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Background: The release of miRNAs in tissue fluids significantly recommends its use as 
non-invasive diagnostic biomarkers for the progression and pathogenesis of mild cognitive 
impairment (MCI) in aged patients.
Objective: The potential role of circulated miRNAs in the pathogenesis of MCI and its 
association with cellular oxidative stress, apoptosis, and circulated BDNF, Sirtuin 1 (SIRT1), 
and dipeptidyl peptidase-4 (DPP4) were evaluated in older adults with MCI.
Methods: A total of 150 subjects aged 65.4±3.7 years were recruited in this study. The 
participants were classified into two groups: healthy normal (n=80) and MCI (n=70). Real- 
time PCR analysis was performed to estimate the relative expression of miRNAs; miR-124a, 
miR-483-5p, miR-142-3p, and miR-125b, and apoptotic-related genes Bax, Bcl-2, and 
caspase-3 in the sera of MCI and control subjects. In addition, oxidative stress parameters; 
MDA, NO, SOD, and CAT; as well as plasma DPP4 activity, BDNF, SIRT1 levels were 
colorimetrically estimated.
Results: The levels of miR-124a and miR-483-5p significantly increased and miR-142-3p 
and miR-125b significantly reduced in the serum of MCI patients compared to controls. The 
expressed miRNAs significantly correlated with severe cognitive decline, measured by 
MMSE, MoCA, ADL, and memory scores. The expression of Bax, and caspase-3 apoptotic 
inducing genes significantly increased and Bcl-2 antiapoptotic gene significantly reduced in 
MCI subjects compared to controls. In addition, the plasma levels of MDA, NO, and DPP4 
activity significantly increased, and the levels of SOD, CAT, BDNF, and SIRT1 significantly 
reduced in MCI subjects compared to controls. The expressed miRNAs correlated positively 
with NO, MDA, DPP4 activity, BDNF, and SIRT-1, and negatively with the levels of CAT, 
SOD, Bcl-2, Bax, and caspase-3 genes.
Conclusion: Circulating miR-124a, miR-483-5p, miR-142-3p, and miR-125b significantly 
associated with severe cognitive decline, cellular oxidative stress, and apoptosis in patients 
with MCI. Thus, it could be potential non-invasive biomarkers for the diagnosis of MCI with 
high diagnostic performance.
Keywords: circulating miRNAs, MCI, biomarkers, cellular oxidative stress, apoptosis, real- 
time RT-PCR

Introduction
Older ages clinically manifested by mild cognitive impairment (MCI) which is 
considered as an intermediate stage between the expected cognitive decline of 
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normal aging and the more serious progressive decline of 
dementia. Subjects with MCI had a higher risk to progress 
to dementia compared with healthy controls.1–3 Previous 
studies showed that the progression rates from MCI to 
dementia significantly increased from 5.4% and 11.7% 
per year.4–7

The incidence of MCI has no significant factors even it was 
linked in most cases by heart problems, blood pressure, and 
diabetes.7 However, problems with memory, language, 
thought, routine MCI diagnosis, hypertension, and judgment 
were significantly increased in older adults with MCI.8

However, routine MCI diagnosis including clinical obser-
vation neuropsychological exam, neuroimaging, genetic test-
ing, and neurochemical bodily may be supportive to postpone 
or prevent the subsequent progression to dementia.8–10 

However, their routine use is unfeasible in the clinical setting 
due to its difficulty, invasiveness, and inconvenience to obtain 
data. Thus, the search for rapid and non-invasive diagnostic 
biomarkers is required to improve MCI diagnosis.

Previous research studies showed that increased 
dipeptidyl peptidase-4 (DPP4) activity and reduced both 
brain-derived neurotrophic factor (BDNF) and Sirtuin 1 
(SIRT1) in peripheral circulation might all play pathoge-
netic roles in subjects with MCI.11–18 The changes in 
these physiological biomarkers are significantly asso-
ciated with cellular oxidative stress and inflammation of 
MCI patients.11 In MCI, both DPP4 activity and BDNF 
significantly correlated with cellular oxidative stress and 
inflammation,19–21 oxidative stress imbalance and inflam-
mation lead to cellular mitochondrial dysfunction, disrup-
tion of cellular homeostasis, and progressive 
neurodegeneration by cell death or apoptosis.22–26 

Previous studies showed that aging promotes neuronal 
apoptosis via increasing the expression of caspase-3, 
Bax, and reduction in the expression of Bcl-2 genes.27,28 

Thus, oxidative stress and inflammation accelerated aging 
and faster progression of neurodegenerative diseases par-
ticularly MCI and dementia.22–31 In addition to, with 
aging, brain parenchyma was impacted by cellular oxida-
tive stress and potentially by TNF alpha deleterious 
action which significantly affects upon cognitive 
function.23–25

Circulating miRNAs are short non-coding RNAs 
showed to be associated with many physiological, cellular, 
and molecular developments, which occurred in normal 
and diseased cells, including MCI and dementia.32–34

The release of miRNAs in tissue fluids; serum or plasma or 
saliva inactive state significantly recommends its use as non- 

invasive diagnostic biomarkers for MCI.32–35 Several miRNAs 
were reported to be significantly associated with MCI and were 
potential biomarkers for the diagnosis of MCI.34–39 However, 
its association with cellular oxidative stress, apoptosis, and 
metabolic MCI parameters remains to be elucidated. The pre-
sent study aimed to evaluate the potential role of circulated 
miRNAs in the pathogenesis of MCI and its association with 
cellular oxidative stress, apoptosis, and circulated BDNF, 1 
(SIRT1, and dipeptidyl peptidase-4 (DPP4) in older adults 
with MCI.

Materials and Methods
Subjects
A total of 160 subjects aged 65.4±3.7 years were invited to this 
study. Only 150 of the subjects agreed to participate and 
classified according to the diagnosis of mild cognitive impair-
ment (MCI) into two groups; healthy normal (n=80) and MCI 
(n=70). Elders with severe psychiatric illness, endocrine, 
immune, eating disorders, poor hearing and vision, and ner-
vous system diseases, and taking glucocorticoid medication 
that could interfere cognitive ability measurements were 
already excluded from both cases and controls by investigating 
their past medical history. Ten subjects were excluded from this 
study (four refused participation, three with nervous system 
diseases, and three received glucocorticoid medication). The 
study protocol was reviewed according to the ethical guide-
lines of the 1975 Declaration of Helsinki and approved by the 
ethical committee of Rehabilitation Research Chair (RRC), 
King Saud University, Kingdom of Saudi Arabia, under file 
number (ID: RRC-2019-028) and signed informed consent 
forms were received from all subjects prior data collection.

Assessment of Cognitive Performance
A well-trained research neurologists performed the cognitive 
and functional status of all participants according to Petersen’s 
criteria (Table-1) 38 and by using the Activity of Daily Living 
scale (ADL), MiniMental State Examination (MMSE), and 
Montreal Cognitive Assessment (MoCA) as previously 
reported.39–46 The MMSE and the MoCA are the most widely 
used cognitive screening instruments for MCI which covers 
various areas of cognitive domains.47,48 The score of the 
MMSE (≤27) and that of the MoCA (<26) were taken together 
to evaluate cognitive impairment[48]. Thus, recruited partici-
pants were divided into normal control (n=80) and the MCI 
(n=70) group. The demographics and baseline characteristics 
of participants are shown in (Table-2).
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Assessment of Nitric Oxide (NO)
Serum accumulated NO was estimated as the stable end 
products nitrite and nitrate as previously reported.43,46 In 
this experiment, cadmium reagent performed to convert 
nitrate to nitrite which then measured by spectrophoto-
metric assay using the Griess reagents sulfanilamide, HCl 
and N-naphthylethylenediamine.47–51 The absorbance of 
nitrite concentrations was taken at 545 nm.47–51 The con-
centration of the accumulated NO calculated according to 
the following formula:

NO concentration (μmol/L.) = {[At-Ab/As-Ab× Cons 
of S/V.serm used ×1000]}

Assessment of Plasma Malonaldehyde 
(MDA)
Plasma Lipid peroxide MDA was estimated as a measure 
of cellular lipid peroxidation in all subjects by using 
a reversed-phase high-performance liquid chromatography 
(HPLC/PDA Shimadzu®) using an analytic column C-18 

(Phenomenex×150mm×4.6 mm, 10 µm) as previously 
reported.49–52 In this method, acidic thiobarbituric acid 
reacted with plasma MDA at 90◦C for 1 h, protein removal 
by centrifugation, filtered, and finally, the colored complex 
detected spectrophotometrically at 532 nm. MDA levels 
were expressed as nmol of MDA/mg protein.49–52

Assessment of Antioxidant Enzymes
In this test, catalase (CAT) and superoxide dismutase 
(SOD) activity were estimated by a spectrophotometer 
analysis as previously reported.49–56 All enzymatic assays 
were conducted in triplicate, corrected by hemoglobin 
content, and expressed as U/g of hemoglobin.51

Assessment of Plasma DPP4 Activity, 
BDNF, Sirtuin 1 (SIRT1) Levels
Plasma DPP4 activity was performed as previously 
described.11,32,54–57 In addition, brain-derived neurotrophic 
factor (BDNF) and sirtuin 1 (SIRT1) were estimated in the 
serum of all participants by immune assay (ELISA) 
technique,57 using the human BDNF Quantikine Kit 
(Catalog no: DBD00, R&D System, Minneapolis, MN, 
USA) and human SIRT1 ELISA Kit (Catalog no: 
E94912Hu, USCN Life Science, Wuhan, China). The 
results were performed in duplicates and were used for 
statistical analyses.57

Real-Time RT-PCR Analysis of Circulating 
miRNAs and Apoptotic Genes
Extraction of RNA and Synthesis of cDNA
For each participant, the miRNease isolation kit (Qiagen, 
Hilden, Germany) was used to extract total RNA from 
serum samples. A reverse-transcription polymerase chain 
reaction (RTPCR) was applied to analyze total RNA in all 
serum samples. Then, a complementary DNA (cDNA) was 
generated using reverse-transcription miScriptII RT kits 

Table 1 Assessment of Cognitive Performance According to Petersen’s Criteria

Criteria of MCI Control Group 
(n=80)

MCI Group 
(n=70)

Memory complaint by participant or family (Yes/No) No Yes

Normal activities of daily living (20 items; score <26) >26 <26

Normal general cognitive function (A: MMSE score between 20 and 27 [cutoff points for illiterate (≤ 20), 

primary school (≤23) and secondary school and above (≤ 27)]; B: MoCA score <26)

MMSE:> 27 

MoCA: >26

MMSE: ≤27 

MoCA: <26

Objective impairment scores >1.5 SD <1.5 SD

The Clinical Dementia Rating scale No 0–0.5

Table 2 The Demographics and Baseline Characteristics of 
Participants

Parameters Control Group MCI Group

N 80 (53.33%) 70 (46.66%)

Male/Female 50/30 40/30
Age (years) 65.3 ± 3.5 64.9 ± 4.1

BMI (kg/m2) 19.9± 2.6 24.1± 3.6 b

Waist (cm) 77.3± 9.3 98.1 ± 6.3 b

Hips (cm) 86.9 ± 7.5 92.6 ± 18.3 b

WHR 0.89±0.11 1.4±0.16 b

Education (years) 10.2 ± 0.8 5.3 ± 0.6b

Lifestyle factors, %  

Working  
Exercising regularly

96.5 
88.4

89.5a 

76.1a

Notes: Values are expressed as mean ±SD; Significance at p <0.05. ap <0.01, 
bp <0.001.
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(Qiagen), and the levels of miRNAs were evaluated by 
optical density.11

Real-Time RT-PCR Analysis
The primers of circulating miRNAs; miR-124a, miR-483-5p, 
miR-142-3p, and miR-125b (Applied Biosystems, Foster 
City, CA, USA), in addition to primer sequences of the 
apoptotic genes (Bax, Bcl-2, and caspase-3) (Table 3), were 
used to screen the expression of miRNAs and apoptotic genes 
in the plasma of all participants by using a quantitative real- 
time RT-PCR.11 The average copy number of the resultant 
PCR components was normalized according to the GAPDH 
gene which was used as an internal housekeeping gene.32 In 
the PCR process, templets of respective cDNA subjected to 
four thermal phases; primary denaturation phase (I) (at 94°C 
for 2 minutes); denaturation phase (II) (at 94°C for 30 sec-
onds); annealing phase (III) (at 59°C for 30 seconds), and 
amplification phase (IV) (at 72°C for 30 seconds). The PCR 
phases (II–IV) proceed for 45 cycles and all reactions were 
measured in a triplicated manner.32

Statistical Analysis
Power calculations of the selected sample size of 150 subjects 
showed to give an estimated power of 95% and a significance 
level of 0.05 with an expected frequency of 10.5%.

An SPSS statistical program (SPSS, IBM Statistics V.17) 
was used to analyze all data produced in this study. The data of 
continuous variables are expressed as mean±SD. The fre-
quency differences between the groups were analyzed by 
using a non-parametric test (Mann–Whitney–Wilcoxon test) 
and the χ2 test, respectively. In all groups, two independent 
sample t-tests were used for comparison between the studied 
variables such as cognitive score (dependent variable), expres-
sion levels of miRNAs, apoptotic genes, oxidative stress para-
meters, plasma DPP4 activity, BDNF, and sirtuin 1 (SIRT1) 
levels (independent variables). In addition, multiple stepwise 
regressions and Pearson’s correlation analyses were used to 
estimate the associations between cognitive function status 
and the studied independent variables in older subjects with 
MCI and in controls. All tests were two-tailed; because of 
multiple assessments, results were only considered statistically 
significant at a value of p <0.05.

Results
A total of 150 older adults were recruited in this study. 
Based on Petersen’s criteria (Table 1), mild cognitive impair-
ment (MCI) was predicted in 46.66% of the participants. 
The participants classified into two groups; healthy control 
(n=80) and MCI group (70). In subjects with MCI, adiposity 
parameters; BMI, Waist, hips, and WHR were significantly 
increased (p=0.001) compared to healthy controls (Table 2). 
In addition, education scores, and lifestyle factors (working 
and regular exercise) significantly reduced (P=0.001) in 
MCI compared to normal controls (Table 2).

Cognitive function and neuropsychological scores of 
all subjects were estimated in this study (Table 3). Mini- 
mental state scores (MMSE) and active daily living scores 
(ADL & IADL) significantly (P=0.001) increased and the 
Montreal cognitive assessment scores significantly 
(P=0.001) reduced in older adults with MCI compared to 
normal controls (Table 3).

Mean neuropsychological test scores measured by 
memory and adult intelligence scales are listed in Table 
3. The t-test was used to compare neuropsychological 
status and cognition function between normal and MCI 
groups. The two groups were significantly different 
(P=0.001) in neuropsychological as well as cognitive 
scores as shown in (Table 3).

Table 3 Neuropsychological Test Scores and the Cognitive 
Status of the Participants (n=15; Mean ±SD)

Parameters Control 
Group

MCI 
Group

t p-Value

MMSE 28.4 ± 3.3 21.3 ± 2.5 12.8 <0.001

MoCA 22.7±2.9 27.9±5.4 18.9 <0.001

ADL 22.1±3.7 28.6±10.3 19.7 <0.001
IADL 8.3±0.2 6.9±0.3 15.3 <0.001

Wechsler Memory 

Scale – Revised-

<0.001

VPA 10.3±2.8 6.9±3.1 12.5
VR 12.8±4.3 8.5±2.7 10.4

IM 7.2±2.9 4.5±3.1 11.9

PR 17.0±3.9 12.9±2.9 16.9

Wechsler Adult 

Intelligence scale – 
Chinese revision

<0.001

S 19.6±3.8 12.8±5.8 18.9

R 14.1±3.7 8.1±2.8 16.9
DSC 38.2±8.6 24.2±10.3 12.8

PC 10.4±1.9 9.4±1.3 15.8

BDs 79.3±24.3 89.8±31.6 14.7
V 17.2±3.7 14.5±4.1 8.5

Note: Values are expressed as mean ±SD. 
Abbreviations: MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive 
Assessment; ADL, activity of daily living; IADL, instrumental activities of daily living; 
VPA, verbal paired associates; VR, visual reproduction; IM, immediate memory; PR, 
picture recall; S, similarities; R, arithmetic; DSC, digit symbol-coding; PC, picture 
completion; BDs, block design(s); V, vocabulary.
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In this study, the effect of cellular oxidative stress on 
cognitive function was estimated (Figure 1). The results 
showed a significant increase (p=0.001) in the levels of 
cellular NO and MDA in older adults with MCI compared 
to healthy controls (A&B). In addition, a significant 
decrease (p=0.001) in the levels of antioxidant enzymes; 
CAT and SOD in older adults with MCI compared to 
healthy controls. The change in the cellular oxidative- 
defensive system closely correlated (P=0.001) with the 
status of cognitive function. In subjects with MCI, serum 
levels of NO and MDA correlated positively with MMSE, 
MoCA, ADL, and memory scores, and negatively corre-
lated with reduced activity of antioxidant enzymes; CAT 
and SOD, respectively (Table 4).

In addition, the influence of cellular apoptosis on cognitive 
function was reported (Figure 2). In this experiment, the 
cellular expression of Bcl-2, Bax, and caspase-3 genes was 
examined in all subjects. In Older adults with MCI, the expres-
sion levels of both Bax and caspase-3 genes significantly 
(p=0.001) increased, and the expression levels of the Bcl-2 
gene significantly (p=0.01) reduced in comparison with the 

results of healthy controls (Figure 2D). The expression of 
cellular apoptotic genes correlated with the cognitive function. 
Cognitive function scores of MMSE, MoCA, ADL, and mem-
ory correlated positively with the expression of Bax and 
caspase-3, and negatively with the expressed Bcl-2 gene 
(Table 4).

The correlation between metabolic changes in the serum 
levels of DPP4 activity, BDNF and SIRT-1 were estimated in 
control and MCI subjects (Figure 2). As shown in Figure 2, the 
results showed that the levels of BDNF, SIRT-1 significantly 
reduced and the DPP4 activity significantly increased in older 
subjects with MCI compared to healthy controls 
(2A,2Band2C). The levels of DPP4 activity, BDNF and 
SIRT-1 were significantly associated with cognitive status. 
Cognitive function; MMSE, MoCA, ADL, and memory scores 
correlated positively (p=0.001) with serum BDNF and SIRT-1, 
and negatively with serum DPP4 activity as shown in Table 
(4). Similarly, in subjects with MCI physiological changes in 
the serum levels of DPP4 activity, BDNF and SIRT-1 were 
intercorrelated with cellular oxidative and apoptosis. The 
serum levels of DPP4 activity, BDNF, and SIRT-1 correlated 

Figure 1 Changes in cellular oxidative stress; NO and MDA (A and B) and antioxidant enzymes; Cat and SOD the levels (C and D) in healthy control (n=80) and older 
adults with MCI (n=70). The results showed significant increase (p=0.001) in the levels of cellular NO and MDA in older adults with MCI compared to healthy controls 
(A and B). In addition, significant decrease (p=0.001) in the levels of antioxidant enzymes; CAT and SOD in older adults with MCI compared to healthy controls. Significance 
of the comparison was evaluated by Mann–Whitney-Wilcoxon test and sample t-test, * * p≤ 0.01, * * *p≤ 0.001. 
Abbreviations: MCI, mild cognitive impairment; NO, nitric oxide; MDA, malonaldehyde, SOD, superoxide dismutase, CAT, catalase enzyme.
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positively with CAT and SOD activity, Bcl-2 gene expression, 
and negatively with cellular NO, MDA, and expressed Bax, 
and caspase-3 genes (Table 5).

Also, the correlation between MicroRNAs’ differential 
expression with cognitive function in older adults was 
studied (Figure 3). The results showed that the relative 
expression of miR-124a and miR-483-5p significantly 
increased (P=0.001), and miR-142-3p and miR-125b sig-
nificantly reduced (P=0.01) in older adults with MCI 
compared to healthy controls (Figure 3). Cognitive func-
tion scores of MMSE, MoCA, ADL, and memory corre-
lated positively with the expression levels of miR-124a 
and miR-483-5p, and negatively with the expressed miR- 
142-3p, and miR-125b, respectively (Table 4).

Expressed microRNAs positively correlated with cel-
lular oxidative stress parameters; NO and MDA and nega-
tively with deficient activities of antioxidative enzymes; 
CAT and SOD, respectively (Table 6). In subjects with 
MCI, the relative expression of microRNAs correlated 
positively with cognitive physiological changes in the 
serum levels of DPP4 activity, BDNF, and SIRT-1 
(p=0.001) and negatively with the expressed cellular apop-
tosis genes Bcl-2, Bax, and caspase-3 (Table 6).

Discussion
Mild cognitive impairment (MCI) was predicted in 
46.66% of the study population. Molecular-based assays 

confirmed that circulating miR-124a, miR-483-5p, miR- 
142-3p, and miR-125b were significantly associated with 
severe cognitive decline, oxidative stress, and apoptosis in 
patients with MCI.

In this study, participants with MCI recorded higher 
MMSE, ADL, IADL, and lower MoCA scores compared 
to healthy controls. In addition, neuropsychological status, 
especially poor memory and intelligence, was significantly 
reported among MCI subjects.

MCI was reported in the aged people, whereas 5.4% 
and 11.7% per year of MCI significantly at higher risks to 
develop to severe dementia.4–6 Many problems in memory, 
language, thought, and judgment were significantly 
reported in patients with MCI which affects on their 
daily activities.2,8

Cellular oxidative stress was significantly associated with 
the severity of cognition impairment particularly in older 
adults with MCI.32,58–62 DNA damage (8-oxo-2ʹ- 
deoxyguanosine; 8-oxodGuo), lipid peroxidation (malonal-
dehyde; MDA), and other cellular oxidative parameters sig-
nificantly reported in higher ranges in the brain tissues, serum, 
plasma, and cerebrospinal fluid (CSF) patients with MCI.58–61

In the current study, oxidative stress markers MDA and 
NO significantly increased, and CAT and SOD antioxidant 
defense activity significantly reduced in MCI compared to 
healthy-aged individuals. The deficient cellular antioxidant 
activity and increased free radical oxidative stress 

Table 4 Correlations Between DPP4 Activities, BDNF, SIRT-1, Celluar Oxidative Stress, Apoptosis, and Relative Expression of 
miRNAs vs Cognitive Parameters

Characteristics Cognitive Function (n=70)

MMSEa MoCAa ADLa Memory Scoresa

r P r P r P r P

DPP4 activity (nmol/min/mL) −0.320 <0.001 −0.291 < 0.001 −0.31 <0.001 −0.24 <0.001

BDNF (ng/mL) 0.192 <0.001 0.23 <0.001 0.18 <0.001 0.15 <0.001
SIRT1(ng/mL) 0.31 <0.001 0.45 <0.001 0.27 <0.001 0.34 <0.001

NO 0.35 <0.001 0.28 <0.001 0.29 <0.001 0.47 <0.001

MDA 0.23 <0.001 0.36 <0.001 0.51 <0.001 0.14 <0.001
CAT −0.32 <0.001 −0.39 <0.001 −0.25 <0.001 −0.31 <0.001

SOD −0.54 0.001 −0.48 <0.001 −0.37 <0.001 −0.43 <0.001

Bax 0.21 <0.001 0.18 <0.001 0.26 <0.001 0.26 <0.001
Bcl-2 −0.45 <0.001 −0.49 <0.001 −0.53 <0.001 −0.78 <0.001

Caspase-3 0.48 <0.001 0.21 <0.001 0.23 <0.001 0.19 <0.001

miR-124a 0.251 <0.001 0.362 <0.001 0.182 <0.001 0.135 <0.001
miR-483-5p 0.314 <0.001 0.217 <0.001 0.321 <0.001 0.158 <0.001

miR-142-3p −0.242 <0.001 −0.342 <0.001 −0.124 <0.001 −0.314 <0.001

miR-125b −0.254 <0.001 −0.227 <0.001 −0.351 <0.001 −0.318 <0.001

Note: aP-value determined by partial correlation analysis with respect to the DPP4 activity, BDNF, SIRT-1, cellular oxidative stress, apoptosis, and relative expression of 
miRNAs adjusted for age, BMI, gender, education level, exercise levels, and working.
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significantly associated with memory loss, language, 
thought, and judgment of subjects with MCI. The results 
showed that low cognitive performance was associated 
with both elevated MDA and NO levels and decreased 
SOD and CAT activity in subjects with MCI.

Previous reports showed that accumulation of cellular 
oxidative free radicals (ROS) significantly produces 

degeneration of brain neurons,61–65 vascular lesions,66 

which consequently lead to cognitive decline and dementia 
in old age. It was reported that in brain tissue, ROS gener-
ated from microglia and astrocytes are proposed to control 
synaptic and nonsynaptic communications between neurons 
and glia. Thus, the release of ROS radicals in higher quantity 
promotes neurodegeneration and memory loss via processes 

Figure 2 Metabolic changes in the DPP4 activity, BDNF, SIRT-1, and apoptotic genes Bcl-2, Bax, and caspase-3 in healthy control (n=80) and older adults with MCI (n=70). 
(A–D). The results showed that the levels of BDNF, SIRT-1 significantly reduced and the levels of DPP4 activity significantly increased in older subjects with MCI compared 
to healthy controls (A–C). In addition, the expression of apoptotic genes was significantly reported in all subjects. In Older adults with MCI, the expression levels of both 
Bax and caspase-3 genes significantly (p=0.001) increased, and the expression levels of Bcl-2 gene significantly (p=0.01) reduced in comparison with the results of healthy 
controls (D). Significance of the comparison was evaluated by Mann–Whitney–Wilcoxon test and sample t-test, **p≤ 0.01 ***p≤ 0.001. 
Abbreviation: MCI, mild cognitive impairment.

Table 5 Correlations Between DPP4 Activities, BDNF, and SIRT-1 vs Celluar Oxidative Stress and Apoptosis in Older Adults with 
MCI

Characteristics Cognitive-Related Metabolic Parametersa

DPP4 Activity BDNF SIRT1(ng/mL)

r P r P r P

NO −0.128 <0.01 −0.32 <0.01 −0.56 <0.01
MDA −0.18 <0.001 −0.23 <0.001 −0.58 <0.001

CAT 0.89 <0.001 0.76 <0.001 0.81 <0.001

SOD 0.48 <0.001 0.71 <0.001 0.56 <0.001
Bax −0.31 <0.001 −0.43 <0.001 −0.48 <0.001

Bcl-2 0.36 <0.001 0.51 <0.001 0.42 <0.001

Caspase-3 −0.87 <0.001 −0.96 <0.001 −0.74 <0.001

Note: aP-value determined by partial correlation analysis with respect to the DPP4 activity, BDNF, DBR, cellular oxidative stress, and apoptosis adjusted for age, BMI, 
gender, education level, exercise levels, and working among older adults.
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of neuroinflammation and cell death.62 Consistent with our 
results, MDA as lipid peroxide product was significantly 
reported in the serum of subjects with brain disorders such 
as MCI.36,63 Also, it was reported that MDA and related 
lipid peroxides considered promising peripheral biomarkers 
during brain cases with white matter abnormalities. This 
may be related to higher lipid contents in both the axonal 
membranes and myelin sheaths of the brain.63,64

NO synthesized by the enzyme NOS from neurons of 
the brain and spinal cord.63–67 It functions to maintain 
cellular vascular tone, neurotransmitter function, and med-
iation of cellular defense in normal cases.68 However, NO 
was considered a neurotoxic agent when it produced at 
higher levels for brain microglia and might play a role in 
neurodegeneration.68–72 Thus, in subjects with brain 

disorders such as MCI, Alzheimer’s, and Parkinson’s dis-
ease thought to be associated with higher production of 
cellular NO induced by NOS enzyme activity.73

In addition, like our results, dysregulation of antioxi-
dant enzymes such as CAT and SOD was proposed to play 
a role in cellular oxidative stress associated with age- 
related pathologies, especially cognitive decline.71–75 

Whereas, a combined measurement of oxidative status 
with antioxidant potential was prospectively associated 
with the process of neurodegeneration and could be esti-
mated as signs of cognitive decline among older ages.76–82

Previous research studies showed that the accumulation 
of ROS free radicals activates neural cell apoptosis during 
brain development.77–80 A set of caspases enzymes such as 
caspase-3 and Bax were expressed to induce apoptosis and 
stimulate inflammation in the nervous system which leads 
to brain neurodegeneration.79,80

In this study, we are trying to explore the potential 
mechanism of cellular apoptosis involved in neurologic 
injury associated with cognitive problems in patients 
with MCI. Thus, apoptotic genes, Bcl-2, Bax, and cas-
pase-3, were estimated in all participants by using real- 
time PCR analysis. The results showed that the expression 
of Bax and caspase-3 apoptotic genes significantly upre-
gulated (increased) and the expression levels of the Bcl-2 
antiapoptotic gene significantly down-regulated (reduced) 
in the patients with MCI compared to healthy controls. 
The expressed apoptotic genes significantly correlated 
with the score of cognitive function among MCI patients. 
Cognitive function scores of MMSE, MoCA, ADL, and 

Figure 3 MicroRNAs’ differential expression profile in healthy control (n=80) and 
older adults with MCI (n=70). The results showed that the relative expression of 
miR-124a and miR-483-5p significantly increased (P=0.001), and miR-142-3p, and 
miR-125b significantly reduced (P=0.01) in older adults with MCI compared healthy 
controls. Significance of the comparison was evaluated by Mann–Whitney– 
Wilcoxon test and sample t-test, **p≤ 0.01, ***p≤ 0.001. 
Abbreviation: MCI, mild cognitive impairment.

Table 6 Correlations Between DPP4 Activities, BDNF, SIRT-1, Celluar Oxidative Stress, and Apoptosis vs Relative Expression of 
miRNAs in Older Adults with MCI

Characteristics miRNAs Relative Expressiona

miR-124a miR-483-5p miR-142-3p miR-125b

r P r P r P r P

DPP4 activity (nmol/min/mL) 0.12 <0.01 0.24 <0.002 0.38 < 0.002 0.145 <0.001
BDNF (ng/mL) 0.21 <0.01 0.31 <0.01 0.28 < 0.01 0.31 <0.001

SIRT1(ng/mL) 0.45 <0.01 0.57 <0.01 0.49 < 0.01 0.49 <0.01

NO 0.37 <0.001 0.42 <0.001 0.36 < 0.001 0.76 <0.001
MDA 0.18 <0.001 0.23 <0.001 0.42 < 0.001 0.27 <0.001

CAT −0.51 <0.001 −0.62 <0.001 −0.54 < 0.001 −0.63 <0.001

SOD −0.85 <0.001 −0.82 <0.001 −0.47 < 0.001 −0.84 <0.001
Bax −0.45 <0.001 −0.36 <0.001 −0.56 < 0.001 −0.46 <0.001

Bcl-2 −0.17 <0.001 −0.42 <0.001 −0.68 < 0.001 −0.91 <0.001

Caspase-3 −0.75 <0.001 −0.53 <0.001 −0.47 < 0.001 −0.43 <0.001

Note: aP-value determined by partial correlation analysis with respect to the DPP4 activity, BDNF, DBR, cellular oxidative stress, and apoptosis adjusted for age, BMI, 
gender, education level, exercise levels, and working among older adults with MCI.
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memory correlated positively with apoptotic genes Bax 
and caspase-3, and negatively with the expressed Bcl-2 
antiapoptotic gene. The results signify the role of apopto-
sis in the pathogenesis of MCI.

Previously, it was reported that caspase enzymes espe-
cially caspases 3 and 7 activate regular apoptosis during 
brain development, neurodegeneration, and progressive 
dismantling of neuronal circuits in brain regions which 
inturn mediate memory functions. Thus, an abnormal 
increase in apoptosis via oxidative stress or inflammation 
significantly leads to deficiency in memory functions in 
older ages.81,82 Caspase 3 activation by intrinsic and 
extrinsic apoptotic pathways showed to be the most vital 
event associated with neuronal cell death in most chronic 
neurodegenerative conditions.81,82 The hippocampus is an 
important brain region responsible for learning and mem-
ory and higher exposure to free radical oxidative stress and 
apoptosis leads to significant abnormality in learning and 
memory among MCI patients.83–85

In this study, it was found that the levels of BDNF and 
SIRT-1 were significantly reduced and the enzyme DPP4 
activity significantly increased in the serum of MCI 
patients compared to healthy controls. The changes in 
these neurometabolic parameters were significantly asso-
ciated with the scores of cognitive measurements; MMSE, 
MoCA, ADL, and memory scores.

In patients with dementia (AD) and brain disorders, the 
levels of BDNF in serum showed to be associated with 
cognitive decline.86–89 Matched to our results, BDNF sig-
nificantly decreased in patients with MCI and AD,87 and 
that higher levels of BDNF are required to protect future 
recurrence of brain disorders such as AD.86 Also, SIRT-1 
was significantly reduced in patients with MCI in relation 
to healthy control subjects. The increased levels of human 
SIRT1 were significantly associated with neuroprotection 
and longevity.90,91 Thus, both BDNF and SIRT1 were 
considered as conceivable candidate genes contributing 
to MCI and AD.92,93

In this study, the levels of DPP4 activity, BDNF, and 
SIRT-1 in the serum of MCI patients correlated positively 
with CAT and SOD activity, Bcl-2 gene expression, and 
negatively with cellular NO, MDA, and expressed Bax, 
and caspase-3 genes. The increased enzyme DPP4 activ-
ity among our MCI patients was significantly associated 
with others who reported an increase in the levels of 
plasma DPP4 activity in MCI patients and concluded 
that DPP4 activity was mutually influenced by increased 
cellular free radical oxidative stress.94 Moreover, the 

lower levels of DPP4 activity significantly improved cog-
nitive function via the enhancement of inflammation, 
oxidative stress and reducing or suppression of 
apoptosis.16–18 It was reported previously that increased 
DPP4 activity promotes the development of oxidative 
stress and inflammation,95 which was significantly 
involved in the progression and pathogenesis of cognitive 
dysfunction.1,90 Thus, decreased BDNF and increased 
DPP4 activities in the blood circulation of our MCI 
patients showed to have a pathogenetic role in the devel-
opment of cognitive impairment as previously reported, 
and then it could be used as a prognostic biomarker for 
MCI.57,97,98

miRNAs are non-coding short cellular RNAs signifi-
cantly expressed with cells and freely liberated in periph-
eral blood circulation, and easily identified in urine, 
plasma, serum, and cerebrospinal fluids. It has multicellu-
lar functions particularly the regulation of gene expression. 
Previous studies reported the expression of miRNAs in the 
brain and associated with the regulation of neuronal plas-
ticity, function, and development. It was reported pre-
viously that most neurodevelopment disorders or 
neurodegenerative diseases are significantly associated 
with abnormality or dysfunction in miRNAs 
transcription.13,99,100 In general, about half of all protein- 
coding genes identified to be regulated by microRNAs 
which significantly reduce the abnormality or fluctuations 
in protein expression.101,102

Thus, in this study, we are trying to understand the role 
of miRNAs in the development of neuropsychiatric dis-
orders associated with cognitive impairment in patients 
with MCI.

In this study, real-time PCR analysis was performed to 
estimate microRNAs’ differential expression in control 
and patients with MCI. It was found that the relative 
expression levels of miR-124a and miR-483-5p signifi-
cantly increased and miR-142-3p and miR-125b signifi-
cantly reduced in the serum of older adults with MCI 
compared to healthy controls. The data also showed that 
relative expression of miRNAs; miR-124a, miR-483-5p, 
miR-142-3p, and miR-125b correlated with the scores of 
cognitive function among MCI patients.

Similarly, increased peripheral miR-146a and miR- 
483-5p levels were previously shown to associate with 
the severity of cognitive impairment in subjects with 
MCI and to predict the conversion to dementia,31,36,103 

thus both miR-486-5p and miR-483-5p were the most 
significant indicators of MCI among older adults. 
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Matched to our results, the decline in the levels of miR– 
125b and miR-142-3p significantly associated with the 
scores of cognitive impairment in patients with MCI 
and AD,104–107 and could be used as a useful noninvasive 
biomarker for older adults with MCI. In addition, higher 
specificity (68.3%) and a sensitivity of 80.8% with quiet 
priority and significant correlation with the Mini-Mental 
State Examination (MMSE) were reported for expressed 
miR-125b in patients with dementia.108,109

In the current study, correlation analysis interestingly 
showed that expressed microRNAs were significantly 
associated with cellular oxidative stress and apoptotic 
inducing genes. The expression of microRNAs corre-
lated positively with oxidative stress parameters, NO 
and MDA, and negatively with the reduced activities of 
antioxidative enzymes; CAT and SOD as well as expres-
sion levels of cellular apoptosis genes Bcl-2, Bax, and 
caspase-3. Previously, miR 125b, miR 146a, and other 
related miRNAs showed an association with neuro-
pathology, apoptosis, oxidative stress, and other neuro-
degeneration of the human central nervous system.35 In 
addition, the relative expression of miR-124a and miR 
125b correlated with cellular aging processes such as 
oxidative stress, age-related antioxidant dysfunction, 
senescence, and apoptosis.35,110

In the previous differential correlation analysis, plasma 
miR-125b with multiple miRNAs pairs showed to have 
higher accuracy for MCI detection.111 It was downregu-
lated in the serum of patients with dementia.112 miR-125b 
promotes cellular apoptosis via regulating the function of 
a tumor suppressor gene (p53) which significantly asso-
ciated with controlling diseases, aging, and metabolism 
particularly in brain neurodegeneration in AD.113–115 It 
was reported that miR 125b enhances neuronal apoptosis 
and Tau phosphorylation in patients with Alzheimer’s 
disease.116 Our results matched with others which showed 
the expression of miRNAs; miR-124a, miR-483-5p, miR- 
142-3p, and miR-125b significantly associated with more 
severe cognitive decline in patients with MCI via promot-
ing cellular oxidative and apoptosis.117

The expression patterns of serum microRNAs; miR- 
124a, miR-483-5p, miR-142-3p, and miR-125b correlated 
positively with DPP4 activity, BDNF, and SIRT-1 in the 
serum of MCI patients. The proposed correlation may 
proceed via the indirect influence of expressed 
microRNAs on neuronal oxidative stress and apoptosis in 
patients with MCI. Whereas increased DPP4 activity and 
decline of both BDNF, and SIRT-1 in the serum of MCI 

patients resulted in the enhancement of inflammation, oxi-
dative stress, and apoptosis which was significantly impli-
cated in the pathophysiology of cognitive 
decline.19,54,55,118 In addition, many expressed 
microRNAs showed to target SIRT-1; thus, dysfunction 
or abnormal transcription of these miRNAs by higher 
oxidative stress and apoptosis may lead to neurodegenera-
tive disorders.97,119,120

In order to have a full understanding of differentially 
expressed miR-124a, miR-483-5p, miR-142-3p, and miR- 
125b and its exact correlation with DPP4 activity, BDNF, 
and SIRT-1 in the serum of MCI patients, bioinformatics 
analysis of their target genes are necessary. Moreover, 
DPP4 activity, BDNF, SIRT-1, and its related genes 
showed to be associated with apoptosis, oxidative stress, 
inflammatory, and neural differentiation.16,32,121–123 More 
molecular-based tests such as luciferase assays are com-
monly used as a reporter to assess the transcriptional 
activity in intact cells. The most common applications of 
these gene assays are to examine the regulation of tran-
scriptional activities by promoters and transcription fac-
tors. These assays have also been adapted for testing the 
effect of miRNA-mediated, posttranscriptional regulation 
on target genes. For many human genes, this test is 
achieved by engineering a luciferase gene construct con-
taining the predicted miRNA targeting sequence from the 
target gene (often located in the 3-UTR).17,18,124–128 Thus, 
in our study, the potential interaction between expressed 
miR-124a, miR-483-5p, miR-142-3p, and miR-125b and 
its exact correlation with DPP4 activity, BDNF, and SIRT- 
1 in the serum of MCI patients could be explained on the 
basis of miRNA targeting sequence from the target genes 
of DPP4 activity, BDNF, and SIRT-1 using luciferase 
assay; however, larger cohort sample size is required 
which could be evaluated in future studies.

Conclusion
Our results indicated that circulating miR-124a, miR-483- 
5p, miR-142-3p, and miR-125b were potential biomarkers 
for diagnosis of MCI and significantly associated with 
severe cognitive decline, oxidative stress, and apoptosis 
in patients with MCI. The detection of circulating miR- 
124a, miR-483-5p, miR-142-3p, and miR-125b might 
serve as a new non-invasive biomarker for MCI with 
high diagnostic performance. However,future experimen-
tal studies based upon bioinformatics analysis were 
required to confirm the diagnostic value of these 
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circulating miRNAs, as well as their regulation mechan-
isms in the pathogenesis of MCI in aged patients.
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