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Introduction: Musalais is a traditional fermented wine produced in southern Xinjiang (a
province of China) and is protected as a form of national intangible cultural heritage.
However, ethyl carbamate (EC), which is naturally produced during the fermentation pro-
cess, has been shown to induce carcinogenesis and was classified as a group 2A carcinogen
by The World Health Organization’s International Agency for Research on Cancer.
Methods: In this work, rats were treated with musalais containing EC at varying contents
(0.1, 1, or 10 mg/kg). To evaluate the toxicity of EC in musalais, the liver and kidney of the
rats were subjected to transcriptomics sequencing. Differentially expressed genes (DEGs)
between treated and untreated rats were identified, and Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes enrichment analysis were performed on these genes
to investigate the biological functions affected by EC in musalais.

Results: The results demonstrated that high EC content in musalais is possibly involved in
the regulation of cytochrome P450 metabolism, chemical carcinogenesis, metabolism of
xenobiotics by cytochrome P450, Wnt signaling, and p53 signaling by targeting Mgstl,
Gstpl, Gsta5, Gstal, Adhl, Gsta2, and Ccndl, thereby inducing cancer.

Conclusion: The present work predicted the potential carcinogenic mechanism of high EC
content in musalais, providing a reference for its safety evaluation.

Keywords: musalais, ethyl carbamate, transcriptomics sequencing, toxicity prediction,
mechanism research

Introduction

Musalais is a traditional fermented wine produced by the Uygur people in
southern Xinjiang of China. As a traditional wine with regional characteristics,
musalais is protected under the scope of the national intangible cultural heritage.'
Ethyl carbamate (EC) is naturally produced during the fermentation process of
food and alcoholic beverages, especially in wine made from stone fruits.? It has
been demonstrated to induce carcinogenesis and was classified as a group 2A
carcinogen by the International Agency for Research on Cancer of the World
Health Organization,” resulting in concerns on the safety of EC in fermented
wine. Previous studies have demonstrated the carcinogenic potency of EC on
lung tumorigenesis.® In addition. EC-induced consequent mutation and DNA
adducts were observed in organs such as mammary glands, liver, ovary, heart,
and forestomach.” EC is produced during the fermentation process of musalais,
and its content increases with the duration of fermentation. In recent decades,
substantial effort has focused on fermentation characteristics and production
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engineering,® but safety control of EC in musalais has
attracted minimal attention, and the precise effect of EC
in musalais remains to be elucidated.

Transcriptomics, especially gene-array technology,
enables the detection of the mRNA levels of multiple
genes in parallel. It provides genome-wide information
on biological processes and related molecular pathways
and is an effective tool for screening compounds in the
assessment of toxicological potential. This information can
be used to identify biomarkers for compounds and evalu-
ate tissue-specific toxicity, allowing earlier and better pre-
diction of toxicity.” In this work, rats were treated with
musalais containing EC at varying contents (0.1, 1, and
10 mg/kg). To investigate the toxicity of EC in musalais,
the liver and kidney of the rats were subjected to tran-
(RNA-seq).  Differentially
expressed genes (DEGs) were identified and Gene

scriptomic  sequencing
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed
on these DEGs to examine the important biological func-
tions affected by EC in musalais. Furthermore, the key
disease-related biomarkers of EC in musalais were

predicted.

Materials and Methods
Ethical Statement

Experiments involving rats were approved by the
Institutional Review Board of Wuhan Myhalic
Biotechnology Co., Ltd. based on the ethical Guidelines
for Animal Care and Use of the Model Animal Research

Institute (approve number: HLK-20181209-01).

Animals and Experimental Design

Sixteen healthy Sprague Dawley rats aged 810 weeks
were purchased from the Hubei Provincial Center for
Disease Control and Prevention. The rats were randomly
divided into four groups (4 rats per group): control (Con),
High, Middle (Mid), and Low. Rats in the Con group were
fed normally without any treatment. Rats in the High, Mid,
and Low groups were subjected to intragastric administra-
tion of musalais containing 10 mg/kg, 1 mg/kg, and
0.1 mg/kg EC, respectively, once a day (2 mL each time)
for a week. Musalais was spiked with varying EC concen-
trations to achieve total content of 0.1, 1, and 10 mg/kg in
the Low, Mid, and High groups, respectively. Thereafter,
the rats were anesthetized and sacrificed to obtain the liver

(L) and kidney (K). The collected tissues were maintained
at —80 °C for subsequent sequencing.

Preparation of Musalais Containing EC
EC (Dr. Ehrenstorfer, Germany; purity >99.4%) was
diluted in musalais and its the concentration was deter-
mined by gas chromatography-mass spectrometry using
a GCMS-QP2010 Plus apparatus (Shimadzu, Japan).
Briefly, 1 uL of sample was injected into a DB-WAX
chromatographic column (30 mm X 0.25 mm, 0.25 pm,
Agilent, USA). The initial column temperature was 100 °C
and increased to 120 °C at a rate of 50 °C/min, then held at
120 °C for 5 min and increased to 200 °C at a rate of 50 °
C/min and maintained for 1.5 min. High-purity helium gas
(>99.999%) with a flow rate of 1.0 mL/min was used as
the carrier gas. Mass spectrometry was performed in
selected-ion monitoring mode with a transfer line at 280
°C, electron voltage of 70 eV, and source temperature of
230 °C.

Liver and Kidney Transcriptomic Analysis
Total RNA was extracted from kidney and liver tissues
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and
purified using the Total RNA Purification Kit (TRK1001,
LC Science, Houston, TX, USA) following the manufac-
turer’s procedure. RNA content and purity were quantified
using a NanoDrop ND 1000 apparatus (NanoDrop,
Wilmington, DE, USA). The RNA integrity number was
assessed to be greater than 7.0 using the Agilent 2100
Bioanalyzer (Agilent, CA, USA). mRNA was purified
from total RNA using poly-T oligo-attached magnetic
beads with two rounds of purification. The purified
mRNA was fragmented into small pieces using divalent
cations at high temperature. Cleaved RNA fragments were
reverse-transcribed into cDNA according to the protocol
of the mRNA-Seq sample preparation kit (Illumina, San
Diego, USA). The average insert size for the final cDNA
library was 250-350 bp. Next-generation sequencing was
performed on 150-bp paired-end reads in the library using
an Illumina Hiseq 4000 sequencing platform at LC Bio
(Hangzhou, China).

Data Analysis

Valid data were collected by removing reads including
sequencing adaptors and sequencing primers and nucleo-
tide with quality scores (Q) of lower than 20 from raw data
obtained using the Illumina paired-end RNA-seq
approach. In addition, the content of Q20 (Q > 20) and
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Q30 (Q > 30) and the GC content of valid data were
calculated. All subsequent analyses were carried out
using valid data. Valid data were mapped to the UCSC
reference genome of rattus norvegicus (http://genome.
ucsc.edu/) using the HISAT package'® and the mapped
reads were assembled using StringTie software.'' Perl
scripts were used to reconstruct a comprehensive tran-
scriptome, and the fragment per kilobase of exon model
per million mapped reads (FPKM) was calculated as the
gene expression level for each sample using StringTie. The
distribution statistics of the FPKM of genes were visua-
lized as boxplots using R software (version 3.5.2).

Differential Expression Analysis

Differential expression analysis was performed on the
FPKM values of the untreated and treated groups using
the edgeR package. DEGs were identified using the
following criteria: genes between Con and High/Mid/
Low groups displaying |log,(fold change)| > 1 and p <
0.05. The identified DEGs were visualized using vol-
cano plots generated by R software (version 3.5.2). For
hierarchical clustering, the data were Z-normalized by
gene, and the Euclidean distance was chosen as the
similarity to cluster expression profiles.'” The results
of cluster analysis were visualized using R software
(version 3.5.2). The Gene Ontology (GO) (http://geneon
tology.org/) and Kyoto Encyclopedia of Genes and
(KEGG)

Genomes (https://www.kegg.jp/kegg/)

Table | Sample Details from RNA-Sequencing

databases were used to examine the enriched GO terms
and pathway associated with the DEGs. GO terms and
pathways with p < 0.05 were considered as statistically
significant.

Results
Preliminary Analysis of Transcriptomics

Sequencing Data

A total of 16 RNA-seq libraries were constructed using
RNA samples from kidney and liver tissues extracted
from both treated and untreated rats. The raw reads, raw
bases, valid reads, valid bases, Q20, Q30, and GC
percentage were collected from each library. As shown
in Table 1, Q20 > 99%, Q30 > 97%, and GC content
ranged from 48% to 50%. These results demonstrated
the high quality of the transcriptomic sequencing data
and guaranteed the reliability of subsequent analysis. In
addition, the FPKM values for each library are shown in
Table 2 and visualized by boxplots (Figure 1). The
boxplot for each region corresponds to the maximum,
upper quartile, median, lower quartile, and minimum
FPKM from top to bottom. The FPKM values of liver
tissue were similar among all groups, while there were
differences between groups in kidney tissues. The
FPKM values in both liver and kidney tissues were
similar between parallel groups, indicating the excellent
reproducibility of the samples.

Sample Raw Data Valid Data Valid Ratio (%) Q20 (%) Q30 (%) GC (%)
Read Base Read Base
L _Con_lI 48,919,888 7.34G 48,157,636 7.22G 98.44 99.81 97.76 50.00
L _Con_2 47,671,780 7.15G 46,995,018 7.05G 98.58 99.88 97.73 48.50
L_High_1 47,691,978 7.15G 47,066,758 7.06G 98.69 99.92 98.43 49.50
L_High_2 46,556,862 6.98G 45,790,968 6.87G 98.35 99.88 98.29 49.50
L_Mid_|I 45,356,306 6.80G 44,328,172 6.65G 97.73 99.75 97.72 49.00
L _Mid_2 46,438,704 6.97G 45,902,348 6.89G 98.85 99.88 97.58 50.00
L Low_lI 51,392,148 771G 50,378,658 7.56G 98.03 99.82 98.18 49.00
L Low 2 50,932,032 7.64G 49,905,606 7.49G 97.98 99.80 98.10 48.00
K_High_| 53,581,014 8.04G 53,011,954 7.95G 98.94 99.95 98.26 49.00
K_High_2 55,121,886 827G 54,458,124 8.17G 98.80 99.92 98.55 48.00
K_Mid_|I 51,445,132 7.72G 50,720,516 761G 98.59 99.85 98.04 48.00
K_Mid_2 53,517,710 8.03G 52,776,328 792G 98.61 99.92 98.31 49.00
K_Con_| 51,065,674 7.66G 50,242,550 7.54G 98.39 99.89 98.18 48.00
K_Con_2 54,550,952 8.18G 53,778,224 8.07G 98.58 99.93 98.46 49.00
K_Low_| 51,517,346 7.73G 50,764,130 761G 98.54 99.89 98.03 49.00
K_Low_2 47,911,624 7.19G 47,239,972 7.09G 98.60 99.91 98.35 49.00
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Table 2 Distribution Statistics of FPKM Values of Genes
Sample Exp Gene Min. Ist Qu. Median Mean 3rd Qu. Max. Sd. Sum.
L Con_lI 16,428 0.00 0.40 2.12 38.39 8.11 62,021.73 695.37 630,730.93
L Con_2 16,720 0.00 041 2.30 39.57 8.54 50,359.68 728.65 661,659.90
L_High_1 16,672 0.00 0.41 231 37.25 8.69 56,129.27 637.50 620,949.31
L_High_2 16,486 0.00 0.42 231 37.19 8.80 69,909.73 709.65 613,140.76
L _Mid_I 16,471 0.00 0.43 2.33 3842 8.52 57,776.82 727.02 632,743.92
L _Mid_2 16,643 0.00 0.41 241 36.01 9.20 41,448.32 520.97 599,317.25
L Low_I 17,010 0.00 0.38 223 35.83 848 70,550.58 739.62 609,427.26
L Low_2 16,884 0.00 0.38 2.06 41.01 7.62 73,401.20 1018.58 692,468.90
K_Con_|I 18,160 0.00 0.55 3.68 37.75 13.10 72,364.52 920.14 685,579.85
K_Con_2 18,563 0.00 0.6l 4.13 34.05 14.64 47,515.32 630.82 632,033.06
K_High_|I 18,117 0.00 0.52 3.72 35.23 14.12 66,717.66 757.31 638,236.57
K_High_2 17,510 0.00 0.38 2.49 45.37 11.00 102,216.56 1300.03 794,389.69
K_Mid_|I 17,858 0.00 0.47 322 38.64 12.66 73,805.66 906.45 690,100.55
K_Mid_2 18,369 0.00 0.59 4.12 34.86 14.12 53,952.70 712.05 640,405.39
K_Low_|I 18,703 0.00 0.6l 425 32.65 15.49 43,834.10 532.70 610,647.25
K_Low_2 18,344 0.00 0.62 4.19 33.50 15.17 47,868.49 560.08 614,572.02

Notes: Exp gene represents number of expressed genes; Min., Ist Qu., Median, Mean, 3rd Qu., Max., Sd., and Sum. represent the minimum, upper quartile,

lower quartile, maximum, standard deviation, and sum of FPKM in each sample.

Identification of DEGs

To better understand the effect of EC in musalais, rats
were treated with musalais containing EC at varying con-
tents. DEGs were identified in liver and kidney tissues by
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Figure 2 Volcano plots of the DEGs. Up-regulated genes are shown in red and down-regulated genes are shown in blue. Genes that showed no difference are shown in grey.

DEGs, differentially expressed genes.

(Supplementary 1) were illustrated using volcano plots
(Figure 2, up-regulated genes are highlighted in red, down-
regulated genes are highlighted in blue, and genes showing
no difference are highlighted in grey) and counted (Figure
3). The kidney tissues in the High group showed the

highest number of DEGs, with 435 up-regulated (Red)
and 1877 down-regulated (Blue) genes. The complete list
of DEGs is shown in Supplementary 2. Hierarchical clus-
tering (unsupervised), performed to analyze the DEGs,
clearly described the separation within the shortlisted
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Figure 3 Number of DEGs. Red represents the number of up-regulated genes and blue represents the number of down-regulated genes. DEGs, differentially expressed

genes.

genes in the respective groups and demonstrated the dif-
ferent patterns in liver (Figure 4) and kidney (Figure 5)
tissues between treated and untreated rats.

GO Enrichment and KEGG Pathway

Enrichment Analysis of DEGs

Comparing the biological function of the DEGs in the
High and Mid groups with those in the Low group clearly
revealed the effect of high EC content in musalais. The
biological functions of a gene can be defined using three
GO categories: biological process, molecular function, and
cellular component. Figures 6 and 7 show the number of
DEGs associated with various GO terms in liver and
kidney tissues, respectively. The GO annotations indicated
that the key subcategories in each group were similar in
the liver and kidney, ie, cytoplasm, nucleus, integral com-
ponent of membrane, and extracellular exosome.

To better understand the biological effect of high EC
content in musalais, KEGG pathway enrichment was ana-
lyzed based on the DEGs. The details of the predicted
pathways are listed in Supplementary 3 and the enrichment
plots of the top 20 KEGG pathways are displayed in
Figure 8. For liver tissues, compared to the Low group,

there was no regular pattern in the predicted KEGG path-
ways showing statistical differences (p < 0.05) in both
High and Mid groups. However, for kidney tissues, all
pathways with p < 0.05 were found in the High and Mid
groups but not in the Low group. Specifically, these path-
ways were drug metabolism — cytochrome P450, chemical
carcinogenesis, metabolism of xenobiotics by cytochrome
P450, Wnt signaling pathway, and p53 signaling pathway,
indicating that high EC content in musalais could affect
metabolic and biological processes in rats by modulating
these pathways. Further Venn diagram analysis demon-
strated that in the High group, 11 genes (Atadl, Gsta,
Gsta3, Ugt2a3, Gstpl, Gsta2, Adhl, Gstal, Gsto2, Mgstl,
and RGD1562107) were simultaneously enriched in drug
metabolism — cytochrome P450, chemical carcinogenesis,
and metabolism of xenobiotics by cytochrome P450 path-
ways and one gene (Ccndl) was enriched in both Wnt and
pS3 signaling pathway (Figure 9A and Table 3). In the
Mid group, 10 genes (AABR07014550.1, Mgst1, Aldhla3,
Gstpl, Gstas, Gstal, Gstt2, Adhl, and Gsta2) were simul-
taneously enriched in drug metabolism — cytochrome
P450, chemical carcinogenesis, and metabolism of xeno-
biotics by cytochrome P450 pathways and one gene
(Cendl) was enriched in both Wnt and p53 signaling
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Figure 4 Cluster analysis of the DEGs in liver samples. Orange indicates that gene expression is up-regulated. Blue indicates that gene expression is down-regulated. The
color intensity indicates the degree of up- or down-regulation. DEGs, differentially expressed genes.

pathway (Figure 9B and Table 4). Among these genes,
Mgstl, Gstpl, GstaS, Gstal, Adhl, Gsta2, and Ccndl
were simultaneously observed in the High and Mid
groups. These results suggested that high EC content in
musalais could affect metabolic and biological processes
in rats by regulating the expression of Mgstl, Gstpl,
Gsta5, Gstal, Adhl, Gsta2, and Cendl.

Discussion

Musalais is a unique wine brewed by the local people in
southern Xinjiang in China. With a history of more than
2000 years, it is an indispensable part of the local culture
and has been protected as a form of intangible human
cultural heritage since 2007, contributing substantially to

the development of local tourism and economy.''*'

Musalais is produced through natural fermentation, result-
C,1517

EC is an ethyl ester of carbamic acid and is mainly

ing in the generation of E also known as urethane.
synthesized via the metabolism of urea and citrulline dur-
ing the fermentation process.'® Accumulating evidence has
demonstrated the carcinogenic effect of EC in organs such
as the liver, lung, lymph, skin, and breast.!” 2! In addition,
Lajovic et al demonstrated the carcinogenesis of vinyl
carbamate epoxide, the ultimate carcinogen of EC
metabolism,”? through both experimentally and quantum
chemical simulations.”> Thus, many countries including
Canada,** the USA,* Brazil,”® and South Korea®’ have
set a maximum residue level for EC in fermented bev-
erages. Despite that high levels of EC are found in many
regularly consumed Chinese alcoholic beverages, no
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Figure 5 Cluster analysis of the DEGs in kidney samples. Orange indicates that gene expression is up-regulated. Blue indicates that gene expression is down-regulated. The
color intensity indicates the degree of up- or down-regulation. DEGs, differentially expressed genes.

regulation has been implemented on EC,”® and safety
assessment has not been conducted on EC in alcoholic
beverages.

In this work, transcriptome sequencing was performed
to analyze the effects of musalais containing varying
amounts of EC on gene expression in rat liver and kidney,
the major organs involved in metabolism and detoxifica-
tion. In addition, the biological functions of the identified
DEGs were examined. Although plenty of studies demon-
strated that alcohol influences gene expression in the liver

2930 the alcohol content in each EC treatment

and kidney,
group in the current study was the same, resulting in

similar effects on gene expression. Thus, the effect of

alcohol can be excluded. GO enrichment analysis based
on DEGs demonstrated that the key subcategories in the
liver and kidney were similar between groups, ie, cyto-
plasm, nucleus, integral component of membrane, and
extracellular exosome. However, KEGG pathway analysis
revealed that drug metabolism — cytochrome P450, chemi-
cal carcinogenesis, metabolism of xenobiotics by cyto-
chrome P450, Wnt signaling pathway, and p53 signaling
pathway were only found in the High and Mid groups but
not in the Low group in kidney tissues. Comparing the
biological functions of DEGs in the High and Mid groups
to those in the Low group clearly revealed the effect of
high EC content in musalais on rats. Cytochrome P450,
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Table 3 Identification of Genes Enriched in Similar Pathways in
High Kidney Group

Table 3 (Continued).

Gene Name Pathway Number RGD1562107 Drug metabolism - cytochrome 3
of P450; Chemical carcinogenesis;
Pathways Metabolism of xenobiotics by
cytochrome P450
Atad| Drug metabolism - cytochrome 3 lal hemical ] ] )
P450; Chemical carcinogenesis; Gpla Chemical carcinogenesis;
. L Metabolism of xenobiotics by
Metabolism of xenobiotics by
cytochrome P450 cytochrome P450
Gstas Drug metabolism - cytochrome 3 Hsdl Ibl Chemical carcinogenesis; 2
. . . Metabolism of xenobiotics by
P450; Chemical carcinogenesis;
Metabolism of xenobiotics by cytochrome P450
cytochrome P450 Adgb Chemical carcinogenesis; 2
Gsta3 Drug metabolism - cytochrome 3 Metabolism of4x<(e)nob|ot|cs by
P450; Chemical carcinogenesis; cytochrome P45
Metabolism of xenobiotics by Cbrl Chemical carcinogenesis; 2
cytochrome P450 Metabolism of xenobiotics by
Ugt2a3 Drug metabolism - cytochrome 3 cytochrome P450
P450; Chemical carcinogenesis; LOCI08348130 | Chemical carcinogenesis; 2
Metabolism of xenobiotics by Metabolism of xenobiotics by
cytochrome P450 cytochrome P450
Gstpl Drug metabolism - cytochrome 3 Dhrs711 Chemical carcinogenesis; 2
P450; Chemical carcinogenesis; Metabolism of xenobiotics by
Metabolism of xenobiotics by cytochrome P450
cytochrome P450
LOCI102556347 | Chemical carcinogenesis; 2
Gsta2 Drug metabolism - cytochrome 3 Metabolism of xenobiotics by
P450; Chemical carcinogenesis; cytochrome P450
Metabolism of xenobiotics by
cytochrome P450 Cendl Wht signaling pathway; p53 2
signaling pathway;
Adhl Drug metabolism - cytochrome 3
P450; Chemical carcinogenesis;
Metabolism of xenobiotics by
cytochrome P450 i 33,34
Y toxic compounds. However, cytochrome P450-
Gstal Drug metabolism - cytochrome 3 mediated biotransformation could lead to the metabolic
P450; Chemical carcinogenesis; activation of environmental chemicals into active
Metabolism of xenobiotics by carcinogens.®® For instance, cytochrome P450 promotes
cytochrome P450 the metabolism of aflatoxin B1, which is known as the
Gsto2 Drug metabolism - cytochrome 3 most potent natural carcinogen to humans.>> Studies on the
P450; Chemical carcinogenesis; carcinogenic mechanism of EC have shown that its meta-
Metabolism of xenobiotics by bolism in biological systems is mainly related to cyto-
toch P450 . .
cytochrome chrome P450. Specifically, EC can be reversibly
Megst| Drug metabolism - cytochrome 3 converted by P450 to ethyl N-hydroxycarbamate,
P450; Chemical carcinogenesis; a proximate on ultimate carcinogenic metabolite of ethyl
Meml:"sm c:4’;:"°b'°t'cs by carbamate.*® In addition, EC is oxidized by cytochrome
cytochrome . .
P450 to vinyl-carbamate, followed by the formation of
(Continued)  methyl epoxyethylene formate. This epoxide forms an
1412  submit your manuscripe OncoTargets and Therapy 2021:14
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Table 4 Identification of Genes Enriched in Similar Pathways in Table 4 (Continued).
Mid Kidney Group
G N Path Numb
Gene Name Pathway Number ene Name athway fum er
of path
Pathways athways
AABRO7014550.1 | Drug metabolism - cytochrome 3 Hsdl bl Metal:]ollsm c:4>;<(e)nc;-l"3r|]otlc.s |II>)’ 2
P450; Chemical carcinogenesis; cytoF rome ) » -nemica
Metabolism of xenobiotics by carcinogenesis
cytochrome P450 Cbrl Metabolism of xenobiotics by 2
Mgst! Drug metabolism - cytochrome 3 cyto.chrome ?450; Chemical
P450; Chemical carcinogenesis; carcinogenesis
Metabolism of xenobiotics by Cyplal Metabolism of xenobiotics by 2
cytochrome P450 cytochrome P450; Chemical
Aldhla3 Drug metabolism - cytochrome 3 carcinogenests
P450; Chemical carcinogenesis; LOC108348130 Metabolism of xenobiotics by 2
Metabolism of xenobiotics by cytochrome P450; Chemical
cytochrome P450 carcinogenesis
Gstpl Drug metabolism - cytochrome 3 Dhrs711 Metabolism of xenobiotics by 2
P450; Chemical carcinogenesis; cytochrome P450; Chemical
Metabolism of xenobiotics by carcinogenesis
cytochrome P450
LOCI102556347 Metabolism of xenobiotics by 2
Gstas Drug metabolism - cytochrome 3 cytochrome P450; Chemical
P450; Chemical carcinogenesis; carcinogenesis
Metabolism of xenobiotics by
cytochrome P450 Adgb Metabolism of xenobiotics by 2
cytochrome P450; Chemical
Gstal Drug metabolism - cytochrome 3 carcinogenesis
P450; Chemical carcinogenesis;
Metabolism of xenobiotics by Cend| P53 signaling pathway; Wt 2
cytochrome P450 signaling pathway
Gstt2 Drug metabolism - cytochrome 3
P450; Chemical carcinogenesis; . . . . .
i - addition polymer with DNA, RNA, and proteins in vivo,
Metabolism of xenobiotics by
cytochrome P450 resulting in damage to the double-stranded structure of
DNA and thus leading to cellular carcinogenesis.’’~**
Adhl Drug metabolism - cytochrome 3 . .
) ) | . Previous studies have found that DNA damage resulted
P450; Chemical carcinogenesis;
Metabolism of xenobiotics by in the activation p53. DNA damage regulates p53 partially
cytochrome P450 through signaling pathways involving sensor kinases
Gsta2 Drug metabolism - cytochrome | 3 including checkpoint kinase-1/2 and the Weel kinase.
P450; Chemical carcinogenesis; This results in the transcriptional regulation of a variety
Metabolism of xenobiotics by of genes involved in apoptosis and cell cycle control,*
cytochrome P450 thereby modulating cancer progression. Inversely, p53 sig-
RGD 1562107 Drug metabolism - cytochrome | 3 naling is involved in cancer progression by regulating
P450; Chemical carcinogenesis; DNA damage and biological processes such as cell cycle
Metabolism of xenobiotics by progression, apoptosis, metabolism, senescence, and pro-
cytochrome P450 grammed necrosis.**' As a tumor suppressor, p53 is
(Continued) prone to inactivation by destabilizing mutations, resulting
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in tumor development.*'**> Research has revealed that the
Wnt signaling pathway participates in both tissue home-
ostasis and development through modulation of endogen-
ous stem cells.*> Abnormalities in Wnt signaling have
been shown to play critical roles in the occurrence and/or
development of many tumors.** Collectively, our findings
suggested that high EC content in musalais could play
a carcinogenic role or affect metabolic and biological
processes in rats by regulating these pathways.

Venn diagram analysis of the KEGG pathways and
enriched DEGs indicated that Mgstl, Gstpl, Gstal,
Gsta2, Gsta5, and Adhl were concurrently enriched in
drug metabolism — cytochrome P450, chemical carcino-
genesis, and metabolism of xenobiotics by cytochrome
P450 pathways in both High and Mid groups. Among
these, Ccndl was concurrently enriched in Wnt and p53
1** and Gstp1* have been

demonstrated to exert important functions in oxidative

signaling pathways. Both Mgst

stress and tumorigenesis. Gstal is a Phase II detoxification
enzyme involved in the biological progression of color-
ectal, lung, prostate, and bladder cancer,*® and the relation-
ship between cancer and Gsta2,*” Gsta5,*® and Adh1*® has
been reported. Cendl belongs to the highly conserved
cyclin family, whose members are characterized by abun-
dant expression during the cell cycle.* In turn, Cendl has
been associated with Wnt*® and p53 signaling®' in affect-
ing the biological progression of tumors. These genes are
helpful in understanding the biological response of rats to
high EC content in musalais.

Overall, our work predicted that high EC content in
musalais possibly induces cancer or affects metabolic and
biological processes by regulating cytochrome P450 meta-
bolism, chemical carcinogenesis, metabolism of xenobiotics
by cytochrome P450, Wnt signaling pathway, and p53 sig-
naling pathway. This may be achieved by targeting Gstpl,
Gsta5, Gstal, Adhl, Gsta2, and Ccndl, as revealed by
transcriptomic sequencing. The findings provide a useful
reference for the safety evaluation of musalais. The limita-
tion of the current study is that only two RNA-seq libraries
were constructed in each group, which might increase the
random error of statistical analysis. Future research will aim
to address this issue by implementing methods to minimize
random statistical error. Prospective studies will also be
designed to evaluate the effect of high EC content in musa-
lais on the metabolic and biological processes of rats and
investigate whether the underlying mechanism is mediated
by the pathways and genes identified in this research.
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