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Abstract: Although the prevalence of rheumatic heart disease (RHD) has rapidly subsided over 

the last several decades in the United States, it still remains a serious cardiovascular disorder 

across the world, particularly in developing nations. Chronic autoimmune inflammation of the 

cardiac valves can result in mitral stenosis, increasing the risk of morbidity, mortality, and 

long-term sequelae in these patients. Researchers have begun to unravel the mysteries behind 

the development of RHD in the setting of chronic autoimmune inflammatory reactions and the 

roles genetic predisposition, antibody- and T-cell-mediated molecular mimicry, and cytokine 

proinflammatory responses play. In this article, the immunologic pathogenesis of RHD and its 

effects on the mitral valve are reviewed.
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Introduction
Rheumatic fever (RF), a sequela of untreated pharyngeal infection by group A 

 streptococcus (GAS), has long been established as a common etiology of valvular heart 

disease. Once considered the primary culprit of acquired heart disease in children in 

the United States, the routine use of antibiotics and improved hygiene have decreased 

the rates of RF in the United States to 2–14.8 cases per 100,000,1 while the rates in 

developing countries are cited as high as 50 cases per 100,000.2 Epidemiological data 

suggest the existence of 15.6 million cases worldwide, with 282,000 new cases and 

233,000 deaths each year.3 However, the true incidence is believed to be much higher, as 

epidemiological data from developing countries are believed to be average at best.

According to the Jones criteria, initially established in 1944 for use in the diagno-

sis of acute RF, carditis, polyarthritis, chorea, subcutaneous nodules, and erythema 

marginatum are the five initial ‘major’ clinical manifestations.2 Cardiac involvement 

first presents as a pancarditis, affecting the endocardium, myocardium, epicardium, 

and pericardium, respectively, with patients most commonly presenting with chest 

discomfort or pleuritic pain. Conversely, valvular dysfunction is a smoldering process, 

as evidenced by studies that suggest systematic echocardiographic screening reveals up 

to a 10-fold greater prevalence of rheumatic heart disease (RHD) compared with clinical 

screening alone.4 The most commonly encountered valvulopathy is mitral stenosis,5–7 

a late complication resulting from chronic autoimmune valvular  inflammation, leaflet 

thickening, and calcification, which ultimately leads to alteration of valvular struc-

ture and function. Patients with severe disease are at high risk of developing atrial 

 fibrillation, pulmonary hypertension, and pulmonary edema.
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The underlying mechanisms involved in the development 

of poststreptococcal RHD and mitral stenosis are complex. 

There are numerous factors involved, including genetic 

predisposition, antibody- and T-cell-mediated molecular 

mimicry, and cytokine proinflammatory response, all con-

tributing to the chronic inflammatory nature of the disease. 

In this article, the immunologic pathogenesis of RHD and 

the effects exerted on the structure and function of the mitral 

valve, as well as the role of antibiotics in the treatment and 

prevention of RF are reviewed.

Genetic predisposition
The hypothesis that individual and familial genetic factors 

play a role in the development and severity of RF and cardi-

tis is over a century old.8 Although many of the molecular 

mechanisms are incompletely understood, researchers have 

identified several genetic molecular variations that are linked 

to the autoimmune reactions seen in the disease process 

(Table 1).

The human leukocyte antigen (HLA) system, also known 

as the major histocompatibility complex (MHC), is com-

prised of class I and class II molecules, which are involved 

in alloimmune and autoimmune processes, with class II 

molecules implicated in the development of RHD.9 Found on 

B cells, macrophages, and several other antigen-presenting 

cells (APC), these molecules present  ‘exogenous’ antigens to 

T-helper cells, ultimately leading to the production of antibod-

ies. Several different HLA alleles, in  particular  HLA-DR7, 

have been associated with RHD and the  development of 

valvular lesions.10–14 By furthering the  recognition of strep-

tococcal peptides through the HLA  system, the presence 

of these alleles likely enhances autoimmune inflammatory 

processes and amplifies disease severity.

Tumor necrosis factor α (TNF-α) is an acute phase 

cytokine involved in a myriad of inflammatory processes, 

including initiation of cytokine cascades and recruitment 

of macrophages and neutrophils to sites of inflammation 

through chemoattractant properties. Located on chromosome 

6 between genes for HLA-B and HLA-DR7, TNF-α has been 

linked to the development of RHD, particularly alleles −308A 

and −238A.15–18 This most likely occurs via a phenomenon 

known as linkage disequilibrium, where the combination of 

specific HLA and TNF-α alleles occurs and are expressed 

more frequently in RHD patients than would be expected 

from random haplotype formation. This abnormal regulation 

of TNF-α production is theorized to be partly responsible for 

the aggressive nature of RHD.

Another protein that has been associated with increased 

risk of rheumatic carditis is mannose-binding lectin 

(MBL),19 a pivotal factor in innate immunity. By binding 

to carbohydrates on pathogen surfaces, the MBL pathway 

activates the complement cascade, ultimately leading to 

the recruitment of inflammatory cells and opsonization and 

destruction of pathogens. Patients with RHD and mitral 

stenosis have been shown to have an increased incidence of 

the MBL ‘A’ allele, which results in higher levels of MBL 

production, as opposed to the ‘O’ allele, which yields lower 

levels.20,21 The end result is an exaggerated complement 

activation that likely leads to greater valve inflammation 

and damage.

Functioning as pattern recognition molecules, toll-like 

receptors (TLR) are cell surface proteins that recognize 

microbial structures such as lipoproteins, peptidoglycans, 

and lipoteichoic acid, generating signals that ultimately result 

in the activation of innate immune responses. It has been 

postulated that in patients with RF, altered TLR function 

may contribute to the inflammatory processes that lead to 

RHD. Researchers have found that a polymorphism of TLR2 

at position 753, in which arginine is replaced by glutamine, 

and three single-nucleotide polymorphisms in TLR5 gene 

Table 1 established genetic risk factors for RHD

Function Genetic variation in RHD

HLA Present ‘exogenous’ antigens to T-helper cells, ultimately  
leading to the production of antibodies

HLA-DR7 allele associated with RHD and  
development of valvular lesions10–14

TNF-α Acute phase cytokine involved in initiation of cytokine  
cascades and recruitment of macrophages and neutrophils  
to sites of inflammation through chemoattractant properties

Alleles −308A and −238A associated with the  
development of RHD and are overexpressed via  
linkage disequilibrium with HLA-DR7 allele15–18

MBL Activates the lectin-complement cascade, leading to the  
recruitment of inflammatory cells and opsonization and  
destruction of pathogens

Increased incidence of the MBL ‘A’ allele, resulting 
in higher levels of MBL production20,21

TLR Pattern-recognition cell surface proteins that recognize  
microbial structures and activate innate immune responses

Polymorphism of TLR2 at position 753 and three  
single-nucleotide polymorphisms in TLR5 gene22,23

Abbreviations: RHD, rheumatic heart disease; HLA, human leukocyte antigen; TNF-α, tumor necrosis factor α; MBL, mannose-binding lectin; TLR, toll-like receptor.
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are strongly associated with the pathogenesis of acute RF 

and may indeed intensify the inflammatory reactions taking 

place.22,23

Furthermore, researchers are in the early stages of under-

standing several other genes associated with enhanced RHD 

progression. These include polymorphisms of ficolin-2, a 

pattern-recognition protein important to the lectin comple-

ment pathway;24 C-509T and T869C polymorphisms of 

transforming growth factor β-1, a cytokine secreted by 

most immune cells that controls their differentiation, 

 proliferation, and state of function;25,26 and polymorphism 

of interleukin 1 (IL-1) receptor antagonist, a cytokine that 

normally modulates IL-1-related inflammatory processes.27 

Further studies are imperative, as knowledge about genetic 

predictors can advance screening and therapeutic options 

for RHD patients.

Molecular mimicry
Molecular mimicry, defined as the sharing of epitopes 

between foreign and self-peptides that can trigger cross-

activation of the host’s immune system, is crucial to the 

pathogenesis of RHD.

Three types of mimicry have been defined as mechanisms 

for cross-reactivity mediated by anticardiac  antibodies: 

1) identical amino acid sequences, 2) homologous but 

nonidentical amino acid sequences, and 3) epitopes on dis-

tinctive molecules, including carbohydrates, gangliosides, 

and DNA.28,29 By these mechanisms, antistreptococcal 

monoclonal antibodies (mAbs) have been shown to rec-

ognize and cross-react with streptococcal M protein and 

cardiac myosin, a contractile protein vital to proper cardiac 

function.30,31 Significant mimicry between antistreptococcal 

M protein mAb and cardiac myosin epitopes has been shown 

to trigger myocarditis and valvulitis in susceptible animal 

models,32 and mimicry also exists with other α-helical coiled 

proteins found in the heart and cardiac valves, including 

vimentin, keratin, and laminin,30,33,34 important peptides that 

contribute to the extracellular matrix of human cardiac tis-

sue. Additionally, studies have shown that mAbs also bind 

N-acetyl-glucosamine, the GAS dominant carbohydrate. 

These antibodies cross-react with peptides that in turn interact 

with lectins,35 theoretically triggering an immune response 

via the lectin–complement pathway. Taken as a whole, these 

complex interactions can lead to contractile and valvular 

cardiac decompensation, triggering further inflammatory 

reactions within the valvular structures.

In addition to antibody-mediated interactions, stud-

ies involving T-cell clones from patients with RHD have 

 demonstrated the cross-reactivity of streptococcal M peptides 

with valvular proteins and cardiac myosin by T-cell-mediated 

molecular mimicry. T-cell clones from heart lesions of RHD 

patients have shown the ability to simultaneously recognize 

heart tissue–derived proteins and streptococcal M5 protein 

peptides,36 in particular, immunodominant peptide residues 

81–96 and 83–103,10,37 epitopes also recognized by peripheral 

T lymphocytes in the context of HLA-DR7.38 Furthermore, 

analysis of the N-terminal portion of the M5 protein and 

cardiac myosin has yielded three distinct cardiac myosin 

epitopes targeted by molecular mimicry in the S2 and light 

meromyosin regions.39,40

Finally, heart-infiltrating and peripheral T cells have also 

been shown to recognize numerous valvular autoantigens, 

including protein disulfide isomerase family A member 

3 (PDIA3), heat shock 70 kDa protein 5 (HSPA5), and 

vimentin.41 Although the exact role of PDIA3 remains 

unclear, HSPA5 is believed to participate in Ca2+ seques-

tration, as well as folding and assembly of proteins and 

rearrangement of misfolded proteins within the endoplasmic 

reticulum, and acts as an antiapoptosis protein.42,43 The abil-

ity of T cells to recognize HSPA5 suggests that exposure 

occurs as a result of inflammatory tissue damage, with loss 

of protein function likely contributing to further valvular 

dysfunction.

Pathogenesis of valvular disease
Untreated pharyngeal bacterial infection by group A 

 Streptococcus pyogenes, a facultative Gram-positive  coccus, 

is the inciting factor in RHD (Table 2). The bacterial cell 

wall consists of a peptidoglycan backbone with integral 

lipoteichoic acid components that facilitate adherence to host 

 pharyngeal epithelial cells and also possess the ability to acti-

vate the alternative complement pathway.44  Bacterial adher-

ence is enhanced by fibronectin-binding protein F, which 

allows interaction between GAS and epithelial cell integ-

rins, with cell-surface receptors also playing a pivotal role 

in cell signaling.45 In addition, M proteins contribute to 

GAS adherence via the binding of human endothelial cell-

surface glycosaminoglycans, as well as the complement 

control protein factor H, which allows the bacteria to evade 

opsonization.46,47

However, the most important factor in the virulence of 

GAS is the bacterial capsule. The capsular polysaccharide 

is composed of hyaluronic acid, a high molecular weight 

polysaccharide essential to GAS virulence, which is struc-

turally identical to mammalian hyaluronic acid found on 

cell surfaces, connective tissue, and extracellular matrix.48 
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Mammalian hyaluronic acid binds to CD44, a cell-surface 

glycoprotein involved in human cell–cell and cell–matrix 

interactions, including lymphocyte activation, recircling, 

and homing. Research has demonstrated, in vitro and 

in vivo, that attachment of GAS to pharyngeal epithelial 

cells occurs through the binding of the microbial hyaluronic 

acid capsular polysaccharide to human CD44 antigen,49 

thus establishing infection and triggering lymphocyte 

activation, as well as providing resistance against host 

phagocytosis.

Once infection has occurred, innate and adaptive immune 

responses unfold via several intertwining mechanisms. Inflam-

mation triggers the production of several acute phase reactants 

pivotal to the development of RHD,19,50,51 most  importantly: 

1) MBL, which binds to  N-acetyl-β-d-glucosamine, a strep-

tococcal cell wall carbohydrate, activating the complement–

lectin pathway; 2) IL-1, which increases the expression of 

adhesion factors on endothelial cells to enable the transmigra-

tion of leukocytes and enhancement of the host inflammatory 

response; 3) IL-6, which functions in both innate and adap-

tive immunity by stimulating the synthesis of acute phase 

proteins, neutrophils, and B lymphocytes; and 4) TNF-α, 

which serves to recruit and activate monocytes and neu-

trophils at the site of  infection. Furthermore, natural killer 

cells produce interferon-γ, a principal  macrophage-activating 

cytokine that stimulates expression of class I and class II 

MHC molecules on APC and promotes differentiation of 

CD4+ T cells to T-helper-1 cells. T-helper-1 cells in turn 

secrete interferon-γ themselves and produce IL-2, which 

functions as a growth factor for antigen-stimulated T cells 

and B cells, increases cytokine synthesis, and promotes 

proliferation of natural killer cells. RHD patients appear to 

have an increased production of T-helper cells, resulting in 

a greater amount of IL-2 in systemic circulation.52 Finally, 

newly described T-helper-17 cells have been shown to 

produce IL-17, which is believed to upregulate the produc-

tion of other proinflammatory cytokines and chemokines. 

Increased expression of IL-17 in peripheral T cells of RHD 

patients has been observed,53 leading to the conclusion that 

these cells may also contribute to the inflammatory reactions 

in rheumatic heart lesions.

The activation of B lymphocytes results in the produc-

tion of antibodies and subsequent cross-reactive molecu-

lar mimicry between the streptococcal immunodominant 

carbohydrate antigen N-acetyl-glucosamine and cardiac 

myosin,  valvular endothelium and laminin.33  Antibodies 

also upregulate the expression of vascular cell adhe-

sion  molecule-1, a protein that mediates the binding of 

lymphocytes and monocytes to vascular endothelium, 

allowing adhesion and infiltration of T cells through the 

endothelium and endocardium into the valve.54 Although 

cardiac valves have been labeled as avascular struc-

tures, recent studies have  demonstrated that rheumatic 

valves have severe upregulation and downregulation of 

proangiogenic and antiangiogenic factors, respectively. 

RHD patients have been shown to have decreased levels 

of chondromodulin-I and  tenomodulin, antiangiogenic 

proteins first expressed in the cardiac valves and chordae 

tendineae during embryogenesis.55–57 Conversely, increased 

levels of periostin, a proangiogenic protein also expressed 

in embryonic cardiac valves, has been recently described 

in RHD patients. Periostin also upregulates the production 

of matrix metalloproteinase, an endopeptidase responsible 

for angiogenesis and tissue remodeling.58

As APC express HLA class II molecules that present 

streptococcal peptides toi helper T cells, valvular inflamma-

tion and damage begins to occur. Over time, the mitral valve 

apparatus becomes diseased and tiny granulomatous nodules 

Table 2 Pathogenesis of valvular disease

Untreated β-hemolytic GAS pharyngeal infection
⇓

Innate immune responses (macrophage, NK cell, complement pathway 
activation), activation of acute phase proteins (interleukins, TNF-α, MBL), 

and production of INF-γ
⇓

Adaptive immune responses (B lymphocytes, T lymphocytes,  
HLA molecules)

⇓
T-cell- and antibody-mediated molecular mimicry between streptococcal 

M protein and cardiac myosin and valvular proteins
⇓

Deposition of Aschoff bodies are along the coapting portions of the 
leaflets with continued production and secretion of proinflammatory 

cytokines
⇓

Deposition of fibrin on the valvular cusps, leading to fusion of the leaflet 
commissures, shortening of the chordae tendinae, and alteration of the 

native valvular morphology
⇓

Leaflet thickening and valvular calcification
⇓

epitope spreading leading to continued T-helper-1 cell granulomatous 
valvular response

⇓
Mitral stenosis

Abbreviations: GAS, group A streptococcus; NK cell, natural killer cell; TNF-α, 
tumor necrosis factor α; MBL, mannose-binding lectin; INF-γ, interferon-γ; HLA, human 
leukocyte antigen.
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known as Aschoff bodies are deposited along the coapt-

ing portions of the leaflets. These inflammatory structures 

contain macrophages and T cells specific for  streptococcal 

M protein, and continued production and secretion of proin-

flammatory cytokines takes place.59 Inflammation ensues and 

eventual deposition of fibrin on the valvular cusps occurs, 

leading to fusion of the leaflet commissures, shortening of 

the chordae tendineae, and alteration of the native valvular 

morphology.60,61 Over the years, leaflet thickening and calci-

fication occur, ultimately leading to mitral stenosis. Although 

long-term stress secondary to turbulent flow through the 

deformed valve plays a role, calcification and scarring of 

the valve are also likely caused by a chronic, subclinical 

form of inflammation, suggested by the increased expres-

sion of osteoblast markers and neoangiogenesis seen in 

RHD patients.62 Additionally, although mononuclear cells 

secreting the regulatory cytokine IL-4 have been found in 

the myocardium, few cells have been isolated in the cardiac 

valves. The lower expression of IL-4 in the valves of RHD 

patients may contribute to the progression of cell-mediated 

valvular damage.59

Ultimately, once valvular disease has become chronic, 

proteins integral in maintaining proper anatomical function 

such as vimentin, laminin, collagen, and others are presented 

to the immune system, and epitope spreading is predicted 

to occur.29 Through this mechanism, autoimmune reactions 

against a self-antigen lead to the release of other antigens and 

associated lymphocytes, resulting in an enhanced, chronic 

disease process. It is theorized that these immune reac-

tions continue to promote a T-helper-1 cell granulomatous 

response in the mitral valve, leading to additional scarring 

and further functional decompensation.59

Treatment and prevention of RF
Primary prevention of acute RF and RHD can be effec-

tively accomplished with proper diagnosis and treatment of 

GAS tonsillopharyngitis with penicillin. According to the 

 American Heart Association, untreated patients who develop 

acute RF require antibiotic treatment with the goal of GAS 

carriage eradication, regardless of whether concomitant 

pharyngeal infection is present.63 This is accomplished via 

treatment regimens outlined for GAS pharyngeal infections, 

with oral penicillin V or intramuscular penicillin G as the 

drugs of choice. Diagnosis is typically confirmed by a  rising 

antistreptolysin titer, as well as antideoxyribonuclease B, anti-

streptokinase, and antihyaluronidase antibodies, while acute 

phase reactants such as C-reactive protein and erythrocyte 

sedimentation rate are used in monitoring the response to 

treatment.64 C-reactive protein levels are particularly applica-

ble, as normalized levels are typically observed within days of 

inflammatory resolution, whereas erythrocyte  sedimentation 

rate can remain elevated for several months.

In patients with a prior episode of RF, secondary pre-

vention is critically important. Recurrent pharyngeal GAS 

 infection can trigger a severely exaggerated immune response 

in these patients, and studies have shown that recurrent RF is 

associated with a higher incidence of carditis and  mortality, 

highlighting the need for preventative medicine in this 

population.65,66 The duration of prophylactic antibiotic admin-

istration is dependent on several factors, including patient 

age, risk of re-exposure to GAS, number of prior episodes, 

length of time since prior infection, and most importantly, 

the presence of valvular heart disease. In  general, prophy-

laxis is continued until the age of 21 years if there is no prior 

cardiac involvement; however, in the setting of valvular 

disease, treatment is continued until the age of 40 years, 

and in some instances, is recommended to be continued 

lifelong.63  Long-acting benzathine penicillin G, injected 

intramuscularly every 4 weeks, has been established as the 

standard of care, and data suggests that strict adherence and 

close follow-up reduces morbidity, reinfection rates, and 

long-term sequelae.67,68

Finally, up to 25% of asymptomatic individuals may 

be carriers of GAS.69 Although routine screening of the 

general public is not practiced, the Infectious Disease Soci-

ety of America recommends streptococcal rapid antigen 

detection tests for patients with a history of RF or acute 

pharyngitis during outbreaks of RF or poststreptococcal 

glomerulonephritis, as well as those residing in closed 

communities or in the setting of spread amongst household 

members.70 A full course of antibiotic treatment is sug-

gested if results are positive regardless of the presence of 

symptoms, as colonization has been linked to higher rates 

of disease and sequelae,71 and studies have shown that 

at least one-third of reported cases of acute RF occur in 

asymptomatic patients.72

Conclusion
The immunology and pathogenesis of RF and rheumatic 

carditis demonstrate the interplay of innate and adaptive 

immunity, as well as humoral and cellular immune reactions. 

Although researchers have made great strides in elucidating 

many of these complex mechanisms, the progression of 

RHD from group A streptococcal pharyngeal infection to 
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mitral stenosis remains incompletely understood. Primary 

 prevention of RF should be the goal of all clinicians and 

requires diligent application of clinical parameters and a 

prompt diagnosis of streptococcal tonsillopharyngitis, pri-

marily in the pediatric population, where pharyngeal GAS 

infection establishes a nadir for RHD and subsequent mitral 

stenosis. Furthermore, proper school or community-based 

treatment programs have proven to reduce the incidence of 

RF and thus valvular disease, and should be a cornerstone 

in public health policy. Thus, future research on the genetic, 

 molecular, and clinical levels is of utmost importance, as 

RHD and mitral stenosis remain significant worldwide 

 diseases with serious sequelae.
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