
tion. Moreover, the less interaction between the anterior 
and posterior core regions of DN, the stronger the negative 
impact on the current mood state. The abnormal mood 
state and the DN activity may be important reasons for 
subsequent emotional deterioration and cognitive impair-
ment caused by sleep loss. Our research may contribute 
towards a better understanding of the mood and cognition 
processing after sleep loss.
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