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Background: Considering the current situation of the novel coronavirus disease (COVID- 
19) epidemic control, it is highly likely that COVID-19 and influenza may coincide during 
the approaching winter season. However, there is no available tool that can rapidly and 
precisely distinguish between these two diseases in the absence of laboratory evidence of 
specific pathogens.
Methods: Laboratory-confirmed COVID-19 and influenza patients between December 1, 
2019 and February 29, 2020, from Zhongnan Hospital of Wuhan University (ZHWU) and 
Wuhan No.1 Hospital (WNH) located in Wuhan, China, were included for analysis. 
A machine learning-based decision model was developed using the XGBoost algorithms.
Results: Data of 357 COVID-19 and 1893 influenza patients from ZHWU were split into 
a training and a testing set in the ratio 7:3, while the dataset from WNH (308 COVID-19 and 
312 influenza patients) was preserved for an external test. Model-based decision tree selected 
age, serum high-sensitivity C-reactive protein and circulating monocytes as meaningful 
indicators for classifying COVID-19 and influenza cases. In the training, testing and external 
sets, the model achieved good performance in identifying COVID-19 from influenza cases 
with a corresponding area under the receiver operating characteristic curve (AUC) of 0.94 
(95% CI 0.93, 0.96), 0.93 (95% CI 0.90, 0.96), and 0.84 (95% CI: 0.81, 0.87), respectively.
Conclusion: Machine learning provides a tool that can rapidly and accurately distinguish 
between COVID-19 and influenza cases. This finding would be particularly useful in regions 
with massive co-occurrences of COVID-19 and influenza cases while limited resources for 
laboratory testing of specific pathogens.
Keywords: COVID-19, influenza, classification, machine learning, diagnostic accuracy

Background
The outbreak of the coronavirus disease 2019 (COVID-19), which is caused by 
a novel coronavirus known as the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), has emerged as a severe global health problem.1 As of October 1, 
2020, the COVID-19 outbreak was reported to have affected 33,842,281 indivi-
duals, including 1,010,634 deaths worldwide.2 Numerous experts have warned that 
a second wave of COVID-19 could considerably be more devastating because it is 
likely to coincide with the start of the 2020–2021 winter influenza season.3

Because COVID-19 and influenza display significant similarities in their trans-
mission routes and symptoms, it is a challenge to distinguish between these two 
respiratory diseases, particularly in the early stage, based on a common diagnosis in 
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the absence of laboratory evidence of specific pathogens.4 

Although our previous study indicated that COVID-19 
likely interfered with influenza,5 these two diseases could 
coincide in space and time in the approaching winter 
months based on the current situation of the epidemic 
control. To date, no reliable tool based on simple variables 
is yet available for providing a differential diagnosis 
between COVID-19 and influenza. In the present study, 
the retrospective data of COVID-19 and influenza patients 
from two large teaching hospitals in Wuhan, China were 
used with a machine learning based-modeling approach 
for developing a tool devoted to accurately classify 
patients in the corresponding disease.

Methods
Study Design and Participants
This retrospective study was performed in Zhongnan 
Hospital of Wuhan University (ZHWU) and Wuhan No.1 
Hospital (WNH) located in Wuhan, China. All laboratory- 
confirmed COVID-19 and influenza patients from ZHWU 
and WNH between December 1, 2019, and February 29, 
2020, were eligible for analysis. We chose to focus on the 
cases infected only during this period because during the 
past two influenza seasons, the influenza incidence mark-
edly increased in December and achieved peaks in January 
of the following year in Wuhan City.5 Considering the 
possible co-circulation of COVID-19 and influenza in 
Wuhan, we decided to focus on studying only those 
infected cases between December 1, 2019, and 
February 29, 2020. Patients who had incomplete medical 
records, any other infections including the co-infection of 
SARS-CoV-2 and influenza virus (type A and/or B), 
immunosuppression, malignancies, pregnancy, and those 
who received any treatment prior to their visit to the 
emergency department or outpatient clinic were excluded. 
The demographic, clinical, and laboratory data of the 
COVID-19 and influenza patients were retrieved from 
electronic medical records.

Case Definition
A laboratory-confirmed case of COVID-19 was defined as 
a suspected case with laboratory evidence of the SARS- 
CoV-2 infection detected by real-time reverse- 
transcription–polymerase-chain-reaction (RT-PCR). Throat- 
swab RNA was extracted and tested by real-time RT-PCR 
with SARS-CoV-2 specific primers and probes. Two target 
genes, including open reading frame 1ab (ORF1ab) and 

nucleocapsid protein (N), were simultaneously amplified 
and tested during the real-time RT-PCR. The real-time RT- 
PCR assay was performed using a SARS-CoV-2 nucleic 
acid detection kit (DAAN, Guangzhou, China) according to 
the recommendation of the World Health Organization 
(WHO).6 A laboratory-confirmed case of influenza was 
defined as the influenza-like illness case with the laboratory 
evidence of influenza virus infection (type A and/or B) by 
a rapid detection of influenza viral antigens. The influenza 
A and B viral antigens in the throat swabs were determined 
by a commercial flu A&B test kit (Wondfo, Guangzhou, 
China) in accordance with the National Protocol of 
Influenza Surveillance.7

Development of a Machine 
Learning-Based Model
The COVID-19 and influenza data from ZHWU were 
divided into a training set and a testing set in the ratio 
7:3. The demographic data, life style, comorbidities, phy-
sical signs and symptoms at the time of the hospital visit, 
and all available data of laboratory testing data obtained in 
the outpatient clinic or emergency department were con-
sidered as potential features for the model development. 
Features were excluded for subsequent analysis whenever 
the missing data accounted for more than 20%.

The prediction model was based on the XGboost 
machine learning algorithm, which has been favorably 
assessed according to a substantial number of features 
when compared to concurrent approaches, including 
a remarkable interpretability potential due to its recursive 
tree-based decision system.8 Training was made using the 
following XGBoost parameter values: maximum depth 
(max_depth) = 4, learning rate (eta) = 0.2, regularization 
parameter alpha (α) = 1, subsample = 0.9, colsample_by-
tree = 0.9, objective = ‘binary: logistic’, number of rounds 
(nrounds) = 50, and number of tree estimators (n_estima-
tors) = 150. This algorithm was named as the “multi-tree 
XGBoost”.

Determination of Key Features
To determine the key features for the decision model, the 
contribution of each feature to the algorithm’s decision 
was evaluated. The top 10 important features were ranked 
based on their relative importance in the multi-tree 
XGBoost algorithm as previously described.9 Briefly, we 
first selected 100 random number seeds from 0 to 99, and 
the data for each number seed were divided into training 
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and testing sets in the ratio 7:3. Then, a multi-tree 
XGBoost was trained for each number seed, and the aver-
age importance of each feature could be determined with 
the ensured stability of the feature rankings.

Subsequently, a 5-fold cross-validation method was 
used to determine the key features for the model develop-
ment. The selection of key features was based on 
a procedure assessing the area under the receiver operating 
characteristic curve (AUC) score of an increasing number 
of features as follows: the top feature was first used for 
prediction, and the average AUC scores of the training and 
the testing sets were calculated. Then, the top two to top 
ten features were added to the top feature in sequence, and 
the corresponding AUC scores were examined according 
to the same sequence: features were considered as valuable 
additional key features for the decision tree until the cor-
responding relative increase of AUC score was below the 
threshold of 1%.

Development of a Feasible Decision Tree
To establish a clinically interpretable decision tree, the 
number of tree has been reduced to 1, which leads to the 
“single-tree XGBoost”. The single-tree XGBoost was 
trained using selected key features as previously 
described9 The parameters for the single-tree XGBoost 
model training can be summarized as follows: max_depth 
= 4, eta = 0.2, α = 0, subsample = 1, colsample_bytree = 1, 
objective=‘binary: logistic’, nrounds = 50, and n_estima-
tors = 1. The specificity, sensitivity, NPV, PPV, accuracy 
and AUC scores were calculated to evaluate the perfor-
mance of prediction. Finally, the structure of a clinically 
interpretable decision tree with reduced complexity was 
obtained by the split of all COVID-19 and influenza 
patients after data imputation.

External Test
In order to assess the performance of the decision model 
with an external test, the single-tree XGBoost algorithm 
was applied to the external dataset from WNH, and the 
corresponding specificity, sensitivity, accuracy, NPV, PPV, 
and AUC scores were calculated.

Statistical Analysis
The characteristics of the COVID-19 and influenza 
patients were compared using the Mann–Whitney U-test 
or the Chi-square test wherever appropriate. Two-sided 
P values of less than 0.05 were considered to indicate 
statistical significance. Model output was the prediction 

of the type of disease assigned to each case, ie, either 
COVID-19 or influenza, with label 1 and label 0 arbitrarily 
assigned to COVID-19 and influenza status (ie, positive 
cases and negative cases), respectively. The diagnostic 
performance of the model was evaluated using sensitivity, 
specificity, negative predictive value (NPV), positive pre-
dictive value (PPV) and accuracy. Accuracy was defined 
as the ratio of (TP + TN)/(TP+FP+TN+FN), and TP, TN, 
FP, FN stand for true positive, true negative, false positive 
and false negative, respectively. All parameters were cal-
culated and presented with two-sided 95% confidence 
interval (CI). In addition, the performance of the model 
was compared with logistic regression, which has been 
considered as a standard method. Multiple imputation 
was used to handle the problem of the missing values for 
features in both model development and external valida-
tion. The performance of the proposed model was also 
tested using the datasets containing influenza type A or 
type B cases. The generalizability of the prediction model 
was evaluated on the external dataset. All the analyses 
were performed with the use of the R software (version 
4.0.2, R Foundation for Statistical Computing).

Results
This study was performed between December 1, 2019, and 
February 29, 2020, in ZHWU and WNH. We obtained the 
data of 357 COVID-19 and 1893 influenza (including 
1291 type A and 602 type B cases) patients from ZHWU 
for model training and testing, and the external validity of 
the model was assessed on the external validation dataset 
from WNH, comprised of 308 COVID-19 and 312 influ-
enza patients (Figure 1). In the model development data-
set, the median age of the COVID-19 patients was 58 
years (IQR 44–70), whereas the influenza patients had 
a median age of 8 years (IQR 5–12) (p < 0.01). No 
significant difference was observed in the sex distributions 
of COVID-19 and influenza patients (male, 49.6% vs 
54.8%, p = 0.08). Fever was the most common symptom 
for both the COVID-19 (85.5%) and influenza (97.1%) 
patients (p < 0.01). In the external test dataset, the median 
age of COVID-19 was also significantly higher than that 
of influenza cases (62 [IQR 47–70] vs 13 [IQR 8–31] 
years, p < 0.01). The results of sex distributions and 
symptoms were similar as that of the model development 
dataset. Clinical signs and symptoms, laboratory data 
including blood cell counts, blood biochemistry, 
coagulation function, and the infection markers of the 
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patients are summarized in Table 1 and supplementary 
materials (Table S1).

In total, 110 features were initially included as poten-
tial indicators after considering the corresponding feasibil-
ity and timeliness. There were 52 features excluded 
because of too many missing data, and the remaining 58 
features were included for subsequent analysis (Table S2). 
The importance of the features considered in the prediction 
model was ranked by multi-tree XGBoost (Figure S1). 
Age feature had the greatest impact on prediction, and 
serum hsCRP was the second most important feature con-
tributing to the decision model. The cell count of the 
monocytes was ranked as the third most important feature 
and the mean corpuscular hemoglobin concentration 
(MCHC) was ranked as the fourth. No vital signs or 
symptoms were ranked as important indicators for predic-
tion. Based on the relative importance for the decision 
model, the age feature was used first for COVID-19 pre-
diction. The AUC scores for the training and testing sets 
were 0.92 (95% CI 0.92, 0.92) and 0.91 (95% CI 0.91, 
0.92), which indicated that age is crucial for the classifica-
tion of COVID-19 and influenza patients. The perfor-
mance of the model indicated no marked improvement in 

AUC scores (+0.93% in training set) when the number of 
features was increased from three (age, hsCRP and mono-
cytes) to four (age, hsCRP, monocytes and MCHC) (Table 
2, Table S3, Figure S2). Finally, the proposed machine- 
learning model was developed using age, hsCRP, and 
monocytes.

The performance of the single-tree XGBoost model is 
presented in Figure 2 and Table 3. The proposed model was 
developed using the data of 357 COVID-19 and 1893 influ-
enza patients from ZHWU. For the training set, the sensitiv-
ity was 0.91 (95% CI 0.87, 0.94), specificity was 0.98 (95% 
CI 0.97, 0.99) and the accuracy for the COVID-19 prediction 
was 0.97 (95% CI 0.97, 0.97). The testing set achieved 
a sensitivity of 0.88 (95% CI 0.820, 0.942), a specificity of 
0.98 (95% CI 0.96, 0.99), and an accuracy of 0.96 (95% CI 
0.96, 0.96). In addition, the external test demonstrated 
a prediction accuracy of 0.84 (95% CI 0.84, 0.84), with 
a sensitivity of 0.91 (95% CI 0.87, 0.94) and a specificity 
of 0.77 (95% CI 0.73, 0.82). The AUC scores of the training, 
testing and external test sets were 0.94 (95% CI 0.93, 0.96), 
0.93 (95% CI 0.90, 0.96) and 0.84 (95% CI 0.81, 0.87), 
respectively. The confusion matrix are summarized in the 
supplementary materials (Figure S3, S4, S5). Moreover, the 

Figure 1 Study profile. Data from ZHWU were used for model development and data from WNH were used for external validation. *Co-infections indicates any other 
infection and those who had both SARS-CoV-2 and influenza virus infections.
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Table 1 Characteristics of Patients Recruited for Model Development and External Validation

Characteristics ZHWU (n=2250) p value WNH (n=620) p value

COVID-19 
(n=357)

Influenza 
(n=1893)

COVID-19 
(n=308)

Influenza (n=312)

Demographic
Age, years 58 [44, 70] 8 [5, 12] <0.01 62 [47, 70] 13 [8, 31] <0.01

Gender, male, n (%) 177 (49.6) 1038 (54.8) 0.08 157 (51.0) 170 (54.5) 0.42

Clinical data

Vital signs

SBP (mmHg, ref: 90–140) 124 [116, 138] 118 [102, 123] 0.06 120 [112, 135] 121 [104, 128] 0.08

DBP (mmHg, ref: 60–90) 75 [69, 82] 74 [72, 81] 0.09 73 [65, 80] 74 [69, 82] 0.12

RR (bpm, ref: 12–20) 21 [20, 23] 21 [20, 24] 0.25 23 [18, 25] 21 [21, 24] 0.33

SpO2 (%, ref: ≥ 94) 96 [94, 98] 96 [95, 98] 0.83 95 [93, 98] 94 [93, 98] 0.66

Temperature (°C, ref: 36.2–37.3) 37.8 [37.5, 38.5] 38.2 [37.0, 38.8] 0.39 38.1 [37.5, 38.2] 38.3 [37.0, 38.5] 0.17

Symptoms

Fever, n (%) 305 (85.4) 1838 (97.1) <0.01 255 (82.8) 267 (85.6) 0.38

Fatigue, n (%) 197 (55.2) 1021 (53.9) 0.69 162 (52.6) 168 (53.8) 0.81

Cough, n (%) 176 (49.3) 1300 (68.7) <0.01 154 (50.0) 183 (58.7) 0.04

Myalgia, n (%) 89 (24.9) 462 (24.4) 0.84 62 (20.1) 80 (25.6) 0.11

Headache, n (%) 70 (19.6) 982 (51.9) <0.01 68 (22.1) 69 (22.1) 1.00

Laboratory findings

Blood cell counts

Leucocytes (1×109/L, ref: 3.5–9.5) 5.48 [4.18, 7.20] 7.10 [5.74, 8.76] <0.01 5.82 [4.37, 6.78] 6.57 [5.12, 8.45] <0.01

Neutrophils (1×109/L, ref: 1.8–6.3) 3.62 [2.59, 5.18] 4.78 [3.56, 6.34] <0.01 3.89 [3.31, 5.20] 4.54 [3.66, 6.17] <0.01

Erythrocytes (1×1012/L, ref: 

4.3–5.8)

4.34 [3.94, 4.79] 4.69 [4.46, 4.95] <0.01 4.56[4.01, 5.24] 4.83 [4.21, 5.67] <0.01

Hemoglobin (g/L, ref: 130–175) 136 [125, 148] 131 [124, 138] <0.01 134 [128, 142] 136 [129, 140] 0.08

Platelet (1×109/L, ref: 125–350) 174 [133, 211] 219 [188, 258] <0.01 182 [142, 231] 211 [179, 254] <0.01

Monocytes (1×109/L, ref: 0.1–0.6) 0.46 [0.33, 0.62] 0.78 [0.61, 1.00] <0.01 0.48 [0.36, 0.63] 0.59 [0.44, 0.74] <0.01

Lymphocytes (1×109/L, ref: 

1.1–3.2)

1.02 [0.72, 1.48] 1.27 [0.89, 1.76] <0.01 1.21 [0.84, 1.74] 1.13 [0.83, 1.68] 0.49

Blood biochemistry

AST (U/L, ref: 15.0–40.0) 42 [33, 56] 29 [20, 45] 0.02 47 [36, 64] 28 [22, 30] 0.01

ALT (U/L, ref: 9.0–50.0) 23 [15, 39] 14 [12, 20] <0.01 24 [17, 33] 15 [13, 17] 0.01

BUN (mmol/L, ref: 2.8–7.6) 4.5 [3.5, 6.1] 4.0 [3.6, 5.1] 0.44 5.3 [4.4, 6.0[ 4.4 [3.9, 4.7] 0.047

Creatinine (μmol/L, ref: 

64.0–104.0)

70.6 [57.0, 85.5] 49.0 [37.5, 85.4] 0.04 68.4 [60.2, 71.0] 55.9 [53.2, 60.4] 0.04

hsTnI (pg/mL, ref: 0.0–26.2) 7.2 [3.6, 17.4] 1.2 [0.9, 3.5] <0.01 6.8 [2.6, 15.2] 1.9 [0.7, 2.8] 0.01

LDH (U/L, ref: 125–243) 212 [176, 338] 214 [181, 282] 0.78 217 [188, 309] 208 [187, 265] 0.07

CK-MB (U/L, ref: 0–25) 13 [10, 18] 13 [2, 16] 0.34 12 [4, 17] 10 [5, 16] 0.41

Coagulation function

APTT (sec, ref: 28.0–43.5) 30.9 [28.3, 33.0] 35.7 [31.3, 39.4] 0.02 33.1 [30.1, 34.2] 34.0 [30.9, 37.2] 0.05

PT (sec, ref: 11.0–16.0) 12.7 [11.9, 13.5] 14.8 [13.8, 16.1] 0.01 13.3 [12.0, 13.5] 14.2 [12.5, 15.4] 0.048

D-dimer (ng/mL, ref: 0.0–500.0) 273.0 [150.0, 691.0] 125.5 [99.3, 2606.5] 0.45 317.4 [189.2, 745.2] 142.7 [109.5, 543.7] 0.04

Infection markers

hsCRP (mg/L, ref: 0.0–3.0) 14.8 [3.4, 44.9] 2.2 [0.50, 6.9] <0.01 10.1 [3.1, 26.9] 5.0 [1.9, 5.0] <0.01

Procalcitonin (ng/mL, ref: < 0.5) 0.05 [0.05, 0.16] 0.10 [0.06, 98.81] 0.14 0.12 [0.05, 0.18] 0.14 [0.07, 0.23] 0.17

Notes: Data are expressed as counts with percentage, otherwise median [IQR]. Data from ZHWU were used for model development. 
Abbreviations: ALT, alanine aminotransferase; APTT, activated partial thromboplastin time; AST, aspartate transaminase; BUN, blood urea nitrogen; CK-MB, creatine 
kinase isoenzyme MB; DBP, diastolic blood pressure; hsCRP, high-sensitivity C-reactive protein; hsTnI, high-sensitivity Troponin I; LDH, lactate dehydrogenase; NT-proBNP, 
N-terminal pro b-type natriuretic peptide; PT, prothrombin time; RR, respiration rate; SBP, systolic blood pressure; SpO2, pulse oxygen saturation.
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performance of the model was compared with logistic regres-
sion. Our results indicated a superior performance of the 
proposed model as compared with the standard method 
(Table S4, Figure S6). Finally, the subgroup analysis demon-
strated similar performance of the proposed model in identi-
fying COVID-19 from influenza type A and type B, with an 
accuracy of 0.96 (AUC, 0.94 (95% CI 0.92, 0.96)) and 0.95 
(AUC, 0.94 (95% CI 0.92, 0.96)), respectively (Table S5, S6 
and Figure S7-S10).

The structure of an interpretable decision tree was 
obtained by a split of the 357 COVID-19 and 1893 influ-
enza patients from ZHWU after data imputation (Figure 
3). Our decision tree showed that cases with an old age 
(>16 years), a high hsCRP level (>14.2 mg/L) and a low 
cell count of monocytes (≤0.68×109/L) are associated with 
a prediction favoring the diagnosis of COVID-19. 
However, 40 COVID-19 patients were incorrectly classi-
fied as influenza patients. Detailed analysis indicated that 
all those COVID-19 patients were non-severe, including 
33 mild and 7 common cases. The three COVID-19 cases 
incorrectly classified by age showed normal levels of 
serum hsCRP and cell counts of circulating monocytes 
(Table S7).

Discussion
The major contribution of this study is providing 
a feasible and reliable decision tool to rapidly and 

accurately distinguish between COVID-19 and influenza 
cases. The massive co-occurrences of COVID-19 and 
influenza cases may lead to relative shortage of detection 
kits and human resources, and even the collapse of the 
healthcare system. In addition, considering the current 
course of the COVID-19 pandemic, the ability of control-
ling the situation in the coming winter is an important and 
questionable issue worldwide. Under such circumstances, 
a rapid and accurate differential diagnosis of COVID-19 
and influenza is the key step to initiate corresponding 
differential managements of suspected patients. 
Importantly, radiological examination and laboratory test-
ing for specific pathogens are generally unavailable at the 
very first moments of hospital visit. Therefore, the avail-
ability of a reliable and feasible diagnosis tool based on 
very simple features may be of great importance in future 
daily practice. With such a perspective, the performance 
of the machine learning model reported in this study at 

Table 2 Performance of the Multi-Tree XGBoost in Identifying 
COVID-19 from Influenza Using 100-Round 5-Fold Cross- 
Validation

AUC for Training 
Sets (95% CI)

AUC for Testing 
Sets (95% CI)

Age 0.92 (0.92, 0.92) 0.91 (0.91, 0.92)
Age + hsCRP 0.94 (0.94, 0.94) 0.91 (0.91, 0.92)

Age + hsCRP + 

Monocytes

0.96 (0.96, 0.97) 0.93 (0.93, 0.93)

Note: Data from ZHWU were used for model training and testing in the ratio 7:3. 
Abbreviations: AUC, area under the receiver operating characteristic curve; 
hsCRP, high-sensitivity C-reactive protein.

Figure 2 Receiver operating characteristic curves. This indicate the results for 
training, testing and external test sets. AUC: area under the receiver operating 
characteristic curve.

Table 3 Performance of the Single-Tree XGBoost Algorithm for COVID-19 Prediction

Specificity (95% CI) Sensitivity (95% CI) NPV (95% CI) PPV (95% CI) Accuracy (95% CI) AUC Score (95% CI)

Training set 0.98 (0.97, 0.99) 0.91 (0.87, 0.94) 0.98 (0.98, 0.99) 0.89 (0.86, 0.93) 0.97 (0.97, 0.97) 0.94 (0.93, 0.96)

Testing set 0.98 (0.96, 0.99) 0.88 (0.82, 0.94) 0.98 (0.96, 0.99) 0.87 (0.81, 0.94) 0.96 (0.96, 0.96) 0.93 (0.90, 0.96)

External test set 0.77 (0.73, 0.82) 0.91 (0.87, 0.94) 0.89 (0.86, 0.93) 0.80 (0.76, 0.84) 0.84 (0.84, 0.84) 0.84 (0.81, 0.87)

Abbreviations: NPV, negative prediction value; PPV, positive prediction value; AUC, area under the receiver operating characteristic curve.
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least advocates that this proposed framework constitutes 
an attractive approach.

Our results suggested that age had the greatest impact 
on the predictions, with older ages driving the prediction 
towards COVID-19 and younger ages driving the predic-
tions towards influenza. These findings are in line with the 
findings of the age distribution of COVID-19 and influ-
enza patients. Current evidences indicate that COVID-19 
is more likely to affect older adults.10,11 Conversely, the 
seasonal influenza is commonly found among school-aged 
children, adolescents, and younger adults.12–14 Although 
these studies demonstrate marked differences in the age 
distribution between COVID-19 and seasonal influenza, 
there are still quite a few young COVID-19 and old 
influenza patients.15–17 Hence, it is difficult to classify 
these two diseases correctly when considering only the 
age of the patient. The proposed model suggested that it 
is difficult to make the prediction for those cases who had 
an age above 16 years unless involving hsCRP and 
monocytes.

Increased serum hsCRP is one of the clinical markers 
of a cytokine storm.18 Hence, it is not surprising that 
hsCRP levels are elevated in virtually all COVID-19 
patients19 and serves as an important indicator of 

a worsening outcome for COVID-19 patients.9 In addition, 
a few studies have indicated that CRP could serve as 
a predictor of the illness severity for influenza 
A infection.20 In the present study, the serum levels of 
hsCRP were markedly increased in COVID-19 patients as 
compared with influenza cases. Previous findings in 
COVID-19 and knowledge from the SARS-CoV-1 epi-
demic suggested that monocytes are possible participants 
in a cytokine storm and associated pathologies in COVID- 
19.21–24 However, a very recent study reported that per-
ipheral monocytes do not express substantial amounts of 
pro-inflammatory cytokines, suggesting that circulating 
monocytes do not significantly contribute to the cytokine 
storm in COVID-19.25 In contrast, the influenza virus 
infection has been confirmed to be associated with 
a cytokine storm,26 and monocytes are widely involved 
in the immune response to influenza virus infection.27 Our 
results suggested that the cell counts of monocytes were 
significantly lower in COVID-19 cases than that of influ-
enza ones. Finally, our prediction model selected hsCRP 
and monocytes as important predictors to distinguish 
between COVID-19 and influenza, and higher hsCRP or 
lower cell count of monocytes drives the prediction 
towards COVID-19.

Figure 3 Clinically interpretable decision tree. Age, hsCRP, and monocyte were selected as key features for the decision tree. Finally, 357 COVID-19 and 1893 influenza 
patients were used for the development of the decision tree. hsCRP: high-sensitivity C-reactive protein, Num: number of patients.
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The COVID-19 and influenza both cause respiratory dis-
orders, which presents as a wide range of illnesses from 
asymptomatic or mild through to severe disease and death.28 

Hence, it is not surprising that clinical symptoms had no 
important influence on the COVID-19 prediction in the pre-
sent study. Although reports have indicated that the loss of 
taste and smell could be common symptoms of COVID- 
1929–31 and should be considered as a distinguishing 
symptom,32 this has not been documented as a common symp-
tom in the Chinese population.11,33 Therefore, whether the loss 
of taste and smell could be key features for the classification of 
COVID-19 and influenza among the people in other countries 
is unclear. However, we still believe that these symptoms are 
not appropriate features for the development of a decision 
model, because a considerable number of COVID-19 cases 
are asymptomatic.34–36

This study has some limitations. First, this is a two- 
centered study, which provides primary assessment of 
potential features allowing to distinguish SARS-CoV-2 
and influenza virus infections. The variability of the case- 
mix between centers will inherently lead to prediction 
models that will vary from one center to another, when-
ever the learning phase is conducted on a dataset from 
a single center and tested on cases from a different center. 
Therefore, the present model should be first considered as 
a pioneering tool proposing a promising version which 
performances will be likely increased when the algorithm 
will be fed with numerous data from many centers. 
Although external test resulted in a rather good assessment 
of the algorithm of generalizability, the two studying sites 
have similar hospital levels, similar geographic locations 
and same subtypes of SARS-CoV-2.37 Therefore, the qual-
ity of model predictions in other hospitals, or considering 
populations out of China remains uncertain. Nevertheless, 
in the present two-center study, the classification results 
issued from the proposed machine learning-based model 
appear as very attractive. Second, the epidemiological and 
radiological data of patients have not been included for 
model development in the present study. Since the expo-
sure history for the majority of COVID-19 patients is not 
definitive,11 we have not considered such epidemiological 
data as potential indicators for prediction in the present 
study. However, since the purpose of our study was devel-
oping a rapid decision tool enabling a triage of COVID-19 
and influenza cases, radiological examinations are not 
appropriate options because they are time-consuming. 
Third, because the proportion of other types of influenza 
is extremely low in our two studying sites, only those 

patients with influenza virus type A and B infections 
were enrolled for analysis. Therefore, the potential quality 
of the prediction model in the presence of other types of 
influenza (including those that might emerge in the influ-
enza epidemics of the next years) is inherently uncertain. 
However, our model showed no differences between iden-
tifying COVID-19 from influenza type A and B.

Conclusions
The proposed model selected age, hsCRP and monocytes 
as meaningful indicators for the classification of COVID- 
19 and influenza. The study demonstrates that a machine 
learning-based approach provides an attractive tool 
enabling a rapid and accurate triage tool for identifying 
COVID-19 from influenza. Such an approach would be 
particularly useful in regions having large number of 
COVID-19 and influenza cases while limited resources 
for laboratory testing of specific pathogens.

Abbreviation
AUC, area under the receiver operating characteristic curve; 
COVID-19, the novel coronavirus disease 2019; hsCRP, high- 
sensitivity C-reactive protein; NPV, negative predictive value; 
PPV, positive predictive value; SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2; WNH, Wuhan No.1 
Hospital; ZHWU, Zhongnan Hospital of Wuhan University.
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