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Abstract: Obstructive sleep apnea (OSA) is a common and heterogeneous disease characterized 
by episodic collapse within the upper airways, which leads to reduced ventilation and adverse 
consequences, including hypoxia, hypercapnia, sleep fragmentation, and long-term effects such as 
cardiovascular comorbidities. The clinical diagnosis of OSA and its severity classification are often 
determined based on the apnea–hypopnea index (AHI), defining the number of apneic and 
hypopnea events per hour of sleep. However, the limitations of the AHI to assess disease severity 
have necessitated the exploration of other metrics for additional information to reflect the complex-
ity of OSA. Novel parameters such as the hypoxic burden have the potential to better capture the 
main features of OSA by maximizing the information available from the polysomnogram. These 
emerging measures have described multidimensional qualities of sleep-disordered breathing events 
and breathing irregularity and will ultimately result in better management of OSA. 
Keywords: obstructive sleep apnea, apnea–hypopnea index, disease severity, hypoxic 
burden, polysomnogram

Introduction
Obstructive sleep apnea (OSA) is a highly prevalent and heterogeneous disorder char-
acterized by repeated pharyngeal collapse, resulting in episodic reduced ventilation that 
causes blood gas exchanges to be disrupted and subsequent hypoxia, hypercapnia, and 
sleep fragmentation.1–3 Global prevalence data show almost 1 billion patients with OSA,4 

predominantly in China, followed by North and South American countries, such as the 
United States and Brazil. The total cost of OSA in the United States in 2015 was 
12.4 billion dollars, whereas data from resource-poor countries have not yet been collated. 
Among the many health concerns inherent to OSA, comorbidities such as cardiometa-
bolic disorders and neurocognitive complications are the long-term consequences of the 
lack of precise management strategies for OSA.5 The high prevalence and socioeconomic 
impact of this disorder necessitate that all nations—both resource-rich and developing 
countries—make substantial efforts to address this issue.6,7 The current goal for health- 
care systems internationally is to concentrate on providing universal diagnostic tools and 
effective treatment for OSA to achieve a positive impact on global health.8

As the understanding of physiological characteristics of sleep disturbance has 
advanced, the apnea–hypopnea index (AHI) is the tool used most commonly to diagnose 
and categorize the disease severity of OSA, and use of the AHI is a common practice in 
most studies.9–12 However, the AHI has several important limitations: poor correlation of 
the AHI with clinical manifestations of OSA such as excessive daytime sleepiness, which 
may be measured both subjectively and objectively;13,14 consequences resulting from the 
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cardiovascular disease (CVD) risks that cannot be predicted 
precisely by the AHI;15 and the increased risk of hypertension 
in patients with OSA with a higher AHI score, but no further 
positive relationship for an AHI score >15.16 All of these 
weaknesses lead to questioning the extensive use of this metric 
as a major strategy to evaluate OSA.17,18

The poor performance of the AHI may result from it 
lacking the capacity to reflect the respiratory event duration 
and extent, the arousal threshold, sleep fragmentation, and 
other pathophysiological elements. For example, 
a respiratory event with a 2-minute duration has a totally 
different physiological impact on patients with OSA than 
events lasting only 20 seconds. Thus, limited information 
provided by the AHI may be the reason that a large clinical 
trial (the Sleep Apnea cardiovascular Endpoints trial) showed 
no CVD benefit from treatment with continuous positive 
airway pressure (CPAP) among individuals selected based 
on the AHI score,19,20 although the ASAP-HF Pilot Trial 
compared standard of care therapy for acute decompensated 
heart failure versus addition of PAP therapy in patients with 
concomitant OSA, and found pulmonary hypertension was 
reduced with addition of PAP therapy.21

Undoubtedly, OSA has a strong relationship with diverse 
poor health outcomes, including cardiometabolic events, sys-
temic hypertension, neurocognitive impairment, and all-cause 
mortality.22–24 Intense disagreements have arisen within the 

science community on whether the diagnosis and treatment of 
this complex disease should be based solely on one parameter 
that displays only apnea and hypopnea polysomnogram (PSG) 
frequencies to the exclusion of more revealing data, such as 
the duration, magnitude, and distributions of oxygen desatura-
tion in different sleep stages. Nevertheless, these other sleep 
traits have not been fully used in various versions of clinical 
practice guidelines or for expert consensus.25

This review aims to summarize the existing and emer-
ging methods that quantify the severity of OSA beyond the 
data provided by the AHI score, based on a comprehensive 
exploration of the literature (Table 1), and to establish 
a broader vision to understand the pathophysiological 
diversity of OSA and its various susceptibilities.

Conventional Methods for PSG 
Data Analysis
Lowest Oxygen Saturation, Time Spent 
with Oxygen Saturation <90%, and 
Oxygen Desaturation Index
Obtaining just AHI from a PSG containing rich physiologi-
cal data is as unacceptable as getting just the details of 
forced expiratory volume in one second (FEV1) from 
a complicated lung function test report, thus concern is 
growing regarding the loss of capturing other data. This 

Table 1 Polysomnographic Metrics of Measuring Severity of OSA

Classification Metrics Pathophysiological Backgrounds Complications Associated with OSA

Conventional and 
widely used

AHI intermittent hypoxia EDS,13,14 CVD and all-cause mortality,15 hypertension16

ODI, T90, LSpO2 subclinical atherosclerosis,25 all-cause mortality in HF,26 

postoperative complications27–29

SIT hypoxemia in sleep disorders34

Novel and 

promising

Hypoxic burden intermittent hypoxia CVD mortality,15 BP,35 and risk of incident HF36

Obstruction severity CVD and all-cause mortality42

hypoxia load CVD risk,44 BP45

Emerging and 
potential

ApEn of oxygen 
saturation

indirect metric, mainly quantification 
of data regularity

Hypoxemia,48,49 Associated with AHI60

flow:drive ratio pharyngeal obstruction

CPC, HRV, ORP sympathetic activation, arousability effect of CPAP titration,54,58 CVD risk52,57

Expiratory time 

constant

product of airway resistance and 

lung compliance

severe sleep apnea61

Abbreviations: OSA, obstructive sleep apnea; AHI, apnea–hypopnea index; ODI, oxygen desaturation index; T90, time spent with oxygen saturation <90%; LSpO2, lowest 
oxygen saturation; SIT, saturation impairment time; ApEn, approximate entropy; CPC, Cardiopulmonary coupling; HRV, heart rate variability; ORP, odds ratio product; EDS, 
excessive daytime sleepiness; CVD, cardiovascular disease; HF, heart failure; BP, blood pressure; CPAP, continuous positive airway pressure.
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information includes an evaluation of nocturnal hypoxemia 
related to apnea and hypopnea, such as the time spent with 
oxygen saturation <90% (T90) or 80% (T80), the lowest 
oxygen saturation (LSpO2), and the oxygen desaturation 
index (ODI), which is calculated as the frequency of desa-
turation events that is determined by a ≥3% or 4% decrease 
in peripheral oxygen saturation (SpO2) from the baseline.

Several observational studies26–33 have demonstrated 
these oxygen measures to be effective or even superior to 
the AHI in predicting adverse CVD outcomes and all-cause 
mortality. For example, more serious hypoxemia (defined as 
T90 ≥0.64%) was associated with subclinical atherosclerosis 
when crudely regarding T90 as a dichotomized variable.26 

Another study indicated that T90 was independently asso-
ciated with increased all-cause mortality in patients with 
heart failure as a chronic stable condition.27 A study claimed 
that hypoxemic burden measured by T90 was demonstrated 
to be more predictive for mortality than AHI and should be 
considered a key metric for therapies used to treat central 
sleep apnea.28 Previous studies revealed that oximetry para-
meters, including T90, ODI, and LSpO2, may play a role in 
predicting the postoperative complications after upper air-
way operations, bariatric surgery, and cardiac surgery in 
patients with OSA29–31 and may provide information for 
risk stratification. A study exploring the relationship between 
OSA and diabetes-related complications showed that ODI 
was associated significantly with a decline in estimated glo-
merular filtration,32 whereas another study of patients with 
OSA and diabetes mellitus found a relationship between 
LSpO2 and hyperglycemia.33

An important caution is that these metrics derived from 
desaturation signals related to corresponding respiratory 
events are not specific to OSA causing intermittent hypox-
emia—they also characterize chronic airway diseases, 
such as chronic obstructive pulmonary disease, leading to 
persistent hypoxemia. In addition, whether the specific 
cut-off point of oxygen desaturation should be 3% or 4% 
remains controversial to some extent, because a different 
definition results in a significant variation in findings.34

Another weakness of these metrics in terms of applica-
tion is that the diagnostic and classification thresholds seem 
arbitrary, such as ODI3% and ODI4%, T90 ≥0.64%, and 
T90 ≥10%.20,26,34 In addition, an inherent limitation of 
these derived variables is that they focus only on some of 
the major pathophysiological traits of OSA—oxygen dura-
tion, extent, and frequency—and inevitably ignore other 
elements, thus falling short of capturing the overall features 

of OSA and eventually failing to serve as a perfect marker 
in clinical practice.

Saturation Impairment Time
An early established parameter, the saturation impair-
ment time (SIT) index, was calculated as an area under 
the desaturation curve by integrating the time and degree 
of desaturation below certain levels.35 A study compar-
ing the validity of the SIT index and time spent with 
oxygen saturation lower than various levels such as 90% 
(T90) or 80% (T80) for the quantitative evaluation of 
hypoxemia in sleep disorders, showed that the SIT score 
correlated well with T90 and T80. These results suggest 
that the SIT index may provide additional quantitative 
information to determine the severity of hypoxemia 
beyond the AHI.36 Nevertheless, the use of the SIT 
index was assumed to have approximately the same 
inherent defects as T90 or ODI, and thus, to date, only 
limited literature is available for the SIT index, resulting 
in insufficient advances in this field.

Novel and Promising Parameters in 
Reinventing the Use of PSG
Hypoxic Burden
A recent study exhibited a novel parameter termed the 
hypoxic burden, which is determined as the average area 
under the desaturation curve associated with each respiratory 
event.15 The area under the pre-event baseline was calculated 
within a specific search window obtained from overlying 
oximetry signals with respect to the end of each oxygen 
desaturation event. These data can be visualized as 
a triangle, with the desaturation duration and depth assumed 
to be the base and height, respectively. The hypoxic burden 
can then be approximately equal to the multiplication of the 
AHI score and the area above the desaturation curve, thus 
achieving an integration of the duration, depth, and fre-
quency of respiratory-related events. The hypoxic burden 
was demonstrated to be associated with an increased CVD 
mortality among adults aged >40 years in two cohort studies 
(the Outcomes of Sleep Disorders in Older Men [MrOS] and 
the Sleep Heart Health Study [SHHS]) adjusted for multiple 
covariates, including the AHI.15 In addition, a higher blood 
pressure37 and the risk of incident heart failure in men38 were 
demonstrated to be associated with this hypoxic burden after 
adjusting for confounding factors such as comorbidities.

Compared with a single-trait measure such as the AHI 
score, this emerging algorithm to quantify the hypoxemia 
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burden has provided a novel solution to measure the ven-
tilatory disturbance and has made great progress in solving 
the mystery of the pathophysiology and multisystem out-
comes of sleep-disordered breathing.39 In addition, the 
hypoxic burden may serve to identify patients who may 
benefit from CPAP and bariatric surgery.15 A limitation of 
the hypoxic burden identified was that while apnea and 
hypopnea events have been identified on sleep measures, 
no distinction was ever made between the obstructive and 
central sleep disturbances regardless of associated oxygen 
desaturation, and obstructive apnea and hypopnea were 
incorporated with equal weights. In addition, the algorithm 
of the hypoxic burden does not reflect the duration of 
respiratory events, which is a weakness of this sleep mea-
sure because it is unclear whether these impressive find-
ings would remain significant after considering the event 
duration. This point is an important consideration because 
a study has already indicated that respiratory events of 
short duration may be more effective in predicting all- 
cause mortality than longer-duration events.40

Obstruction Severity
Similar to the hypoxic burden, a novel parameter termed 
obstruction severity is determined as a sum of the product 
of each respiratory event-associated area above the desa-
turation curve and the duration of the corresponding 
apneic or hypopnea event, then normalized with the total 
sleep time.41 Where this metric differs from the hypoxic 
burden is that it considers the obstruction duration; thus, it 
captures a wider range of pathophysiological traits, includ-
ing both the duration and the frequency of obstruction and 
desaturation events, plus the depth of desaturation, making 
it a virtually better measure with preferable prospects for 
application.42 Based on the results of assessment for 
obstruction severity, Muraja-Murro et al found that the 
values for this derived variable were higher in the 
deceased and in patients with severe OSA with an AHI 
score ≥30 versus the control group of alive patients with 
matched AHI scores. Using multiple logistic regression 
analysis, these findings demonstrated that obstruction 
severity—not the AHI—was the only index related to all- 
cause mortality in patients with severe OSA.43 In addition, 
the decrease in obstruction severity was as not remarkable 
as the decrease in the AHI score when treating patients 
with OSA with weight loss, which suggests that weight 
loss may not be an intervention that is as significant as the 
AHI indicates to reduce the severity of OSA.44 Thus, the 
dependence on a single sleep metric such as the AHI to 

judge the efficacy of weight loss to manage OSA may 
present the risk of overestimation. For better clinical prac-
tice, the obstruction severity was further converted to an 
adjusted AHI score to advance its use for diagnosis and as 
a severity measure of OSA with the same classification 
threshold as the conventional AHI.45 With this approach, 
the adjusted AHI led to a significant redistribution of OSA 
severity, causing a higher risk of CVD and all-cause mor-
tality in patients with OSA with moderate and severe 
disease versus patients with the same severity categories 
based on the conventional AHI. Therefore, the method- 
adjusted AHI serves as a better metric to provide addi-
tional and more accurate information than the conven-
tional AHI score alone in recognizing the risk of OSA- 
related complications such as CVD and all-cause 
mortality.45

To further clarify the definition of obstruction severity, 
the end of respiratory event-associated desaturation was 
determined as the area up to the last moment before the 
recovery of oxygen saturation. The ventilatory disturbance 
is better characterized if both the desaturation and recov-
ery periods were incorporated in the obstruction severity 
calculation. In addition, the hypopnea events calculated in 
obstruction severity were scored following the rule that 
only ≥4% desaturation from the baseline met the criteria, 
leaving a smaller degree of desaturation excluded.43,46 

However, the risk of self-reported CVD has been sug-
gested to be related more to hypopnea with ≥4% desatura-
tion than <4% desaturation.5 Thus, the obstruction severity 
may result in a modest underestimation of disease severity 
in OSA.

Hypoxia Load
A third novel parameter termed hypoxia load was designed 
to measure the nocturnal hypoxemic burden to better clas-
sify the severity of OSA. This sleep measure was used in 
a prospective observational study47 showing a crude cor-
relation between the hypoxia load—but not the AHI as an 
event-based metric—and the epicardial fat volume deter-
mined as a marker of CVD risk, although a causal effect 
has not yet been established. The hypoxia load was defined 
as a sum of the integrated area of all desaturation events 
using a trapezoidal rule, which differs slightly from the 
algorithm for the hypoxic burden as described previously. 
The hypoxia load was also demonstrated to be a promising 
marker of and a potential treatment target for blood 
pressure,48 which suggests that further studies are 
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expected to illustrate the effect of the hypoxia load as 
a severity measure in predicting OSA outcomes.

In general, these new parameters, with a different per-
spective on PSG data, may provide more comprehensive 
information related to sleep-disordered breathing so that 
the intrinsic property of the physiological stress in OSA 
may be better assessed. However, their current use is 
limited by some details awaiting more evidence before 
reaching a consensus.

Emerging Potential Markers 
without Specific Quantification
Approximate Entropy
A new method called approximate entropy (ApEn), which 
is based on chaos theory, was evaluated in several clinical 
studies on CVD complications. The ApEn approach repre-
sents a quantification of biological regularity in time series 
data.49 A smaller ApEn value corresponds to regularity 
and predictability, whereas a larger value indicates com-
plexity and variability. In a recent study,50 Nakayama et al 
suggested that an ApEn value of chest respiratory move-
ments was associated with a supine AHI score in patients 
with OSA with multiple system atrophy. In another study, 
the ApEn of oxygen saturation was demonstrated to be 
related to the AHI, ODI, and T90.51 In addition, a study on 
the correlation between the ApEn of oxygen saturation and 
the AHI based on analysis of oximetric data concluded 
that ApEn may be a useful approach in diagnosing OSA.52 

Moreover, studies on ventilatory instability in OSA53,54 

revealed that breathing irregularity may be an outcome 
of sleep-disordered breathing, because breathing instability 
improved after treating patients with OSA with CPAP. 
These findings suggest that ApEn may be a promising 
method for clinical assessment and as a target for manage-
ment, especially with CPAP. Despite the substantial 
strength of this method, ApEn has the limitation that 
none of the physiological features of OSA, such as dura-
tion, frequency, and extent of desaturation, were consid-
ered when this new index was calculated. Before use in 
clinical practice, issues regarding the accuracy, practical-
ity, and other aspects of ApEn remain to be resolved.

Cardiopulmonary Coupling, Heart Rate 
Variability, and Odds Ratio Product
An electrocardiogram (ECG)-based method has raised 
extensive attention after use in many studies to characterize 
the coupling of heart rate variability (HRV) and ECG- 

derived respiratory fluctuations and quantify the relative 
sleep quality as stable (high-frequency coupling, HFC) or 
unstable (low-frequency coupling, LFC), thus termed car-
diopulmonary coupling (CPC).55 This measure was proven 
to be correlated with objective sleep quality.56 In addition, 
in one study, an increased HFC and decreased LFC were 
seen in a CPAP group, but not in the matched control 
group,57 suggesting that CPC plays a potential role in 
reflecting and monitoring therapeutic effects for patients 
with OSA. Also, CPC may be a promising marker of mea-
suring severity and a target for treatment response.

The HRV, defined as the fluctuation of RR intervals on 
an ECG, reflects the autonomic variation in the nervous 
system.58 The time domain and frequency domain of HRV 
can be used to analyze autonomic nervous system activity. 
Abnormal HRV occurs when the autonomic nervous sys-
tem function is impaired during OSA.59 Analysis of HRV 
showed that abnormal HRV predisposes the patient to 
CVDs,60 such as acute myocardial infarction. A recent 
study found that, compared with patients without OSA, 
the time domain of HRV decreases and the frequency 
domain increases in patients with OSA, and CPAP treat-
ment reversed these changes in HRV. Therefore, the study 
concluded that HRV may help diagnose OSA and evaluate 
the effectiveness of CPAP treatment.61

Finally, the odds ratio product (ORP), determined as 
a continuous index of measuring the sleep depth extrapo-
lated from the spectrum of an electroencephalogram 
(EEG), has correlations with arousability.62 In another 
study, compared with participants with moderate-to- 
severe or no OSA, higher rapid eye movement (REM) 
ORP was more strongly (and negatively) associated with 
systolic blood pressure.37 Thus, ORP may serve as 
a potential marker for CVD risk in patients with OSA.55

However, the CPC, HRV, and ORP, as well as some 
other newly developing techniques, still need to be 
strengthened because of their lack of specific criteria for 
diagnosis, severity evaluation, and indications for mana-
ging OSA.

Flow:Drive Ratio
One study quantified the severity of pharyngeal obstruc-
tion by using a continuous variable termed the flow:drive 
ratio, based on the features of flow shape in an individual 
breath during PSG.63 This feature varied widely among 
patients with OSA independent of the AHI score, although 
an association was observed between flow:drive and the 
AHI. Considering that this emerging metric concentrates 
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mostly on the morphology of OSA without considering its 
major pathophysiological mechanisms, the role of the 
flow:drive ratio in the sequelae of OSA remains to be 
explored.

Expiratory Time Constant
The expiratory time constant (ETC), which reflects the 
tempo of pulmonary emptying in the lung mechanics, was 
captured based on the nasal pressure signal in PSG for 
patients with OSA with the overlap syndrome.64 The AHI 
score was greater for patients with an ETC >0.5 seconds 
than patients who had an ETC ≤0.5 seconds. A larger ETC 
value was associated with an approximately 11-fold increase 
in the risk of severe sleep apnea (odds ratio 10.6, 95% 
confidence interval 3.9–51.1, p = 0.005), suggesting a role 
for this metric to be used in the classification and manage-
ment of OSA. Further research is warranted to explore more 
specific applications in evaluating the overall severity and 
predicting the sequelae of OSA.

Integrated Grading System for OSA 
Severity
As heavy reliance on a single trait in OSA to evaluate the 
disease severity may result in underestimation or misjudg-
ment, a new multidimensional model to assess OSA disease 
severity has been elaborated.65 The frequency of respiratory 
events and the related acute systemic effects, such as T90, 
arousals, and, of equal importance, the long-term organ 
impact of OSA (e.g. hypertension, CVD, insulin resistance), 
were included in a three-dimensional model. The three- 
dimensional volume represents a synthetic analysis of sever-
ity to better adapt to the uses for clinical management.

A refined ABCD evaluation tool was also proposed based 
on the multi-element grading system that considers both organ 
damage and signs and symptoms, such as the Epworth 
Sleepiness Scale score, dozing episodes, self-assessed hyper-
somnia, and vigilance test results (Figure 1),65,66 similar to the 
approach in the global strategy for chronic obstructive pul-
monary disease.67 The development and validation of biomar-
kers for these observable characteristics in OSA may be one of 
the priorities for future research.

Deep Learning/Machine Learning
Deep learning (DL) is a subset of machine learning and 
consists of various analysis methods including convolu-
tional neural networks (CNNs) and long short-term mem-
ory (LSTM). The DL approach has been applied to 

medical settings and language processing and can extract 
the rich data contained in PSG and automatically finish 
sleep staging.68 A study using three DL methods (CNN, 
LSTM, CNN + LSTM) to estimate the AHI69 demon-
strated the correlation r value between the gold standard 
AHI with an estimated value of 0.84, which showed that 
this system may serve as a convenient tool for a home- 
based sleep apnea test (HSAT). The HSAT is expected to 
be more efficacious and cost effective and to eventually 
play a crucial part in quantifying OSA in the future. Other 
studies have also used the DL model to predict sleep 
disorders in an asthma cohort70 and to predict nocturnal 
blood pressure in patients with OSA.71 With the rapid 
development of DL, it will not be long before DL methods 
are used widely in clinical practice.

Conclusion
It is unacceptable to acquire nothing but the AHI data 
from the massive amount of information stored in the 
PSG. Although conventional measures such as the AHI 
share serious limitations in various respects, novel para-
meters, such as the hypoxic burden and obstruction 
severity, are incorporating significantly more information 
on multidimensional traits of hypoxemia and desatura-
tion during ventilatory disturbance. Thus, these methods 
are better in capturing the physiological stress and mor-
phology in OSA and in predicting the outcomes of var-
ious conditions related to OSA. However, deficiencies 

Figure 1 A refined ABCD evaluation tool based on the multielement grading 
system for OSA severity. 
Note: A patient is considered to presented with minor symptoms (score 0) if all results 
are negative (Epworth Sleepiness Scale < 9, no dozing episodes or hypersomnia, negative 
vigilance test), or severe symptoms (score ≥ 1) if any of these tests are positive. The 
minor end organ impact means that the following diseases, including arterial hyperten-
sion, atrial fibrillation, heart-failure, diabetes, stroke, are well controlled or never diag-
nosed. A patient is considered to suffer from major end organ impact if any of these 
diseases are recurrent or not well controlled. Thus, Patients presenting with minor 
symptoms (score 0) are classified as group A or C, and patients suffering from minor end 
organ impact are classified as group A or B. Reproduced with permission from © ERS 
2020: European Respiratory Journal 2018;52:3. doi:10.1183/13993003.02616-2017.65
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still exist for these methods because neither the differ-
ence between the physiological impact of hypopnea ver-
sus apnea nor the arousal intensity were elucidated, and 
the classification of desaturation events (central or 
obstructive) was not considered. In addition, other new 
methods, such as the decreases in pulse wave amplitude 
derived from noninvasive photoplethysmography, are 
also catching the attention of researchers.72

To date, there is a scarcity of literature to clarify the 
widely accepted or perfect diagnostic criteria and to guide 
strategies on effective or precise treatment of the major 
neurocognitive and CVD sequelae related to OSA. To better 
illustrate the disease severity of OSA in the future, a more 
comprehensive indicator—one that considers hypoxemia, 
desaturation, arousal threshold, loop gain, and sleep staging, 
especially during the REM period—will improve the ability 
to determine the severity and management of OSA. With 
this foundation, the science in sleep and respiratory medi-
cine will undoubtedly advance.
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