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Purpose: The current gold standard to detect sleep/wakefulness is based on electroence-
phalogram, which is inconvenient if included in portable sleep screening devices. Therefore, 
a challenge in the portable devices is sleeping time estimation. Without sleeping time, sleep 
parameters such as apnea/hypopnea index (AHI), an index for quantifying sleep apnea 
severity, can be underestimated. Recent studies have used tracheal sounds and movements 
for sleep screening and calculating AHI without considering sleeping time. In this study, we 
investigated the detection of sleep/wakefulness states and estimation of sleep parameters 
using tracheal sounds and movements.
Materials and Methods: Participants with suspected sleep apnea who were referred for 
sleep screening were included in this study. Simultaneously with polysomnography, tracheal 
sounds and movements were recorded with a small wearable device, called the Patch, 
attached over the trachea. Each 30-second epoch of tracheal data was scored as sleep or 
wakefulness using an automatic classification algorithm. The performance of the algorithm 
was compared to the sleep/wakefulness scored blindly based on the polysomnography.
Results: Eighty-eight subjects were included in this study. The accuracy of sleep/wakeful-
ness detection was 82.3±8.66% with a sensitivity of 87.8±10.8 % (sleep), specificity of 71.4 
±18.5% (awake), F1 of 88.1±9.3% and Cohen’s kappa of 0.54. The correlations between the 
estimated and polysomnography-based measures for total sleep time and sleep efficiency 
were 0.78 (p<0.001) and 0.70 (p<0.001), respectively.
Conclusion: Sleep/wakefulness periods can be detected using tracheal sound and move-
ments. The results of this study combined with our previous studies on screening sleep apnea 
with tracheal sounds provide strong evidence that respiratory sounds analysis can be used to 
develop robust, convenient and cost-effective portable devices for sleep apnea monitoring.
Keywords: sleep apnea, apnea/hypopnea index, principal component analysis, classification, 
imbalanced data

Introduction
Sleep apnea is a chronic disorder, which is associated with intermittent reductions 
(hypopnea) or pauses (apnea) in breathing during sleep. The severity of sleep apnea 
is commonly quantified based on apnea/hypopnea index (AHI) defined as the 
average number of apneas/hypopneas per hour of sleeping time. In clinical practice, 
sleep is assessed by in-laboratory polysomnography (PSG), which requires attach-
ment of various sensors to the body. In PSG, sleeping time is measured through 
attaching about 8–10 electrodes on the individual’s head to record electroencepha-
logram (EEG), followed by manual inspection of the EEG recordings for sleep 
scoring. Thus, PSG is inconvenient, expensive and may not be representative of 
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natural sleep, since it is performed for a single night in an 
unfamiliar environment. Alternatively, sleep can be 
assessed in the home setting using portable sleep screening 
devices with fewer numbers of sensors. While portable 
devices address some challenges of PSG, their limited 
number of integrated sensors can reduce their accuracy. 
The main challenge of most portable devices is that since 
they do not record EEG due to the inconvenience, they do 
not have an estimate of sleeping time. Thus, recording 
time is usually used in the portable devices to estimate 
AHI, which leads to lower accuracy and underestimation 
of AHI. To increase the accuracy of portable devices, it is 
important to develop algorithms to estimate sleeping time 
without compromising the convenience of the portable 
devices.

To detect sleeping time without EEG, most of the 
portable sleep screening devices have used an acceler-
ometer to detect body movements, such as actigraphy- 
based methods.1,2 Actigraphy assumes that wakefulness 
is associated with spontaneous body motions, while sleep 
is associated with no or less movements. Although, acti-
graphy is simple and sensitive to detect sleep periods, its 
specificity to detect wakefulness is low. The same draw-
back exists in similar methods based on analyzing the 
electromyogram of tibialis (leg) or submentalis (chin) 
muscles.3,4 Alternatively, Dafna et al5,6 proposed the ana-
lysis of breathing sounds in patients with respiratory sleep 
disorders for detecting the sleeping periods. In this 
approach, sleep/wakefulness periods were detected by ana-
lyzing the pattern of breathing sounds recorded by an 
ambient microphone in the room. Despite the high overall 
sensitivity of 92.2%, the specificity to detect wakefulness 
was low (56.6%) and the algorithm can be sensitive to the 
ambient noises.

Previously, Soltanzadeh and Moussavi7 used tracheal 
sounds to detect sleep/wakefulness during sleep. Through 
performing higher order statistics analysis, they were able 
to differentiate sleep stages from wakefulness. However, 
they only selected 10 breaths from each state for each 
subject. Although they achieved 100% accuracy over the 
data of 12 individuals, they never validated their algorithm 
on overnight-length data or in larger populations such as 
sleep patients. Especially in sleep apnea patients, fluctua-
tions in the pattern of respiration and body motions can 
affect the performance of sleep detection algorithms. 
Therefore, there is a need to develop and validate robust 
algorithms to detect sleep and wakefulness from full 

overnight sleep data in sleep apnea patients using tracheal 
signals.

Tracheal signals have been extensively used to monitor 
respiration during sleep and assess the severity of sleep 
apnea by estimating AHI.8–17 Tracheal sounds can be 
conveniently recorded using a microphone embedded in 
a portable device attached over the suprasternal notch. 
Recently, we have developed a device called “The Patch” 
to record tracheal respiratory related sounds and move-
ments. As a portable device, The Patch does not include 
EEG; thus, by detecting sleep/wakefulness intervals from 
tracheal signals, it can be used to estimate total sleep time 
and AHI with higher accuracy. The goal of this study was 
to detect sleep/wakefulness by analyzing tracheal sounds 
and movements recorded by the Patch. The detected sleep/ 
wakefulness intervals were used to estimate total sleep 
time and other sleep quality parameters. For validation, 
the detected scores and sleep quality parameters were 
compared to those derived based on EEG and actigraphy.

Materials and Methods
Study Participants and Protocol
Ninety participants aged 18 years and above with sus-
pected sleep apnea, who were referred to the sleep labora-
tory of Toronto Rehabilitation Institute for sleep diagnosis 
were included in this study. We excluded individuals with 
history of tracheostomy or allergy to adhesive medical 
tapes. The study was conducted based on the protocol 
approved by the Research Ethics Board of the University 
Health Network (IRB #: 15-8967). Each individual was 
informed about the purpose of the study and gave written 
consent before participating in the study which was con-
ducted in accordance with the Declaration of Helsinki.

Data Collection
Overnight in-laboratory sleep monitoring using polysom-
nography was conducted. As part of the PSG, EEG and 
electrooculogram were recorded and used to detect sleep 
and wakefulness periods by technicians who were blinded 
to our study. According to the American Academy of 
Sleep Medicine criteria,18 each 30-second epoch of data 
was annotated as sleep (NREM: non-rapid eye movement 
and REM: rapid eye movement) or wakefulness and used 
as the reference labels. Simultaneously with PSG, a wear-
able device, The Patch, which was developed in our 
laboratory,13 was attached over the suprasternal notch 
using double sided tape that none of the participants had 
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any challenge regarding discomfort of The Patch 
(Figure 1). The Patch records tracheal sounds with a one- 
directional microphone (sampling rate = 15 kHz) and 
tracheal-related movements with a 3-dimensional acceler-
ometer (sampling rate = 60 Hz). All the sensors are in 
special housing to minimize recording ambient sounds. 
The Patch data recording was synchronized by a micro-
controller with those of PSG. The microcontroller 
embedded in The Patch restores a pulse every 10 minutes, 
while at the same time, sends a pulse to one of the PSG 
channels.

Data Analysis
The following analyses were implemented in Matlab 
(2016b, MathWorks, Natick, MA, USA) software.

Preprocessing
For preprocessing, recorded tracheal movements in the X, 
Y, and Z directions were filtered using a 5th order zero- 
phase Butterworth band-pass filter (0.1–0.35 Hz) to extract 
the movements related to respiration (0.2–0.33 Hz19). To 
remove baseline swings and high frequency noises, tra-
cheal sound was band-pass filtered by 5th order zero-phase 
Butterworth filter with 70–2000 Hz bandwidth. 
Subsequently, the filtered tracheal movements and sounds 
were segmented using a moving window of 10 seconds 
with 50% overlap. From each segment of data, four fea-
tures from each accelerometer dimension and four features 
from sound (16 features in total) were extracted (Figure 2).

Feature Extraction
For each segment of movement data, the following fea-
tures were extracted:

● Zero crossing rate (ZCR): This feature was calculated 
as the rate of sound energy signal passing its mean 
value level, and then smoothed using a median filter 
with a window size of 2 minutes. ZCR is related to 
respiratory rate as it quantifies the speed of fluctua-
tions normally caused by the alternation of respira-
tory phases in the sound energy signal.

● Baseline movements (BaseLine): To extract this fea-
ture, first, the absolute derivative of movement 
(dMabs) was calculated. dMabs includes abrupt 
spikes caused by body motions that are superimposed 
over the intensity of respiratory movements. 
Accordingly, by smoothing dMabs, BaseLine move-
ment, which is related to the intensity of respiratory 
movements, was derived.

● Body motions: By subtracting the BaseLine from 
dMabs, motion spikes were extracted. Within a 2- 
minute window moving every second, the occurrence 
rate of the motion spikes with amplitude more than 
double the 90th percentile was calculated. The occur-
rence rate was smoothed using 30-second and 1-hour 
windows to calculate features Spike30s and Spike1h, 
respectively.

From each segment of the filtered sound, spectral auto-
correlation was calculated. In the autocorrelation signal, 

Figure 1 The Patch.
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all the local maximums were found as peaks. Then, the 
following features were extracted:

● AuotoCorr. 1st peak: the temporal location of the first 
peak after excluding the zero-lag autocorrelation. The 
feature quantifies the periodicity of the respiratory 
related sound.

● AuotoCorr. SD peaks: the standard deviation of the 
amplitude of the peaks, which accounts for the 
resemblance of the breaths occurring in the segment.

● Hurst exponent: this feature was calculated to quan-
tify the speed of reduction in the resemblance of the 
respiratory phases.20

Finally, the presence of snoring in each epoch, which 
indicated sleep state was extracted. To detect snoring, 
tracheal sound was filtered using a 2nd order zero-phase 
Butterworth bandpass filter with 0.2 to 2000 Hz band-
width. Then, four features including zero-crossing rate, 
power spectral density of the rising slope of zero-crossing, 
sound energy and variance were extracted from the 

segments of sound chosen using a moving window with 
60 ms and 50% overlap. In addition, recorded tracheal 
movements were filtered using 5th order zero-phase high-
pass Butterworth with 5Hz cut-off frequency. Then, the 
variance of the summation of movements in three direc-
tions was calculated within a one-second window every 
0.5 sec. Random Forest was used for snore detection for 
every second.

Figure 3 shows an example of the extracted features 
from tracheal sound and movements.

Machine Learning Algorithm
Based on the extracted features, a support vector machine 
(SVM) with Gaussian kernel was used to classify each 
epoch into sleep or awake, which is known to be less 
sensitive to outliers of the data.21 To avoid overfitting 
and to deal with the imbalanced data in subjects with 
high sleep efficiency (SE) who have very few epochs of 
awake data, subjects were divided into those with SE<80% 
(SEless80%) and SE>80% (SEmore80%). To define train and 
test datasets, 4-fold cross-validation was performed. 

Figure 2 Sleep/wakefulness detection algorithm using tracheal sounds and movements.
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Subjects with (SEless80%) were divided into 4 folds, 3 folds 
were interchangeably used as training data. The combina-
tion of the remaining fold of SEless80% and data from 
subjects in SEmore80% group were used as the test data 
(Figure 4). For each fold of cross-validation, principal 
component analysis (PCA) was performed on the training 
data to reduce the number of features. Among the 
extracted principal components, those with eigenvalues 
less than 0.001 were removed. The remaining components 
were used to train the classifier. To validate the algorithm, 

the classifier was evaluated using the same chosen com-
ponents extracted from the test data. Finally, the results of 
the classifier to identify each epoch into sleep/wakefulness 
were used to assess the quality of sleep and to estimate 
sleep efficiency, total sleep time and sleep latency.

We compared the performance of the proposed algo-
rithm with actigraphy. The accelerometer in The Patch can 
capture body movements. Therefore, extracted movement 
spikes (Spike30s and Spike1h features) were used sepa-
rately to train the same algorithm to simulate the 

Figure 3 Sleep/wakefulness detection using the extracted features from (A) sound and (B) movement for a subject with sleep efficiency of 63.60% (estimated as 63.40%), 
sleep latency of 108 (estimated as 107 min) and total sleep time of 330 min (estimated as 312 min).
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actigraphy method. Similarly, two other models were 
trained using only sound features or movement features 
for more comparison.

Statistical Analysis
Statistical analyses were performed in R (i386 3.4.1) soft-
ware. Shapiro–Wilk test was used for checking the nor-
mality of data. To compare the number of females between 
groups SEless80% and SEmore80%, we used the Chi-square 
test. Welch unpaired t-test or Wilcoxon rank sum test were 
used to compare other characteristics between the two 
groups. Also, t-test was used to compare the estimated 
sleep quality parameters with their PSG-based values. 
Performance of the sleep/wakefulness classification algo-
rithm was quantified by sensitivity (sleep), specificity 
(wakefulness), accuracy, F1-score and Cohen’s Kappa 
(κ). A sample size of at least 73 subjects was calculated 
to maintain a statistical power of 0.80 (α=0.05) to achieve 
κ=0.7 with precision of 0.2 for two states classification for 
each subject, which was less than 90 subjects included in 
this study. One-way Analysis of Variance (ANOVA) was 

used to compare the value of the extracted features across 
wakefulness, REM and non-REM stages. Performance of 
the classification algorithm trained with all the extracted 
features was assessed among healthy participants (AHI<5) 
and those with mild (5≤AHI<15), moderate (15≤AHI<30) 
and severe (30≤AHI) sleep apnea using one-way ANOVA. 
In case of significant differences, Tukey Post-hoc analysis 
was performed. Finally, to assess the amount of agreement 
between PSG-based and estimated sleep quality para-
meters, Pearson or Spearman correlation and Bland- 
Altman plot were performed.

Results
Out of 90 participants recruited for this study, data of two 
participants were excluded due to low quality of sound 
signals and misplacement of The Patch. Hence, a total of 
88 subjects (age: 53±15 years, 42 females) with a body 
mass index (BMI) of 29.6±6.2 kg/m2 with Epworth 
Sleepiness Scale of 8±4 were considered for this study. 
Demographics and sleep quality parameters of the 

Figure 4 Four-fold cross-validation for training and testing the mathematical model. Training was performed using the data of those with sleep efficiency less than 80%. 
Abbreviations: SEmore80%, subset of subjects with sleep efficiency more than 80%; SEless80%, subset of subjects with sleep efficiency less than 80%.
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participants are detailed in Table 1. Forty-three subjects 
had sleep efficiency of less than 80% and 45 subjects had 
sleep efficiency of more than 80%. Age was significantly 
higher in those with sleep efficiency of less than 80% 
(p=0.01). BMI, AHI, and number of females were similar 
between the groups (p>0.1 for all). Subjects with sleep 
efficiency less than 80% had shorter total sleep time 
(p<0.001) and longer sleep latency (p<0.001).

Figure 5 depicts the range of variations in the extracted 
features during wakefulness, NREM and REM sleep. 
Compared to wakefulness, AutoCorr. SD peaks, Hurst 
exponent and ZCR were significantly larger during 
NREM (p<0.001 for all except Hurst exponent with 
p=0.02). In contrast, the values of AutoCorr. 1st peak, 
BaseLine, Spike30s, and Spike1h in all dimensions were 
lower during NREM than during wakefulness (p<0.001 for 
all, Figure 5). The movement related features were signif-
icantly different during REM compared to wakefulness 
(p<0.001), and statistically the same compared to 
NREM. However, among sound features, AutoCorr. SD 
peaks and Hurst exponent were significantly higher during 
REM compared to wakefulness (p=0.03 and p=0.006, 
respectively). Significant lower values of AutoCorr. SD 
peaks were observed in REM to NREM (p<0.001), while 
AutoCorr. 1st peak was significantly higher (p=0.003). No 
significant changes were found between REM and NREM 
in the Hurst exponent.

Using all the extracted features, the accuracy of the 
sleep/wakefulness detection algorithm was 85.04±0.99% 
with κ=0.64±0.02 in the train dataset. In the SEmore80% test 
dataset, the accuracy was 86.20±8.98% with κ=0.50±0.15 
while in the SEless80% test dataset, accuracy was 82.04 
±8.03% with κ=0.58±0.19 (Table 2). Accuracy and 

Cohen’s Kappa score were lower for the other models 
trained using subsets of the features.

Table 3 shows the performance of the proposed detec-
tion algorithm among different AHI groups. While the 
accuracy was slightly less in severe sleep apnea patients 
compared to the healthy subjects (80.41±10.30 vs 86.38 
±6.39), the changes were not significant. However, the 
Kappa score (p=0.005) and specificity (p=0.01) were sig-
nificantly lower in the severe sleep apnea group compared 
to the healthy group.

By comparing the estimated and PSG-based sleep 
quality parameters, no significant differences were found 
in sleep efficiency [75.74 (23.58–98.04) % vs 78.80 
(19.17–97.75) %, p=0.3], sleep latency [15 (0–157) min 
vs 16 (0–159) min, p=0.9] and total sleep time [595 ± 
133 min vs 609±143 min, p=0.5]. Furthermore 
(Figure 6), strong significant correlations were observed 
between the detected and PSG-based sleep efficiency 
(r=0.70, p<0.001), sleep latency (r=0.71, p<0.001) and 
total sleep time (r=0.78, p<0.001).

Discussion
In this study, we developed an algorithm to detect sleep/ 
wakefulness periods using tracheal sounds and move-
ments in patients with sleep apnea. The main findings of 
our study are that: 1) the extracted features from tra-
cheal sounds and movements were significantly different 
between sleep and wakefulness; 2) the proposed algo-
rithm can detect sleep/wakefulness overnight with an 
accuracy of 84.08% and κ of 0.54; and 3) the para-
meters to assess sleep quality based on our proposed 
method were similar to those derived from gold stan-
dard PSG.

Table 1 Demographics and Sleep Structure of Participants

Characteristics Total (N = 88) SE more80% (N=43) SE less80% (N=45) p-value

Female (%) 47.7% 44.2% 51.1% 0.662
Body Mass Index (kg/m2) 29.6 ± 6.2 28.9 ± 5.4 30.3 ± 6.8 0.634

Age (years) 53 ± 15 48 ± 13 57 ± 15 0.014*

AHI (events/hr) 12.6 (0.2–86.7) 11.2 (0.2–83.7) 13.9 (0.4–86.7) 0.406

Sleep efficiency (%) 76.5 ± 15.1 88.3 ± 5.5 65.1 ± 12.3 <0.001*
Sleep latency (min) 12 (0–147) 8 (0–42) 23 (0 −147) <0.001*

Total sleep time (min) 334 (86–476) 380 (293–477) 240 (86–371) <0.001*

Epworth sleepiness scale 8 ± 4 8 ± 4 8 ± 5 0.923

Notes: Values are reported as mean ± standard deviation in case of normality; otherwise median (minimum – maximum) are reported. *p value <0.05. 
Abbreviations: SE more80%, subset of subjects with sleep efficiency more than 80%; SE less80%, subset of subjects with sleep efficiency less than 80%; AHI, apnea/hypopnea 
index.
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The proposed algorithm is the first to detect sleep/ 
wakefulness states in full-night data including tracheal 
sounds and movements. It was successful to detect sleep 
and wakefulness epochs with high sensitivity (sleep detec-
tion) and specificity (wakefulness detection). This work 
was presented at the World Sleep congress 2019 as an 
abstract presentation with interim findings. The poster’s 
abstract was published in Sleep Medicine [doi: 10.1016/j. 
sleep.2019.11.740]. Most of the previous studies on sleep/ 

wakefulness detection have reported high sensitivity and 
accuracy, but with low value or no results for specificity. 
This was due to the imbalanced higher portion of sleeping 
epochs in the data recorded during the sleep test that 
challenged the learning algorithms. In this study, to over-
come the imbalanced nature of the sleep/wakefulness data, 
subjects were categorized into two groups based on the 
sleep efficiency cut-off of 80%. Higher sleep efficiency is 
associated with fewer wakefulness periods. Thus, subjects 

Figure 5 Comparison of various features extracted from (A) tracheal sound and (B) movements during wakefulness with NREM and REM. Box plots demonstrates median, first 
and last quartiles.  
Abbreviations: AutoCorr. 1st peak, the average temporal location of the first peak in autocorrelations calculated over epochs; AutoCorr. SD peak, the average SD of the 
autocorrelations peaks; ZCR, zero-crossing rate; NS, not significant.

Montazeri Ghahjaverestan et al                                                                                                                                   Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                       

Nature and Science of Sleep 2020:12 1016

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


with high sleep efficiency were excluded from the training 
dataset. Based on this approach, we were able to improve 
specificity by 20% (SPC=71.44%), with a sensitivity of 
87.86% and robustness in different AHI groups.

Respiratory patterns can change from wakefulness to 
sleep due to the reduction in the respiratory drive and 
activity of pharyngeal dilator muscles, which results in 
shallower and more regular breathing patterns.22,23 The 
studies conducted by Dafna et al5,6 showed that the shapes 
of respiratory sounds recorded by a non-contact ambient 
microphone as quantified by autocorrelation are more 
identical (higher periodicity) during consecutive breaths 
in sleep than those during wakefulness. They obtained 
sensitivity of 92.2%, but low specificity of 56.6% for 
sleep/wakefulness detection with κ of 0.51.5 In another 
study,6 they were able to improve the learning algorithm 
and obtained average accuracy of 91.7% and κ of 0.68, 

however they have not reported the performance of the 
algorithm in detecting sleep and wakefulness separately. 
This information is important, since sleep apnea patients 
often have fragmented and less efficient sleep. 
Furthermore, the quality of ambient microphone can be 
deteriorated by ambient noises in home settings.

In contrast, other studies have shown that the respira-
tory related sounds recorded over the trachea are more 
robust against interfering noises,12,24 while their energy 
is highly correlated to the pattern of respiratory airflow.25 

Due to the special housing of the one-directional micro-
phone used to record tracheal sounds, they are less sensi-
tive to ambient noises24 compared to non-contact methods 
to record breathing sounds. Also, close placement of the 
sensor to the source of vibrations in the airway caused by 
respiratory cycles increases the signal to noise ratio and 
makes tracheal sounds less sensitive to the quiet breathing.

Table 2 Performance Comparison of the Proposed Sleep/Wakefulness Detection Algorithm and the Method Based on Spontaneous 
Body Movements

SEN (Sleep) SPC (Awake) F1 ACC Κ

Movement features Train data SEless80% 91.41 ± 1.18 62.13 ± 3.46 85.35 ± 0.57 81.57 ± 0.35 0.55 ± 0.02
Test data SEless80% 88.78 ± 10.79 60.09 ± 19.48 83.28 ± 11.55 78.82 ± 10.07 0.49 ± 0.22

SEmore80% 89.33 ± 7.23 66.67 ± 20.15 91.69 ± 4.42 86.34 ± 6.50 0.46 ± 0.16

All 89.05 ± 9.18 63.31 ± 19.97 87.39 ± 9.73 82.49 ± 9.27 0.48 ± 0.20

Sound features Train data SEless80% 78.99 ± 2.61 68.03 ± 1.39 78.89 ± 1.80 75.89 ± 1.58 0.46 ± 0.03
Test data SEless80% 78.73 ± 16.42 78.73 ± 18.29 78.93 ± 12.45 75.85 ± 9.52 0.46 ± 0.19

SEmore80% 77.93 ± 18.06 68.52 ± 19.87 84.02 ± 14.02 76.88 ± 18.06 0.33 ± 0.16

All 78.34 ± 17.15 68.47 ± 18 81.42 ± 13.41 76.35 ±12.58 0.40 ± 0.19

Spike30s + Spike1h Train data SEless80% 90.89 ± 1.18 54.15 ± 1.68 82.97 ± 1.41 77.60 ± 1.20 0.47 ± 0.02
Test data SEless80% 90.36 ± 7.63 54.52 ± 19.48 82.71 ± 11.10 77.23 ± 10.31 0.46 ± 0.20

SEmore80% 89.15 ±6.88 65.15 ± 21.09 91.51 ± 3.76 85.87 ± 5.70 0.43 ± 0.18

All 89.77± 7.2 59.71 ± 20.86 87.01 ± 9.41 81.45 ± 9.40 0.45 ± 0.19

All the features Train data SEless80% 90.50 ± 1.60 72.89 ± 1.75 87.56 ± 1.36 85.04 ± 0.99 0.64 ± 0.02

Test data SEless80% 87.72 ± 11.24 69.87 ± 18.29 85.10 ± 10.45 82.04 ± 8.03 0.58 ± 0.19
SEmore80% 88.02 ± 10.56 73.10 ± 18.81 91.31 ± 6.76 86.20 ± 8.98 0.50 ± 0.15

All 87.86 ± 10.85 71.44 ± 18.51 88.13 ± 9.33 84.08 ± 8.36 0.54 ± 0.18

Note: The results are reported as mean ± standard deviation. 
Abbreviations: SEN, sensitivity; SPC, specificity; F1, F1 score; ACC, accuracy; κ, Cohen’s kappa coefficient.

Table 3 Performance Evaluation of the Sleep/Wakefulness Detection Algorithm in Different AHI Groups

AHI Group N SE (%) SEN (Sleep) SPC (Awake) F1 ACC κ

AHI < 5 27 78.3 ± 13.1 89.34 ± 6.78 78.23 ± 15.57 90.44 ± 5.47 86.38 ± 6.39 0.60 ± 0.14

5 ≤ AHI <15 20 75.5 ± 14.7 87.73 ± 9.22 69.58 ± 22.14 87.92 ± 5.96 82.94 ± 7.63 0.52 ± 0.19
15 ≤ AHI < 30 21 76.6 ± 14.5 87.62 ± 12.24 73.32 ± 17.78 88.34 ± 9.02 83.82 ± 9.02 0.56 ± 0.19

AHI ≥ 30 20 74.8 ± 18.9 84.09 ± 16.07 61.56 ± 17.42* 83.41 ± 15.85 80.41 ± 10.30 0.43 ± 0.18*

Notes: SE was statistically similar across AHI groups. *Adjusted p-value <0.05 compared to healthy group (AHI<5). The results are reported as mean ± standard deviation. 
Abbreviations: AHI, apnea/hypopnea index; SE, sleep efficiency; SEN, sensitivity; SPC, specificity; F1, F1 score; ACC, accuracy; κ, Cohen’s kappa coefficient.
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Figure 6 Agreement analyses between estimated and PSG-based measures of sleep quality. Line with gray shades represents least square line with confidence interval (CI) of 
95%. (A and D) sleep efficiency assessed by Spearman’s rank correlation with CI = (0.58–0.80). (B and E) sleep time assessed by Pearson’s product-moment correlation with 
CI = (0.68–0.85). (C and F) sleep latency assessed by Spearman’s rank correlation with CI = (0.61–0.81).
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To analyze the respiratory patterns, autocorrelation of 
tracheal sound energy was extracted in this study. 
Moreover, from the calculated autocorrelation of tracheal 
sounds, the Hurst exponent was extracted. In a study by 
Soltanzadeh and Moussavi,7 the Hurst exponent of the 
bispectrum of tracheal sound was found to be higher across 
sleep stages than during wakefulness and can be used for 
differentiating sleep from wakefulness with 100% accuracy. 
However, their study was applied on a limited number of 
segments and its performance was not assessed on over-
night data or on sleep apnea population. One reason could 
be high computational cost of bispectrum calculation for 
long overnight data. Therefore, in this study, the Hurst 
component was calculated from the autocorrelation of 
sound energy. In-line with the findings in Soltanzadeh and 
Moussavi,7 the Hurst exponent was higher during sleep 
indicating a more regular pattern of breathing compared to 
wakefulness. However, unlike the finding in Soltanzadeh 
and Moussavi,7 no significant difference was found 
between REM and NREM of full-night data.

Sleep/wakefulness stages can affect the respiratory related 
movements recorded over the chest or the trachea. In this 
study, changes in respiratory related tracheal movements 
were quantified by ZCR and BaseLine. Compared to wakeful-
ness, ZCR demonstrated higher values during sleep, presum-
ably due to more regular breathing. On the other hand, 
increase in the BaseLine feature during sleep indicated higher 
intensity in respiratory related movements (Figure 3). Despite 
the increase in the baseline during sleep, the average value of 
the BaseLine feature was higher in wakefulness (Figure 5) 
than sleep, since there were abrupt spikes in the accelerometer 
signal during wakefulness due to body motions.

In healthy populations, body motions are at a minimum 
level during sleep. These motions have been analyzed for 
sleep detection in the studies based on actigraphy with 
sensitivity of more than 90%, but specificity less than 
55%.1,26,27 Low specificity in actigraphy is mostly due to 
intervals when the subject is awake with no motion. Also, 
in individuals with sleep apnea, actigraphy can find lots of 
movements during sleep caused by the presence of apneas/ 
hypopneas that can mistakenly be scored as wakefulness. 
A combination of actigraphy with other features such as 
heart rate variability may improve the accuracy of sleep/ 
wakefulness detection.28–30 Our proposed method extracts 
features from body movement which are recorded by 
tracheal movements (Spike30s and Spike1h features) to 
simulate actigraphy features. The importance of these 
results is that a combination of body movement with 

respiratory related sounds that can be recorded over the 
trachea by a portable and convenient sleep screening 
device can have significant clinical applications beyond 
sleep detection, such as assessment of respiration and 
severity of sleep apnea. Moreover, the analysis based on 
only body motion features resulted in lower accuracy 
compared to the model trained by a combination of body 
motion features with those related to the respiratory 
sounds. In a study on sleep detection by Kalkbrenner 
et al,31 tracheal sounds were used in combination with 
actigraphy over the chest. Despite comparable sleep detec-
tion accuracy and ability to assess respiration with our 
study, they used more complex hardware settings includ-
ing a microphone over the neck, chest bands, and connect-
ing wires. Embedding the accelerometer along with the 
microphone in one casing, The Patch presents a more 
convenient recording of tracheal signals.

The main limitation of this study is that misplace-
ment of the wearable device over the neck reduces the 
signal quality, which affects the performance of the 
detection algorithm. This happened in the data collec-
tion of two (out of 90) participants in our study. Another 
limitation is related to the BaseLine feature. Based on 
our observations, BaseLine represents the effect of 
respiratory related movements superimposed by body 
motions. Further analyses are required to decompose 
these two effects and analyze them separately. This 
could be incorporated in addressing another limitation 
of this study on differentiating between different sleep 
stages. In previous studies, sleep stages were detected 
overnight by Dafna et al5,6 using an ambient micro-
phone and in a few short segments of sleep using 
tracheal sound by Soltanzadeh and Moussavi.7 In this 
study, significant changes were found between REM and 
other states only in sound features. More in-depth ana-
lysis to differentiate various sleep stages should be 
addressed in future studies. For example, low frequency 
and high frequency components of heart rate are known 
to change from wakefulness to sleep and across sleep 
stages.21,32,33 Heart sounds can be osculated over the 
trachea.9 In future studies, we will analyze the tracheal 
heart sound for accurate extraction of heart rate and 
relevant features for sleep staging. Finally, this algo-
rithm was evaluated on a population that was referred 
to the sleep laboratory for sleep apnea assessment. 
Further studies are needed to assess the proposed algo-
rithm in a wider population.
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Conclusion
This is the first algorithm developed for detecting sleep/ 
wakefulness over full-night sleep data as the combination 
of tracheal sounds and movements in a population includ-
ing individuals with sleep apnea. Sleep apnea is an under- 
diagnosed disorder with adverse societal and clinical out-
comes such as higher rates of car/work accidents,34,35 

cardiovascular problems36 and neurocognitive deficits.32,37 

Developing portable devices can facilitate the diagnosis of 
sleep apnea. In this regard, extracting total sleep time can 
significantly improve the performance of the portable 
devices to estimate AHI and sleep quality parameters, 
such as sleeping efficiency. Accurate estimation of sleep-
ing time can increase the accuracy of estimated AHI 
especially in individuals with low sleep efficiency. The 
results of this study combined with our previous studies 
for estimating AHI based on tracheal sounds provide 
strong evidence that the proposed modality can be used 
to develop robust portable devices for monitoring sleep- 
related breathing disorders.
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