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Abstract: Extracellular vesicles (EVs) are particles released by multiple cells, encapsu-
lated by lipid bilayers and containing a variety of biological materials, including proteins, 
nucleic acids, lipids and metabolites. With the advancement of separation and character-
ization methods, EV subtypes and their complex and diverse functions have been 
recognized. In the central nervous system (CNS), EVs are involved in various physiolo-
gical and pathological processes, such as regulation of neuronal firing, synaptic plasticity, 
formation and maintenance of myelin sheath, propagation of neuroinflammation, neuro-
protection, and spread and removal of toxic protein aggregates. Activity-dependent 
alteration of constituents enables EVs to reflect the change of cell and tissue states, 
and the wide distribution of EVs in biological fluids endows them with potential as 
diagnostic and prognostic biomarkers for CNS diseases, including neurodegenerative 
disease, cerebrovascular disease, traumatic brain disease, and brain tumor. Favorable 
biocompatibility, ability of crossing the blood–brain barrier and protecting contents 
from degradation, give promising therapeutic effects of EVs, either collected from 
mesenchymal stem cells culture conditioned media, or designed as drug delivery vehicles 
loaded with specific agents. In this review, we summarized EVs’ basic biological proper-
ties, and mainly focused on their applications in CNS diseases. 
Keywords: EVs, exosomes, CNS, blood–brain barrier, neurodegenerative disease, stroke

Introduction
Extracellular vesicles (EVs) are particles derived from biological system, enclosed 
by lipid bilayers and released by almost all cells to extracellular space.1 In the last 
four decades, remarkable progress has been made in the field of EVs. Nowadays, 
EVs research is mainly focused on three aspects. The first one is the methodological 
study, involving separation, enrichment and characterization of EVs or EV sub-
types, originated from cell culture conditioned media or physiological fluids. In 
fact, more standardized experimental procedures are evolving and more novel 
experimental techniques are constantly emerging.2 The second aspect is the inves-
tigation of intrinsic properties and functions of EVs from the normal physiological 
processes in organism to pathological alterations in various diseases. The last one is 
to explore the application of EVs in diagnosis, prognosis and treatment. To some 
extent, these three aspects are interactional and gradually deepening.

The role of EVs in the central nervous system (CNS) is an issue still to be clarified. 
Structural and functional integrity of the CNS is based on interactions between neurons 
and glial cells through electrical activity, and anterograde or retrograde chemical 
signal. EVs can be released by neural stem/progenitor cells (NSCs/NPCs),3 neurons, 
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astrocytes, oligodendrocytes, and microglia,4,5 and at 
a broader level, participate in cell-cell communication, not 
only encompassing various signal molecules but more 
important, integrating the CNS with peripheral tissues and 
organs. Subsequent changes of the CNS both in physiologi-
cal and pathological conditions probably reflect a “double- 
edged sword” effect of EVs. Isolating brain-derived EVs in 
cerebrospinal fluid (CSF) or peripheral body fluids (plasma, 
serum, urine and saliva, etc.), detecting changes of specific 
molecules within EVs, delivering natural or engineered EVs 
loaded with therapeutic agents into the brain and targeting 
restricted lesions are hot spots in EV research. In this review, 
we gave an outline of EVs’ basic properties first, which is 
a prerequisite for further research, and then the role and 
application in the CNS was launched at great lengths.

Basic Properties of EVs
Origin, Classification and Functions
Generally, according to distinctions in size and origin, EVs 
are divided into three subtypes.6 Exosomes, with 40–160 nm 
in diameter, are generated from the endosome system. 
Transmembrane proteins are endocytosed along with the 
plasma membrane (PM) invagination, forming early endo-
some. Early endosome matures into late endosome and 
eventually transforms into multivesicular body (MVB). 
Limiting membrane of MVB invaginates to form 

intraluminal vesicles, and when MVB fuses with PM, they 
are released to the extracellular microenvironment, that is 
exosomes. Ectosomes or shedding microvesicles are formed 
by direct outward budding of PM, with 50–1000 nm in 
diameter. Figure 1 illustrates the different origins of these 
two subtypes. Apoptotic bodies, larger than the other two 
(50–5000 nm in diameter), are fragments of cells destined to 
apoptosis or programmed cell death. Though they were just 
regarded as a rapid elimination mode for cytoplasm and cell 
debris for a long time, some recent studies have disclosed 
that apoptotic bodies might also involve the transmission of 
information, especially in cancer field.7,8 Notably, based on 
current isolation, purification and analytical techniques, we 
always harvest heterogeneous EV populations in the end, 
implying that the conclusion pointed to a particular subtype 
of EV, such as exosomes, should be interpreted cautiously.9

Despite the existence of mixed subtypes, the most 
important function, that is intercellular communication, 
has been recognized based on the broader concept of 
EVs. Actually, the above function is the basis of various 
physiological and pathological processes associated with 
EVs, including immune response and tumor 
formation.10,11 Intercellular communication mediated by 
EVs covers vesicles secretion, long or short-distance traf-
ficking, uptake by recipient cells and further intracellular 
effects. Whether formation route is double invagination or 
direct budding of PM, transmembrane proteins and 

Figure 1 Biogenesis of extracellular vesicles (EVs) and transport across the blood–brain barrier (BBB). Two subtypes of EV, exosomes and ectosomes, represent two 
different biogenesis. Exosomes are derived from endosome pathway, while ectosomes are formed directly through plasma membrane budding. EVs can cross the BBB easily. 
On the one hand, various components, including nucleic acids, proteins, amino acids and metabolites in the EVs can be transported from the central nervous system (CNS) 
to peripheral biofluids, on the another, RNAs (including circular RNA, short hairpin RNA and small interfering RNA) and drug molecules (such as catalase, dopamine and 
Edaravone etc.) can be delivered to the CNS. 
Abbreviations: MVB, multivesicular body; PM, plasma membrane.
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cytosolic components, altered in response to changes in 
the cell state, are the source of information and signals. 
The endosomal sorting complex required for transport 
assists in targeting cargo to exosomes,12 and members of 
the Rab family of small GTPases have an acknowledged 
role in trafficking vesicles intracellularly13 as well as 
a potential impact for exosome secretion.14 Soluble 
N-ethylmaleimide-sensitive fusion attachment protein 
receptor (SNARE) complexes are critical for MVB fusion 
with the PM, since the YKT6 SNARE has been proved to 
be necessary for Wnt-bearing exosomes secretion,15 and 
synaptosomal-associated protein 23 contributed to MVB- 
PM fusion spontaneously in vitro.16 Meanwhile, cytoske-
letal components, including actin, actomyosin and micro-
tubule network also engaged in budding and releasing of 
EVs.17,18 However, these mechanisms are not specific for 
biogenesis of EVs, but also associated with other secretion 
events. After being released, EVs undergo short or long- 
distance journal. It was reported that functional proteins, 
mRNAs and miRNAs contained in EVs can be transferred 
without changing their biological activity.19–21 EVs can 
work directly at recipient cells surface, for example, cog-
nate T cell receptors on T lymphocytes can be activated by 
EVs with major histocompatibility complex (MHC)–pep-
tide complexes.22 Yet, in most cases, the contents of EV 
are effector molecules. Multiple mechanisms have been 
clarified in the uptake of EVs by recipient cells, such as 
micropinocytosis, direct fusion with the PM, and clathrin- 
dependent endocytosis.9 However, potential impacts 
caused by different modes on subsequent fate or functional 
outcomes of EV constituents are not clear. Pro- 
inflammatory cytokines mediated secretion of EVs with 
IFNγ–bound-IFNγ receptor 1 from NPC can activate IFNγ 
receptor 1, signal transducer and activator of transcription 
1 in recipient cells,23 indicating an inductive effect on 
targeting cells.

EVs are involved in antigen presentation in immune 
regulation. On the one hand, EVs with peptide(p)-MHC 
can be captured and laid in antigen presenting cells sur-
face, and then p-MHC is presented to T cells directly. On 
the other hand, when EVs are taken in, their antigen- 
peptides are assembled into MHC molecules of the host 
antigen presenting cells, and this new p-MHC complexes 
will be presented to the T cells.24 In the field of oncology, 
EVs enrolled in initiation and promotion of tumor. 
Stefanius et al reported exosomes derived from pancreatic 
cancer cells can induce mutations in recipient cells, thus 
launch malignant cell transformation.25 EVs containing 

miR-200, released by breast cancer cells, promote 
mesenchymal-to-epithelial transition in nonmetastatic 
cells or metastasis in weakly metastatic cells,26 indicating 
a role in plasticity of tumor cells. In breast cancer, exo-
somes containing miR-105 impair the integrity of blood 
vessels by inhibiting expression of zonular occludens 1, 
a crucial endothelial tight junction protein,27 implying EVs 
are associated with tumor metastasis. Some EVs released 
by glioblastoma (GBM) express programmed death 
ligand-1 in the surface, and whose combination with pro-
grammed cell death protein-1 can inhibit T cell activation, 
and therefore, causing immune evasion.28

Separation and Characterization of EVs
EVs are collected from extracellular fluids, which means it 
is necessary to avoid contamination of vesicles originated 
from the intracellular compartments. Although an 
acknowledged and standardized isolation procedure is not 
available, various methods have been applied in different 
degree, including ultra-speed centrifugation, ultrafiltration, 
immunoaffinity capture, charge neutralization-based poly-
mer precipitation, size-exclusion chromatograph, and 
microfluidic techniques.2 Among them, differential ultra-
centrifugation is still the most common approach to 
achieve separation and purification of EVs.29 Gradient 
ultracentrifugation, separating particles by different den-
sity, is used to eliminate contaminating non-vesicular par-
ticles, such as free proteins and protein-RNA complexes.30 

Ultrafiltration is based on ultrafine Nano-membrane to 
isolate EV subtypes and may represent a more efficient 
and faster method when compared to the above two 
methods.31 Immunoaffinity isolation is based on two key 
points: the presence of distinctive protein markers on EVs 
and antigen-antibody binding reaction, showing great 
superiority in separating unique EV populations. 
Polymeric precipitation and chromatograph have been uti-
lized in commercial kits, such as ExoQuick and qEV. High 
yields may have been achieved with the former32 while the 
latter can protect EVs structure from mechanical 
damage.33 These techniques are not mutually independent 
and sometimes a better choice may be a combination of 
two or three, based on research requirements and the 
feature of the tested sample.

After preliminary separation and enrichment, the next 
is EV characterization, which is the foundation of further 
functional studies. First step is the identification of EV 
protein markers. According to the recommendation of 
minimal information for studies of extracellular vesicles 
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2018,1 three types of proteins have to be evaluated, includ-
ing PM and/or endosomes related proteins, cytosolic/peri-
plasmic proteins binding to lipid or membrane protein, and 
co-isolated contaminants related proteins. The second step 
is to characterize single vesicles. Transmission electron 
microscope provides visual evidence for the morphology, 
size and fine structure of single EV, and nanoparticle 
tracking analysis evaluates concentration and size distribu-
tion of EV populations.34,35 Of note, lipoprotein particles, 
protein complexes and other particles which, with 
a similar size, are difficult to distinguish from EVs through 
these two methods. Some other techniques, such as resis-
tive pulse sensing, dynamic light scattering and flow cyto-
metry, are also being developed and applied.34,36 In most 
cases, “exosomes” mentioned in the studies are actually 
a mixture of vesicles, therefore, the generic term “EVs” is 
applied in this review, while the term “exosomes” is also 
retained under some circumstances, in order to be consis-
tent with the cited literature.

The Content of EVs
EVs contain a variety of bioactive molecules, including 
soluble proteins, DNA, RNA, lipids and metabolites. RNA 
is considered as the primary regulator of the activity of 
recipient cells and have aroused great enthusiasm and 
interest in the scientific community. Following are the 
brief introduction for two special types of RNA, both of 
them are research hotspots in recent years. Long noncod-
ing RNA (lncRNA), a member of non-coding RNAs com-
prised of more than 200 nucleotides, acts as the regulator 
of gene expression at the translation level or epigenetic 
level by self-degradation and re-expression.37 It has been 
reported that EVs can play a role in disease regulation 
through lncRNA. For instance, lncRNA H19, delivered by 
exosomes, regulated endothelial cell phenotype and pro-
moted angiogenesis in CD90+ hepatoma carcinoma 
cells.38 Exosomal lncRNA KLF3-AS1 inhibited chondro-
cyte apoptosis, which was induced by IL-1, and promoted 
cartilage repair and cell proliferation in osteoarthritis rat 
models.39

Circular RNA (circRNA) is a novel member of non-
coding RNAs, with covalent closed-loop structure caused 
by back-spliced exons in nucleus. It was reported 
circRNAs are more abundant and stable in exosomes 
than in producer cells,40 implying the former might be 
major mediators for circRNAs functions. Synthesis of 
exosomal circRNAs is associated with the alteration of 
miRNAs level in parental cells and the correlation can be 

reflected dynamically in recipient cells,41 indicating 
a possible interaction mechanism between these two. It 
has been widely studied that circRNA act as “miRNA 
sponge”, that is the former is competing endogenous 
RNA to bind miRNA, due to their enriched binding 
sites.42,43 For example, cirNRIP1, which was transmitted 
by exosome and high expressed in gastric cancer, regu-
lated the expression level of AKT1 by sponging miR-149- 
5p. Knocking down circNRIP1 resulted in inhibition of 
proliferation, migration and invasion of cancer cells.42 

Zhang et al reported exosomal hsa_circ_0010522 
(a circRNA bind to miR-133) promote white adipose 
browning in gastric cancer by PRDM16 and miR-133 
pathways, offering insight into the molecular mechanism 
of cancer-related cachexia.44 Current studies showed the 
effect of circRNAs in cell proliferation, tumor metastasis 
and drug resistance of cancer. Tian et al discovered serum 
exosomal circRASSF2 is higher in laryngeal squamous 
cell carcinoma, while proliferation of malignant cells was 
suppressed by knocking down circRASSF2. This regula-
tory effect may be mediated through miR-302b-3p/insulin- 
like growth factor −1R axis.45 Li et al reported high 
circRNA PDE8A expression in exosomes secreted by 
pancreatic cancer cells are relevant to the invasive growth 
of tumor cells and lymphatic invasion via the miR-338/ 
MACC1/MET pathway.46 Expression of exosomal Friend 
leukemia virus integration 1 circRNAs are significantly 
higher in small cell lung cancer and related to clinical 
chemotherapy and poor survival,47 indicating a potential 
impact in drug resistance. Figure 1 is a simple illustration 
for EVs contents.

The Uniqueness of EVs in the CNS
Compared with peripheral organs, brain and spinal cord 
have their own specialty, and relatively, EVs play unique 
roles in the CNS. Neurogenesis, the process by which new 
neurons are formed in the brain, is crucial when an embryo 
is developing. In the adult mammalian brain, neurogenesis 
also continues in certain regions throughout lifespan. The 
structural basis is “neurogenic niche”, composed of multi-
ple cell types including NSCs/NPCs, neuroblasts, imma-
ture and mature neurons, while EV is an important chain to 
connect these cells, through their containing bioactive 
molecules.48 Exosomal miR-let7b and miR-9, expressed 
in NSCs/NPCs, are capable of regulating stem cell prolif-
eration and differentiation by targeting nuclear receptor 
TLX.49,50 A reductionist experimental paradigm revealed 
that neuronal exosomes participate in development of 
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neural circuits, covering cell proliferation, differentiation, 
synaptogenesis, and synchronized firing, which is mainly 
based on neurodevelopmental signaling proteins. The 
result was confirmed by proteomic analysis of components 
of two exosomes.51

EVs are involved in regulation of neuronal firing, 
synaptic plasticity, formation and maintenance of myelina-
tion, propagation of neuroinflammation, neuroprotection, 
and spread and clearance of toxic protein aggregates.52 

Secretion of neuronal EVs is coupled to synaptic activity 
(neuronal depolarization or excitatory neurotransmitter 
release), suggesting EVs may be related to plasticity- 
associated processes. It has been recognized that the final 
effect of different frequencies of stimulation is the change 
in quantity of α-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid receptors (AMPARs) in the postsynaptic 
membrane,53 while EVs can transport AMPARs activity- 
dependently, prompting a potential mechanism for altera-
tion of synaptic strength.54,55 In a study of the Drosophila 
neuromuscular junction, Korkut et al demonstrated that 
Wingless, a Wnt-family signaling protein, is shuttled on 
EVs across synaptic space, and the formation of synaptic 
boutons is suppressed as this EV-based trafficking is 
interrupted.56,57 The activity-regulated cytoskeleton- 
associated protein, which is a crucial mediator for synaptic 
plasticity, self-assembly forms capsids like viral group- 
specific antigen proteins and is transmitted intercellularly 
by EVs. Similarly, blocking this trafficking at the 
Drosophila neuromuscular junction impaired synapse 
maturation and activity-dependent plasticity.58 

Furthermore, EVs were deemed to be engaging in synaptic 
pruning. Microglial cells participate in the removal of 
degenerating neurites of PC12 cells, and this phagocytosis 
can be promoted via pre-processing of exosomes, which 
were secreted by the differentiated PC12 cells, most likely 
due to the elevation of complement component 3.59 In 
neurodegenerative diseases, to some extent, roles of exo-
somes are paradoxical. On the one hand, exosomes exert 
a neuroprotective function, for they promote fibrillization 
of amyloid beta (Aβ), in turn, the formation of oligomeric 
Aβ, eliciting neurotoxic effects in Alzheimer’s disease 
(AD), is interrupted.60 Neuronal exosomes also contribute 
to capturing, clearing Aβ in amyloid precursor protein 
transgenic mice.61 On the other hand, exosomes exert 
“pathogenicity”. Asai et al observed that tau propagation 
is relieved in vitro and in vivo by inhibiting exosomes 
synthesis, which suggested a possible impact of exosomes 
for the progression of tauopathy.62 Similar phenomena 

were discovered in Parkinson’s disease (PD)63 and amyo-
trophic lateral sclerosis (ALS) for their signature patholo-
gical proteins.64,65

Applications of EVs in CNS Disease
Neurodegenerative Diseases
PD
In PD, α-synuclein (α-syn) is a well-known pathogenic 
protein, and its correlation with diagnosis and staging of 
disease has been investigated widely. A recent study 
reported that in the early stage of PD, α-syn level is 
increased in plasma exosomes, yet the difference is not 
significant between idiopathic rapid eye movement sleep 
behavior disorder (RBD) and healthy groups. That means 
α-syn can identify PD and RBD, since the latter often 
appear as an early nonmotor symptom of the former. 
More important, α-syn level was positively correlated to 
the severity of PD. Similar phenomenon was observed that 
patients whose α-syn longitudinally increased underwent 
deterioration of motor symptom in the follow-up.66 Some 
other studies confirmed the value of increased exosomal α- 
syn, oligomeric α-syn or the ratio of it to total α-syn in 
different biological fluids as biomarkers of PD.67–69 

Interestingly, Si et al reported α-syn level in CNS- 
derived exosomes is lower in PD patients than essential 
tremor and healthy groups.70 This result contradicting with 
the above studies, which may be interpreted as detected 
exosomes were L1CAM-labeled, a marker protein of the 
CNS, thus excluding contamination of α-syn from periph-
eral tissues sources. Actually, exosomal α-syn level in CSF 
was reported to be lower in PD group, due to increased 
efflux of α-syn to the peripheral blood.71 Leucine-rich 
repeat kinase 2 (LRRK2) mutation is a widely acknowl-
edged cause for inherited PD. In urine exosomes, autopho-
sphorylated Ser(P)-1292 LRRK2 level was higher in PD 
patients than controls, and heralded poorer cognitive 
performance.72 Gui et al characterized exosomal miRNA 
profiles in CSF and uncovered 11 miRNAs levels were 
downregulated while 16 miRNAs levels were upregulated 
in PD group. Through further validation in independent 
samples, miR-1 and miR-19b-3p levels were decreased 
and miR-153, miR-409-3p, miR-10a-5p and let-7p-3p 
levels were increased significantly. Biological pathway 
analysis associated with these miRNAs revealed 
Neurotrophin signaling, mTOR signaling, Ubiquitin 
mediated proteolysis, Dopaminergic synapse and 
Glutamatergic synapse.73 More differentially expressed 
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miRNAs in EVs in PD group are listed in Table 1. 
LncRNA level was evaluated in plasma exosomes col-
lected from PD and healthy group by next-generation 
sequencing and real-time quantitative polymerase chain 
reaction. Among 39 dysregulated IncRNAs, lnc-MKRN2 
-42:1 level was positively correlated with Unified PD 
Rating Scale Part III score, indicating a value in predicting 
severity of motor symptoms.74

Applications of EVs in PD therapy is embodied in two 
aspects: one is administration of EVs derived from stem 
cells, and another is to design EVs as drug vehicles. It was 
reported intracerebral injection of bone marrow mesenchy-
mal stem cell (MSC) secretome, containing various bioac-
tive molecules and EVs, into substantia nigra pars 
compacta and striatum of 6-hydroxydopamine induced PD 
rat models, redound to rescue dopaminergic neurons and 
improve behavioral performance.75 The conclusion 
explained the paracrine mechanism of MSCs. Chen et al 
proposed that increased autophagy induced by exosomes 
may be potential mechanism of cytoprotection in 6-hydro-
xydopamine-stimulated SH-SY5Y cells.76 As a critical 
pathogenic pathway of PD, oxidative stress mediated by 

reactive oxygen species is also a promising therapeutic 
target. Haney et al exploited a novel drug delivery system 
based on exosomes, containing about 940±15 catalase 
molecules in each of them. Catalase-exosomes significantly 
decreased reactive oxygen species levels in activated 
macrophages in vitro, while in a PD mice model, sup-
pressed brain inflammation and increased neuronal survi-
val, compared to free catalase only. As a contrast, exosomes 
without loading catalase showed little neurotoxicity.77 The 
similar idea was adopted by another study, which catalase 
mRNA was loaded into designer exosomes.78 Small inter-
fering RNA (siRNA), a representative molecule of RNA 
interference, is composed of a guide strand and a passenger 
strand with 21–23mer in lengths. siRNAs bind to RNA- 
induced silencing complex to form typically RNA interfer-
ence effector molecule, which efficiently downregulate 
gene expression by degrading mRNAs in post- 
transcription level. Cooper et al reported that intravenous 
injection of exosomes carrying α-syn siRNAs reduce α-syn 
mRNA level and intraneuronal misfolded protein 
aggregation.79 Short hairpin RNA (shRNA) is another com-
mon molecular tool to regulate expression level of genes. 

Table 1 Biomolecules Expressed Differentially in EVs Were Considered as Biomarker Candidates of Parkinson’s Disease (PD)

Down-Regulated Up-Regulated ROC Curve 
Analysis

Species Sample 
Size

Specimens Ref

– α-syn Y Human 53 P, 21 C Plasma [66]

– DJ-1 and α-syn Y Human 39 P, 40 C Plasma [67]

– α-syn Y Human 275 P, 144 

C

Serum [68]

– α-syn(Olig), α-syn(Olig)/α-syn(Total) Y Human 74 P, 60 C Saliva [69]

α-syn – Y Human 38 P, 18 C Serum [70]

– Ser(P)-1292 LRRK2 N Human 79 P, 79 C Urine [72]

miR-1, miR-19b-3p miR-153, miR-409-3p, miR-10a-5p, and let- 
7g-3p

Y Human 47P, 27 C CSF [73]

lnc-MKRN2-42:1, lnc- 
ZFAND5-29:1 etc

MSTRG.144437.1, MSTRG.16383.2 etc N Human 32 P, 13 C Plasma [74]

miR-19b miR-195, miR-24 Y Human 109 P, 43 
C

Serum [168]

miR-505 miR-331-5p Y Human 52 P, 48 C Plasma [169]

- let-7d, miR-22*, miR-23a, miR-24, miR-142- 

3p, and miR-222

Y Human 30 P, 30 C Serum [170]

Notes: “*” denotes miRNA with low expression level, which generate from an arm of the precursor. We mainly incorporated representative literatures in the last five years. 
Abbreviations: ROC, receiver operating characteristic curve; Ref, reference; α-syn, alpha-synuclein; Y, yes; N, no; P, PD patients; C, healthy controls; Olig, oligomeric; 
LRRK2, leucine-rich repeat kinase 2; CSF, cerebrospinal fluid.
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RVG (rabies virus glycoprotein peptide)-exosomes loading 
with α-syn shRNA minicircles were applied to PD mice 
model, resulting in alleviation of α-syn aggregation. 
Downregulation of α-syn gene under experimental condi-
tion had no negative consequences for normal neural 
functions.80 Dopamine replacement is the core of current 
drug therapy for PD, while dopamine cannot cross the 
blood–brain barrier (BBB). In consequence, Qu et al devel-
oped a blood exosome-based delivery system with dopa-
mine loaded efficiently, and reported systemic 
administration of designer exosomes improve symptomatic 
performance in a PD mouse model. Though exosomes can 
be detected in non-lesional brain area (hippocampus) or 
peripheral organs, no significant histopathological changes 
and functional impairment were observed, except renal 
mesangiolysis.81 More information is offered in Table 2.

AD
Since tau and Aβ are most representative pathogenic pro-
teins of AD, their roles in diagnosis and prognosis have 
also aroused the attention from researchers. A recent study 
demonstrated levels of exosomal phosphorylated (p)-S396 
-tau and Aβ1-42 are significantly higher in plasma of AD 
patients. Concomitantly, smaller and fewer exosomes were 
observed in AD group.82 Dynamic changes in abnormal 
protein levels during AD progress were explored by 

another study. Nam et al discovered total (t)-tau and 
p-tau levels in neuron-derived exosomes of serum are 
significantly higher in mild-AD group than mild cognitive 
impairment group. Levels of these two proteins were posi-
tively correlated with neuropathological progression and 
symptom severity.83 Interestingly, these signature proteins 
were also explored in Down syndrome (DS), which 
present AD pathologic changes in the brain as well as 
cognitive impairment or dementia in early life. Hamlett 
et al found increased levels of Aβ1-42, p-t181-tau and 
p-S396-tau in neuronal exosomes in DS group compared 
to HC. The discovery was consistent across all age groups, 
implying dysregulated protein expression may start in 
birth and gradually accumulate over time.84 In 
a following review, the author concluded exosome secre-
tion is increased in the DS brain, which might be 
a compensatory mechanism to remove excess toxic amy-
loid protein intracellularly.85 Jain et al identified 
a combination of small noncoding RNAs-three miRNAs 
and three piwi-interacting RNAs, which shows surprising 
capability of detecting AD and predicting the conversion 
of mild cognitive impairment patients to AD dementia.86 

The treatment of AD remains a huge challenge, nonethe-
less a few small advancements have been realized in basic 
science research. Yang et al demonstrated exosomes 

Table 2 Applications of EVs in the Therapy of Parkinson’s Disease (PD)

Agents Vehicle Species Route In vitro Effects Ref

– BMSCs 

secretome

Rats intracerebral 

injection

Y ↑behavioral performance, rescue dopaminergic neurons [75]

– Human 

umbilical cord 
MSCs Exo

Rats IV Y ↓apomorphine-induced asymmetric rotation, 

↓dopaminergic neuron loss and apoptosis, ↑DA in the 
striatum

[76]

Catalase Exo Mouse intranasal 
administration

Y ↓brain inflammation, ↑neuronal survival [77]

Catalase 
mRNA

Designer Exo Mice subcutaneous 
transplantation

Y ↓neurotoxicity, ↓neuroinflammation [78]

α-syn siRNA RVG-Exo Mice IV N ↓intraneuronal protein aggregation [79]

Anti-α-syn 

shRNA 
minicircles

RVG-exosomes Mice IV Y ↓α-syn aggregation, ↓loss of dopaminergic neurons, 

↑clinical symptoms

[80]

DA Blood Exo Mouse IV Y ↑symptomatic performance, ↓systemic toxicity [81]

Notes: We mainly incorporated representative literatures in the last five years. 
Abbreviations: Ref, reference; BMSC, bone marrow mesenchymal stem cell; Y, yes; N, no; “↑”, improve; “↓”, exacerbate; IV, intravenous injection; MSC, mesenchymal 
stem cell; Exo, exosomes; DA, dopamine; EVs, extracellular vesicles; α-syn, alpha-synuclein; siRNA, small interfering RNA; RVG, rabies virus glycoprotein peptide; shRNA, 
short hairpin RNA.
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collected from human umbilical cord MSCs could 
decrease Aβ production by regulating α/β-secretase 
expression levels. In AD mice model, administration of 
exosomes improved memory and cognitive function.87 

Nakano et al verified miR-146a transferred by bone mar-
row MSC derived-exosomes could decrease NF-kappaB 
level, which might rescue astrocytic function and promote 
synaptogenesis, eventually, ameliorate cognitive 
impairment.88 Targeting the tau pathology, exosomes 
loaded with curcumin and quercetin were designed to 
alleviate the AD symptoms both through inhibiting hyper-
phosphorylation of tau, while upstream mechanisms were 
different.89,90

ALS
In ALS, proteomic analysis was conducted by some 
researchers aiming to screen potential biomarkers. 
Through detecting exosome-enriched fractions of CSF 
of ALS patients, 14 dysregulated proteins were identi-
fied, among which level of novel INHAT repressor shows 
the maximum increase.91 Thompson et al analyzed pro-
tein profiles of CSF EVs from ALS and control groups, 
and found significant decreased levels of pentameric pro-
teasome-like protein Bleomycin hydrolase and protea-
some core complex protein. Whilst Ubiquitin-like 
modifying-activating protein 1 were upregulated in ALS 
patients associated with hexanucleotide repeat expansion 
in C9orf72, hinting the ability to identify different dis-
ease subtypes.92 For the alteration of miRNA levels in 
CSF EVs, Katsu et al reported 30 differentiated miRNAs, 
which are mainly involved in synaptic vesicle-related 
pathways by target gene analysis.93 Saucier et al revealed 
a miRNAs signature of plasma EVs in ALS and healthy 
groups, comprising 5 upregulated miRNAs and 22 down-
regulated miRNAs. Diagnostic potential of miR-15a-5p 
was validated for ALS, while miR-193a-5p was relevant 
to disability progression.94 In general, ALS is 
a progressive, fatal disease without any potent treatment, 
however, some researchers tried to explore possible dis-
ease-modifying therapies. In 2016, Lee et al demon-
strated adipose-derived stem cell (ASC) exosomes can 
mediate improvement of superoxide dismutase 1 aggre-
gation and mitochondrial dysfunction in vitro.95 The role 
of ASC was validated in some other studies. Bonafede 
et al reported the anti-apoptotic effect of ASC-exosomes 
in an ALS cell model, supported by increasing of anti- 
apoptotic protein and decreasing of pro-apoptotic pro-
teins through proteomic analysis of exosomes.96 

Furthermore, neuroprotective effect of ASC-exosomes 
was confirmed in superoxide dismutase 1 (G93A) murine 
model.97

Dementia with Lewy Bodies (DLB)
DLB, one of the main cause of dementia just 
following AD,98 is often misdiagnosed owing to some 
resembling pathological features, such as tau deposits 
and Aβ plaques.99,100 Gamez-Valero et al characterized 
protein profiles of plasma EVs between DLB and healthy 
groups, and identified differentially expressed gelsolin and 
butyrylcholinesterase. More important, in a further valida-
tion, gelsolin level decreased in DLB group compared 
to AD group.101 The team also described miRNA profiles 
of plasma EVs in these three groups, and revealed hsa-miR 
-451a and hsa-miR-21-5p levels significantly increase in 
DLB group compared to AD group, suggesting a potential 
of discriminating these two diseases.102 Currently, studies 
on DLB are few or just be affiliated to AD and PD 
research, more attention on DLB is to be expected in the 
future.

Cerebrovascular Disease and Traumatic 
Disease of the CNS
Stroke
Diagnosis of stroke depends on the medical history, clin-
ical manifestations and especially neuroimaging changes. 
Though some studies have reported the alteration of exo-
somal molecules in blood samples from ischemic stroke 
(IS) patients compared to healthy controls (HCs), such as 
upregulated miR-223,103 miR-9, miR-124104 and inflam-
masome protein,105 the relationship between exosomes 
and poor outcomes (higher National Institutes of Health 
Stroke Scale scores, larger infarct volumes or levels of 
inflammatory mediators) has also been explored. 
A mainstream view is apt to screen biomarkers of subtype 
identification and prognostic assessments. Classifying sub-
types of IS, including cardioembolism, large artery ather-
osclerosis, lacunar infarct, and stroke of undetermined 
etiology, is important for individualized treatment and 
prevention strategies. A recent study detected expression 
levels of serum miRNA among these IS subtypes and 
identified miR-125b, miR-125a, let-7b, and let-7e are 
upregulated significantly in cardioembolism, but not in 
the other three subtypes compared to HCs. While com-
pared to cardioembolism and HCs, miR-7-2-3p increased, 
and miR-1908 decreased significantly in these three 
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subtypes.106 It can be speculated that differentiated 
miRNAs are involved in pathogenesis of different sub-
types. Kalani et al analyzed profiles of miRNA in plasma 
EVs from spontaneous intraparenchymal hemorrhage, 
aneurysmal subarachnoid hemorrhage and IS patients, 
and found 25 miRNAs classifiers with high accuracy in 
distinguishing three stroke subtypes.107 In animal models 
and IS patients, Chi et al observed increased expression of 
Fas gene, as well as regulated miRNAs- hsa-let-7b-5p in 
plasma, are related to hyperglycemia after acute stroke 
onset, which often predicts an unfavorable outcome. 
Higher Fas expression was verified in exosomes. These 
two biomarkers may be candidate risk factors, pointing to 
poor neurological outcomes when combined with other 
traditional risk factors.108

The therapy of stroke is unmet, since the time window 
for effective treatment (such as intravenous thrombolysis 
or mechanical thrombectomy) is narrow and few drugs are 
available or their efficacy is not widely recognized. 
Doeppner et al verified the curative effect of MSC-EVs 
is not inferior to MSCs transplantation in a mice IS 
model.109 In a subcortical stroke model, intravenous injec-
tion of MSC-EVs restored white matter integrity, which 
was measured by fiber tract integrity and axonal 
sprouting.110 Moon et al reported MSC-EVs are mainly 
assembled in the infarcted hemisphere, not in the lung and 
liver, indicating a favorable lesion tropism. Moreover, 
biomolecules showing efficacy in EVs were investigated- 
that were miR-184 and miR-210.111 As previously men-
tioned, NSCs/NPCs are critical participants in neurogen-
esis, the role in post-stroke neural restoration has also been 
elucidated. Webb et al evaluated the effect of NSC-EVs in 
a porcine IS model. Three doses within 24 hours after 
stroke provoked a range of pathologic and symptomatic 
improvements (less lesion volume and brain swelling, 
better behavior and mobility).112 In a rodent model, NPC- 
EVs administration was identified as improving neurolo-
gical recovery and neuroregeneration, lasting for three 
months.113 Treatment of EVs derived from human cardio-
sphere-derived cell in a rabbit model did not increase the 
risk of intracerebral hemorrhage (ICH) or decrease survi-
val rate, and is even better than rt-PA in attenuating beha-
vioral deficits.114 Microglia activation within minutes of 
cerebral ischemia,115 release of pro-inflammatory and neu-
rotoxic factors like IL-1β, TNF-α, IFN-γ, and triggering of 
cerebral inflammation are significant cascade reactions,116 

in addition to direct ischemia attack after stroke. Microglia 
have two phenotypes-M1 initiates and aggravates 

inflammation response, yet M2 does the opposite.117 It 
has been proved that exosomes secreted by lipopolysac-
charide-stimulated macrophage regulate neuroinflamma-
tion by promoting microglial polarization from the M1 to 
the M2.118 Likewise, it’s a reasonable speculation that EVs 
derived from M2 phenotype comprise anti-inflammatory 
bioactive molecules. A recent study reported M2 micro-
glia-derived exosomes reduce neuronal apoptosis and 
infarct volume, and improve behavioral performance 
in vitro and in vivo. MiR-124 was regarded as a major 
contributor, as neuroprotective effect was weaker after 
being knocked down.119 Definitely, a more effective 
method is to load molecules of interest into exosomes 
with the ability to target the brain. Tian et al designed 
the c(RGDyK) peptide-conjugated exosomes with curcu-
min loaded, which exhibit superior performance in target-
ing ischemic lesions and inhibiting inflammatory 
response.120 Two studies employed RVG-exosomes and 
macrophage-derived exosomes to deliver nerve growth 
factor (protein and mRNA) and Edaravone, respectively, 
and both observed the effect of anti-inflammation and 
neuroprotection.121,122 Exosomes increased the utility of 
Edaravone compared to the dissociative state. Application 
value of some miRNAs, including miR-17-92 cluster, 
miR-210, miR-126 delivered by EVs has also been 
reported in rodent stroke models.123–125 Noteworthily, 
there was a study that explored the role of circRNA in 
both mice and nonhuman primate IS models. As a typical 
endogenous non-coding RNA molecule, the function of 
circRNA is still elusive. Yang et al engineered RVG-EVs 
loading with circSCMH1, produced from the Scm 
Polycomb Group Protein Homolog 1 gene, which was 
screened by their preliminary study that circSCMH1 levels 
are significantly downregulated in the plasma of IS group. 
Administration of exosomes offered a remarkable brain 
protective effect.126 EVs application in the treatment of 
stroke is summarized in Table 3. More promising agents 
would be exploited to improve functional outcomes of IS 
through combining with EV vehicles.

Traumatic Brain Injury (TBI) and 
ICH
TBI, often caused by traffic accidents and unintentional 
falls, result in long-term neurological impairments and 
even death. CT and MRI are conventional tools to evaluate 
TBI, however, sometimes are insufficient for mild injuries 
or cannot provide more prognostic information.127 Some 
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known TBI biomarkers, including αII-spectrin breakdown 
products, GFAP and its breakdown products, and UCH-L1 
were higher in CSF exosomes from TBI group than con-
trol samples.128 Cheng et al characterized genetic profiles 
of salivary EVs in mild TBI and healthy groups, and 
confirmed the differential expression between two groups. 
Three genes-CDC2, CSNK1A1 and CTSD were upregu-
lated, implying they might be involved in regulating the 
pathophysiological processes of TBI.129 In plasma exo-
somes of TBI rat models, 31 miRNAs were upregulated 

and 19 miRNAs were downregulated. Further pathway 
analysis suggested MAPK signaling pathway and Ras 
signaling pathway are related to the differentially 
expressed miRNAs.130 A study incorporating 196 veterans 
suggested increased level of neurofilament light chain in 
exosomes, which is correlated with repetitive mild TBI as 
well as chronic symptoms including postconcussive syn-
drome, posttraumatic stress disorder, and depression. This 
study showed neurofilament light might be a biomarker 
that predict remote outcomes after mild TBI. In 

Table 3 Applications of EVs in the Therapy of Stroke

Agents Vehicle Species In vitro Effects Ref

– MSC-EVs C57BL6 
mice

N ↓neurological impairment, ↑angio- neurogenesis, 
↓immunosuppression

[109]

– MSC-EVs Rats N ↑functional recovery, fiber tract integrity, axonal sprouting and white 
matter repair markers

[110]

– MSC-Exo Rats N ↑neurogenesis, angiogenesis, behavioral performance [111]

– NSC-EVs Pig N ↓cerebral lesion volume and brain swelling, ↑white matter integrity, 
↑behavior and mobility

[112]

– NPC-EVs C57BL6 
mice

N ↑neurological recovery and neuroregeneration [113]

– Human CDC EVs Rabbits N ↓behavioral deficits [114]

– LPS-stimulated 

macrophages Exo

Rats Y ↓brain infarct volume, inflammation response [118]

- M2 microglia- 

derived Exo

Mouse N ↓neuronal apoptosis, infarct volume, behavioral deficits [119]

Curcumin cRGD-Exo Mice N ↓inflammatory response and cellular apoptosis [120]

NGF mRNA 

and protein

RVG-Exo C56BL/6 

mice

N ↓inflammation, ↑cell survival, population of neuroblast [121]

Edaravone Macrophage- 

derived Exo

Rat N ↓the death of neuronal cells, ↑the polarization of microglia from M1 to 

M2

[122]

miR-17-92 

cluster

Exo Rats N ↑neurological function, oligodendrogenesis, neurogenesis, and neurite 

remodeling/neuronal dendrite plasticity

[123]

miR-210 cRGD-Exo Mouse N ↑angiogenesis, animal survival rate [124]

miR-126 Endothelial cells 
Exo

Mice Y ↑neurological and cognitive function, ↑axon density, myelin density, 
vascular density, arterial diameter,

[125]

Circular RNA 
SCMH1

RVG-EVs Mice, 
monkeys

N ↑functional recovery, neuronal plasticity, ↓glial activation and 
peripheral immune cell infiltration

[126]

Notes: We mainly incorporated representative literatures in the last five years. In all studies, EVs or exosomes were injected intravenously. 
Abbreviations: Ref, reference; MSC, mesenchymal stem cell; EVs, extracellular vesicles; Y, yes; N, no; “↑”, improve; “↓”, exacerbate; NSC, Neural Stem Cell; Exo, 
exosomes; NPC, neural progenitor cells; CDC, cardiosphere-derived cell; LPS, lipopolysaccharide; cRGD, c(RGDyK)-conjugated peptide; NGF, nerve growth factor; RVG, 
rabies virus glycoprotein peptide; SCMH1, Scm Polycomb Group Protein Homolog 1 gene.
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a Yorkshire swine model subjected to TBI and hemorrha-
gic shock, early single-dose administration (after one hour 
of shock) of MSC-exosomes contributed to relieving brain 
swelling, reducing lesion size, and maintaining BBB 
integrity.131 Except for the early effects (6-hours), impact 
on late survival (7-days) was also observed – that is 
neurologic severity scores decrease significantly, accom-
panied by favorable neurologic recovery.132 Kim et al 
reported intravenous injection of MSC-EVs into TBI 
mice timely (1h after modeling) rescue cognitive 
impairments.133 Post-repetitive mild TBI neurodegenera-
tion and cognitive impairment has also been noticed, with 
miR-124-3p in microglial exosomes was considered as the 
main effector molecule by regulating Rela/ApoE signaling 
pathway.134 Secondary neuroinflammation is another sig-
nificant pathologic process, inducing acute and chronic 
neurologic deficits. In 2017, Li et al demonstrated the 
ability of odontogenic stem cell derived exosomes to 
shift microglia M1/M2 polarization.135

Spinal Cord Injury (SCI)
In subacute SCI rats, serum exosomal miRNA profiles 
were accomplished, and a series of dysregulated miRNAs 
were identified. Especially 16 miRNAs, such as miR-485, 
miR-30b, and miR-26b were consistent with reported 
miRNAs in the circulation, which means these molecules 
are related to the pathological processes.136 In a SCI rat 
model, intravenous injection of MSC-EVs (instantly after 
attack and 24h later) showed an anti-inflammatory effect, 
yet the possible mechanism is interaction of EVs with 
activated primary microglia, thus inhibiting pro- 
inflammatory cytokine (IL-1β, IL-6) expression.137 

Research has shown that phosphatase and tensin homolog 
(PTEN) can negatively regulate neuronal regeneration, 
which can be suppressed by retinoic acid receptor β.138 

Aiming at this target, MSC-exosomes loaded with PTEN 
siRNAs were given intranasally, exerting effects of pro-
moting axonal growth and neovascularization, as well as 
alleviating microgliosis and astrogliosis.139 PTEN pseudo-
gene 1 shRNA delivered by exosomes has been shown to 
ameliorate functional outcomes by targeting miR-21 and 
miR-19b.140 Two other studies have also validated the 
miR-21/miR19b/PTEN pathways.141,142

Immune-Mediated Demyelinating Disease
Demyelination disease is a generic term of heterogeneous 
diseases with different etiologies and manifestations, yet 
immune mediation is an important cause. He et al detected 

exosomal circRNA profiles in CSF samples from immune- 
mediated demyelinating disease patients and controls, and 
identified 26 circRNAs differentially expressed. Among 
them, hsa_circ_0087862 and hsa_circ_0012077 showed 
the highest diagnostic accuracy for the disease.143 

Multiple sclerosis (MS) is an autoimmune disease of the 
CNS, characterized by chronic inflammation and conse-
quent demyelination of axons in different regions.144 It is 
meaningful to distinguish different subtypes. In 2017, one 
study incorporating 14 relapsing-remitting MS (RRMS), 
11 primary-progressive/secondary-progressive MS patients 
and 11 controls, has detected miRNA levels in serum 
exosomes. The results indicated that 4 miRNAs (miR- 
15b-5p, miR-30b-5p, miR-342-3p, and miR-451a) are sig-
nificantly higher in RRMS patients and 6 miRNAs (miR- 
370-3p, miR-409-3p, miR-432-5p, miR-15b-5p, miR223- 
3p, and miR-23a-3p) increased in primary-progressive/sec-
ondary-progressive MS patients. Further analysis showed 
a high accuracy of 3 miRNAs (miR-433-3p, miR-432-5p, 
and miR-485-5p) in distinguishing RRMS from primary- 
progressive/secondary-progressive MS patients.145 

Another research recruited 63 RRMS patients and 32 con-
trols, and revealed a combination of miR-122-5p and miR- 
196b-5p, both detected from serum exosomes, has advan-
tage on differentiating relapse from remission in 
RRMS.146 Pharmacotherapy also alters exosomal 
miRNAs, which in turn, is a reflection of individual’s 
response to the drug. A study revealed the dysregulated 
miRNAs including two upregulated and fourteen down-
regulated miRNAs in IFN-β–treated RRMS group com-
pared to treatment-naïve group.147 In RRMS patients 
treated with fingolimod, disease activity can be predicted 
by using differentially expressed exosomal miRNAs. 
Ebrahimkhani et al found a combination of 2 or 3 
miRNAs can distinguish active and quiescent status.148 

In aquaporin-4 antibody serum-positive neuromyelitis 
optica spectrum disorders (NMOSD) patients, discrepant 
exosomal miRNA profiles helped identify NMOSD and 
HCs. In addition, upregulated hsa-miR-122-3p and hsa- 
miR-200a-5p were valuable biomarkers to distinguish 
relapsing from remitting NMOSD, as well as indicate 
a more serious disease.149 Casella et al developed micro-
glia-derived EVs with overexpressed Lactadherin (Mfg- 
e8) on the surface, aiming to target to phagocytes. 
Injection of IL-4 loaded EVs showed a significant anti- 
inflammatory effect by upregulating chitinase 3-like 3 and 
arginase-1.150 Clark et al demonstrated increased myelina-
tion in MS animal models after MSC-EVs injection, which 
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was achieved by promoting myelinating oligodendrocytes 
maturation.151 Administration of exosomes coupling to 
LJM-3064 aptamer, a remyelination inductive agent, can 
promote oligodendrocytes proliferation and inhibit inflam-
matory response, covering two of the most important 
targets of MS therapy.152

Brain Tumors
Liquid biopsy is a burgeoning field recently, referring to 
detection of tumor-derived biomarkers, including circulat-
ing tumor DNAs and RNAs, circulating tumor cells and 
EVs in collected biological fluids, such as blood and 
CSF.153 CSF-derived EVs are feasible sources of biomar-
kers for brain tumors, for direct biopsies are not practical 
in the early stages of the disease. Epidermal growth factor 
receptor variant III (EGFRvIII) mutation is considered as 
a common genetic alteration in GBM. Expression level of 
EGFRvIII RNAs was compared between resected tumor 
tissue and CSF-derived EVs, respectively. With sensitivity 
of 61% and specificity of 98%, EGFRvIII RNAs positively 
kept consistent in both of these two groups.154 As a result, 
RNA signatures contained in CSF-derived EVs reflect the 
change of gene expression, and contribute to detecting 
genotypes of GBM. In plasma EVs obtained from GBM 
patients, miR-21 level was found to be significantly 
elevated.155 Compared to controls, the expression level 
of serum exosomal miR-301a in glioma patients increased, 
and was positively correlated with pathological grades. 
After surgical resection, miR-301a level went down.156 

Hence, miRNAs in EVs are markers of disease stage and 
predict response to treatment. Fatty acid synthase, a key 
lipogenic enzyme overexpressed in GBM tissues, can be 
detected in plasma CD63+/CD81+ EVs from 75% of 
patients while cannot be detected in healthy group. The 
similar expression tendency was observed in glioblastoma 
cell lines and EVs isolated from conditioned medium.157 

In a group incorporating 21 glioma patients, IDH1G396A 
mutation, which is an essential biomarker in human 
glioma, was checked out from peripheral blood EVs in 
47.6% of the samples, through fast ColdPCR.158 With 
methods of size exclusion chromatography isolation and 
ultrasensitive immunoprofiling, syndecan-1 was first iden-
tified in plasma EVs from a glioma group, which can 
distinguish GBM from low-grade glioma. More important, 
after surgery, syndecan-1 expression reduced, meaning 
a role of monitor glioma progression.159 Though remark-
able results have been achieved, some problems cannot be 
ignored. In clinical practice, acquiring CSF is time- 

consuming and invasive, yet plasma or serum samples is 
more convenient. However, complex and heterogeneous 
EV subtypes exist in blood. It was reported that 
a considerable proportion of EVs in the blood are platelet- 
derived,160 as a consequence, enrichment of brain-derived 
EVs is necessary for further research.

Epilepsy
Temporal lobe epilepsy (TLE) occupied about 30% of total 
epilepsy, often accompanied by destruction of brain struc-
ture, emotional and cognitive impairment. Status epilepti-
cus (SE) is a fatal condition with poor prognosis.161 One 
research depicted miRNA profiles in CSF-EVs and identi-
fied three upregulated miRNAs (miR-19b-3p, miR-21-5p, 
and miR-451a) in TLE and SE, as well as one down-
regulated miRNA (miR-204-5p) in SE group. These 
miRNAs were exceedingly accurate at distinguishing 
TLE or SE from other neurological disorders, supported 
by a high area under the curve value.162 Yan et al reported 
expression levels of miR-3613-5p and miR-6511b are sig-
nificantly elevated, while 48 miRNAs are downregulated 
in plasma EVs, which was collected from 40 patients with 
mesial TLE with hippocampal sclerosis. Among 48 
miRNAs, 6 miRNAs were regarded as involved in seizure 
development in mesial TLE with hippocampal sclerosis, 
yet miR-8071 was particularly prominent for its favorable 
sensitivity and specificity.163 One study screening protein 
biomarkers conducted both in mouse models and clinical 
samples indicated coagulation factor IX and thrombospon-
din-1 have great potential to distinguish epilepsy from 
HCs.164

Major brain impairments caused by SE are neurode-
generation and acute neuroinflammation, which might pro-
gress to chronic neuroinflammation or lead to the 
occurrence of spontaneous seizures.165 It has been verified 
that in animal models, “cytokine storm”, which refer to 
a significant elevation of multiple proinflammatory cyto-
kines and chemokines, is responsible for the acute inflam-
mation in the hippocampus after SE.166,167 Long et al 
demonstrated intranasal administration of MSC-EVs in 
a mouse pilocarpine model alleviates “cytokine storm” 
and exerts remarkable neuroprotection. Besides, the extent 
of neurogenesis, especially for the reelin+ interneurons 
was preserved.167 Impact of MSC-EVs on SE or long 
term (6–8 months) functional outcomes of the brain 
remains to be investigated.
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Conclusion
The organism is a complex and complicated system, and 
the coordination of different components depends on effi-
cient and timely exchange of materials and information. 
The traditional neuro-immuno-endocrine network has 
established the main framework for intercellular commu-
nication, but EVs have been considered as an important 
supplement. As the carrier of maternal cell information, 
the role of EVs in delivering molecules and signals has 
been widely recognized. Nevertheless, the effect reflected 
in the pathophysiology of the disease remains to be elu-
cidated. More work is needed to understand whether EVs 
play a positive or negative role under different conditions 
during the occurrence and development of diseases. 
Among the many research related to EVs, the CNS dis-
eases are a particularly popular field. Due to the presence 
of the skull, spine, BBB and blood–spinal cord barrier, it 
is less convenient to study the brain and spinal cord 
in vivo compared to other peripheral organs. The property 
of EVs that can freely enter and exit CNS, is the founda-
tion of their application in diagnosis and treatment for 
CNS diseases. When we are intoxicated with the rosy 
prospect of EVs applied research, some common issues 
should also be taken into consideration. One is the selec-
tion of test samples, for CSF has always been considered 
an excellent “warehouse” of CNS biomarkers, but con-
tamination of EVs from peripheral tissue cannot be 
excluded. Though readily available, the source of EVs 
in peripheral biofluids is complex, increasing the cost of 
technology for screening CNS origin. Another is the long- 
term safety assessment of EVs application in the treat-
ment of CNS diseases. Identifying all the biomolecules in 
EVs, as well as their signalling pathways remains a huge 
challenge, which means in addition to the therapeutic 
effects that we observed, some potential adverse side 
effects may be omitted (such as carcinogenesis 
caused by transferring of oncogenes). Further and in- 
depth research on EVs related to CNS diseases will help 
to better understand pathogenesis and accelerate potential 
clinical benefit.
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