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Purpose: To investigate the prognostic value and biological function of RNA binding 
proteins (RBPs) in stomach adenocarcinoma (STAD).
Materials and Methods: Datasets of the differentially expressed genes (DEGs) were 
downloaded from the TCGA-based (The Cancer Genome Atlas) GEPIA database, from 
which the differentially expressed RBPs were determined. Functions and prognostic values 
of these determined RBPs were systematically investigated by a series of methods in 
bioinformatics analysis. In addition, transwell assays were performed to explore the effect 
of PTBP1 in STAD cells.
Results: Three hundred and sixty-two differentially expressed RBPs were determined, with 
331 up-regulated and 31 down-regulated. Seven RBPs (PTBP1, PPIH, SMAD5, MSI2, 
RBM15, MRPS17, and ADAT3) were identified to be prognosis-related and adopted to 
construct a prognostic model. Compared with low-risk patients in TCGA training cohort, 
TCGA testing cohort and GEO cohort, high-risk patients had poorer overall survival (OS). 
The area under the ROC curves of this prognostic model were 0.804, 0.644 and 0.581 for 
TCGA training cohort, TCGA testing cohort and GEO cohort, respectively, justifying itself 
as a good prognostic model with reliable predictive ability. Using the seven identified RBPs, 
we then constructed a nomogram to generate a clinical utility model. The regulatory net-
works and functions of the seven RBPs were then investigated, the results of which demon-
strated that MRPS17 and PTBP1 reduced the number of infiltrated immune cells. In-vitro 
experiments showed that the downregulation of PTBP1 weakened the migration and invasion 
capability of AGS and HGC27 cells.
Conclusion: The seven-gene signature can be used as a reliable STAD prognostic biomarker, and 
these findings help us better understand the prognostic roles and functions of RBPs in STAD.
Keywords: RNA binding proteins, stomach adenocarcinoma, TCGA, prognostic model, 
infiltrated immune cells

Introduction
Globally, stomach adenocarcinoma (STAD) is a common malignant tumor with high 
mortality.1 Survival of patients with early STAD has been remarkably improved due to 
progress made in diagnosis and treatment over the last few decades.2 Unfortunately, the 
prognosis of advanced STAD patients remains dismal due to the lack of effective 
treatment. Little progress has been made in improving patients, survival despite the 
application of chemotherapy, targeted therapy and immunotherapy.3 The role of immu-
notherapy still needs further verification.3 Thus, it is still an urgent task for scientists to 
elucidate molecular mechanisms of STAD that may help us design new therapeutic 
strategies and improve the prognosis of patients with advanced STAD.
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RNA binding proteins (RBPs) are a class of proteins 
that interact with various types of RNA, such as mRNAs, 
tRNAs, snRNAs, snoRNAs and others4,5. In human cells, 
more than 1500 RBPs have been identified through gen-
ome-wide screening, accounting for more than 7.5% of 
protein-encoding genes.4,5 By regulating processing, trans-
lation, export, and localization of target RNAs, RBPs play 
crucial roles in post-transcriptional regulation.6 It has 
demonstrated that the abnormal expression of RBPs is 
associated with cancer and many other diseases.7 For 
example, as one of the most RBP implicated in tumorigen-
esis, HuR has been reported to be associated with the 
prognosis of many malignant tumors, such as lung cancer, 
gallbladder cancer, ovarian cancer, breast cancer and colon 
cancer.8 Nucleolin promotes the occurrence of breast can-
cer through activating ERBB2.9 FOXK2 promotes color-
ectal cancer metastasis by upregulating mRNA expression 
of ZEB1 and EGFR.10 ESPR1 promotes the mesenchymal- 
epithelial transition of ovarian cells.11 AGO2 facilitates 
cancer progression by increasing oncogenic miR-19b 
biogenesis.12 Taken together, these studies indicate that 
RBPs are closely related to the occurrence and develop-
ment of human tumors. However, till today, the roles of 
RBPs in STAD have only been superficially investigated.6 

Thus, a systematic investigation of RBPs, roles in STAD is 
warranted since it can help us better understand novel 
mechanisms of SATD development and improve the prog-
nosis of STAD patients.

In the present study, data of STAD were downloaded 
from TCGA, from which differentially expressed RBPs 
were identified and the potential functions and mechan-
isms of these RBPs were explored. An RBPs-based prog-
nostic model was also developed and validated as some 
RBPs could be used as potential prognostic biomarkers.

Materials and Methods
Data Processing
STAD RNA-sequencing and clinical dataset were down-
loaded from TCGA (https://portal.gdc.cancer.gov/) and 
GEO datasets (GSE84437). GSE84437 dataset included 
gene expression data from 433 samples, which was obtained 
through the Illumina HumanHT-12 V3.0 Expression 
BeadChip platform. We used the ANOVA method to obtain 
the differently expressed genes (DEGs) from the GEPIA 
online database (http://gepia.cancer-pku.cn/index.html) in 
view of |log2fold change (FC)|>1 and p<0.01. We extracted 
1542 RBPs gene names from Gerstberger’s article.5 Volcanic 

maps of DEGs and differently expressed RBPs were pro-
duced via an online tool (https://www.omicstudio.cn/tool).

GO Enrichment and KEGG Pathway 
Analysis
Gene ontology (GO) enrichment and kyoto encyclopedia of 
genes and genomes (KEGG) pathway analysis were per-
formed by utilizing an online WEB-based Gene Set Analysis 
Toolkit (WebGestalt, http://www.webgestalt.org/).13

Construction and Validation of Prognostic 
Models
STAD database in TCGA was randomly divided into train-
ing and testing cohorts. Univariate Cox regression analysis 
was performed on all differently expressed RBPs in the 
TCGA training dataset using the survival R package. The 
significance of candidate genes was verified by Log rank 
test. Subsequently, a multivariate Cox proportional hazards 
regression model was constructed based on the above sig-
nificant candidate genes, and the risk score (RS) was calcu-
lated to assess patient prognosis outcomes. The RS formula 
for each sample was as follows: RS= β1*Exp1 + β2*Exp2 + 
βi*Expi, where β represented the coefficient value, and Exp 
represented the gene expression level. According to the 
median RS survival analysis, STAD patients were divided 
into low-risk and high-risk groups. OS of the two subgroups 
were compared by Log rank test. The predictive capability 
of the aforementioned prognostic model was evaluated by 
SurvivalROC package.14 TCGA testing cohort and GEO 
cohort were used as the validation groups to confirm the 
predictive capability of this prognostic model. The prog-
nostic value of hub RBPs in STAD was also verified by the 
Kaplan-Meier plotter (https://kmplot.com/analysis/)15 

online tool. Finally, the nomogram was conducted using R 
package to forecast the likelihood of OS. P<0.05 was con-
sidered as a significant difference.

Biology Network
To understand the mechanisms and functions of hub RBPs 
in STAD, we created tissue-specific protein–protein inter-
action (PPI), transcription factor (TF)–gene interaction and 
miRNA–gene interaction network of prognosis-related hub 
RBPs under the condition that betweenness was greater 
than 1 using Cytoscape 3.7.2, based on the data from 
NetworkAnalyst 3.0 (https://www.networkanalyst.ca/ 
NetworkAnalyst/home.xhtml).16 Function enrichment 
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analysis of prognosis-related hub RBPs was performed by 
the ClueGO plug to Cytoscape 3.7.2.

Tumor Immune Infiltrating Analysis
To fully understand the function of hub RBPs, we assessed 
the relationship between hub RBPs expression and tumor- 
infiltrating lymphocytes (TILs) abundance via TISIDB 
(http://cis.hku.hk/TISIDB/).17 TISIDB is a web portal for 
tumor and immune system interaction, which integrates 
multiple heterogeneous data types.

Cell Culture and siRNA Transfection
AGS and HGC27 cell lines were purchased from the Cell 
Bank of the Chinese Academy of Sciences (Shanghai, 
China). HGC27 cells were cultured in RPMI-1640 med-
ium (Biological Industries, Shanghai, China), while AGS 
cells were cultured in DMEM/F-12 medium (Biological 
Industries, Shanghai, China). All media were supplemen-
ted with 10% fetal bovine serum (FBS; Gibco, Logan, UT, 
USA). Cells were grown at 37°C in an atmosphere of 5% 
CO2. The genOFF PTBP1 siRNA and negative control 
siRNA oligonucleotides were designed and synthesized 
by Ribobio (Guangzhou, China). Sequences of si-1 and 
si-2 were as follows: GCCTCAACGTCAAGTACAA, and 
GCACAGTGTTGAAGATCAT. The siRNA transfections 
were performed with Ribo FECT™CP Transrection Kit 
(Ribobio, Guangzhou, China) in accordance with the man-
ufacturer’s instructions. In-vitro experiments were 
approved by the Ethics Committee of The Seventh 
Affiliated Hospital of Sun Yat-sen University.

RNA Extraction and Quantitative Real- 
Time PCR
Under instructions provided by the manufacture, total 
RNA was retrieved with AG RNAex Pro Reagent 
(Accurate Biology, Changsha, China) and was reverse- 
transcribed into cDNA by Evo M-MLV RT Premix Kit 
(Accurate Biology). Quantitative real-time PCR (RT-PCR) 
assays were performed using SYBR® Green Premix Pro 
Taq HS qPCR Kit (Accurate Biology) by CFX96 Touch 
Deep Well Real-Time PCR System (Bio-Rad, Guangzhou, 
China) according to the manufacturers’ protocols. The 
PCR primer sequences were: GAPDH(F):ACAA 
CTTTGGTATCGTGGAAGG; GAPDH(R):GCCATCA 
CGCCACAGTTTC; PTBP1(F):AGCGCGTGAAGATCC 
TGTTC; PTBP1(R):CAGGGGTGAGTTGCCGTAG.

Western Blotting
Cells were washed with PBS and lysed with RIPA lysis 
buffer containing phosphatase and protease inhibitor 
reagents (Beyotime Biotechnology, Shanghai, China), 
which were then separated with the method of SDS- 
PAGE. Then, the proteins separated by SDS-PAGE 
were transferred onto PVDF membranes (Merck 
Millipore, Billerica, MA, USA). After being loaded 
with transferred proteins, these PVDF membranes 
were soaked in 5% BSA (Beyotime Biotechnology) 
solution for at least 1 hour at room temperature, 
which was immediately followed by incubation with 
different primary antibodies at 4°C overnight. Then 
on the second day, after being washed three times, 
the PVDF membranes were soaked into a solution 
containing HRP-conjugated goat anti-rabbit IgG 
(SA00001-2, Proteintech, Wuhan, China) for at least 
1 hour at room temperature. After being washed with 
TBST solution for 20 minutes, these PVDF membranes 
containing antibody-conjugated protein bands were 
visualized with a BeyoECL Plus Kit (Beyotime 
Biotechnology). Anti-GADPH (10,494-1-AP) and anti- 
PTBP1 antibody (12,582-1-AP) were purchased from 
Proteintech.

Cell Migration and Invasion Assays
In order to assess the effects of PTBP1 expression on the 
migration and invasion capability of STAD cells, we sub-
sequently performed transwell assays. For migration assay, 
5 × 10^4 cells were seeded into the upper chamber con-
taining serum-free medium (8-μm pore size, Corning, NY, 
USA), while the lower chamber was filled with 10% fetal 
bovine serum-supplemented medium. For invasion assay, 
5 × 10^4 cells were seeded into the upper chamber cov-
ered with 10% Matrigel (Corning). AGS and HGC27 cells 
were incubated for 24 h. Cells left in the upper chamber 
after the incubation period were wiped off by swabs. Then, 
cells that have transpassed the membrane were fixed with 
4% paraformaldehyde and stained with 0.1% crystal vio-
let. These cells migrating or invading the lower chamber 
were counted using five different fields under a 
microscope.

Statistical Analysis
For in-vitro experiments, all quantitative data are pre-
sented as the mean ± standard deviation of three indepen-
dent experiments. Differences between the three groups 
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were analyzed with one-way ANOVA using GraphPad 
Prism 8.0 (GraphPad, La Jolla, CA, USA). A P-value 
<0.05 was considered statistically significant.

Results
Differentially Expressed RBPs in STAD
The study design is illustrated in Figure 1. It was revealed 
by GEPIA analysis that DEGs in STAD included 896 
downregulated genes and 3475 upregulated genes 
(Figure 2A). Among the 1542 RBPs, 362 were differen-
tially expressed with 331 upregulated and 31 downregu-
lated (Figure 2B, Table S1).

GO and KEGG Pathway Enrichment 
Analysis of the Differentially Expressed 
RBPs
To explore the functions and mechanisms of these differ-
entially expressed RBPs, we performed the functional 
analysis for downregulated and upregulated RBPs via 
WebGestalt.

As shown in Table 1, significant differences were 
observed in functional enrichment of downregulated and 
upregulated RBPs. As for localization within the cell, 
downregulated RBPs were enriched in U2-type spliceoso-
mal complex, spliceosomal snRNP complex, U2-type 

Figure 1 Framework for analyzing RBPs in STAD.
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prespliceosome, prespliceosome and U1 snRNP, and upre-
gulated RBPs in U1 snRNP, U4 snRNP, U12-type spliceo-
somal complex, box H/ACA snoRNP complex and histone 
pre-mRNA 3ʹend processing complex. Differences in loca-
lization within the cell meant different molecular function, 
which was further confirmed by molecular functional ana-
lysis. Molecular functional analysis demonstrated that 
downregulated RBPs participated in RNA binding, 
mRNA binding and snRNA binding and upregulated 
RBPs in RNA 7-methylguanosine cap binding, exoribonu-
clease activity, transforming growth factor-beta receptor, 
box H/ACA snoRNA binding and snRNP binding 
(Table 1). Biological process analysis showed that down-
regulated RBPs were related to positive regulation of 
mRNA processing, mRNA splice site selection, positive 
regulation of RNA splicing, positive regulation of mRNA 
splicing and regulation of chaperone-mediated autophagy 
while upregulated RBPs to ribosomal subunit export from 
the nucleus, termination of RNA polymerase II transcrip-
tion, positive regulation of cytoplasmic mRNA processing 
body assembly, regulation of ribonuclease activity and 
mRNA cleavage involved in gene silencing (Table 1).

Moreover, downregulated RBPs were only enriched in 
the spliceosome pathway, while upregulated RBPs signifi-
cantly in aminoacyl-tRNA biosynthesis, ribosome biogen-
esis in eukaryotes, RNA transport, mRNA surveillance 
pathway, RNA degradation and spliceosome (Table 1).

Prognosis-Related Hub RBPs
To further analyze the effects of RBPs on the prognosis of 
STAD patients, we assessed the relationship between the 
differentially expressed RBPs and OS through the univari-
ate Cox regression analysis and Kaplan–Meier method in 
the TCGA training cohort, the results of which suggested 
that 25 candidate hub RBPs were significantly associated 
with OS (Table 2). Afterwards, the impacts of these 25 
candidate hub RBPs on OS were evaluated by multivariate 
analysis, the results of which demonstrated that seven hub 
RBPs were independent prognostic predictors for STAD 
patients (Table 2).

Construction of Prognostic Model
A predictive model based on the aforementioned seven 
hub RBPs was then established. According to the formula: 
RS= (0.040* Exp PTBP1) + (−0.052* Exp PPIH) + 
(0.172* Exp SMAD5) + (−0.208* Exp MSI2) + (−0.474* 
Exp RBM15) + (0.072* Exp MRPS17) + (−0.248* Exp 
ADAT3), RS of each individual patient was assessed. The 
predictive capability of RS was evaluated by survival 
analysis. According to the median RS, the 187 patients 
from TCGA training cohort were assigned into low-risk 
group and high-risk group. Results of survival analysis 
demonstrated that compared with patients of the low-risk 
group, those of high-risk group had significantly poorer 
OS (p<0.001, Figure 3A). In order to further evaluate the 

Figure 2 Volcano plot of related DEGs in STAD. (A) Volcano plot of all DEGs in STAD. (B) Volcano plot of differentially expressed RBPs in STAD.
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Table 1 GO Enrichment and KEGG Pathway Analysis of Differently Expressed RBPs

GO Term Name P value FDR

Down-regulated RBPs Cellular Component U2-type spliceosomal complex 2.07E-08 6.09E-06

Spliceosomal snRNP complex 4.95E-07 9.51E-05

U2-type prespliceosome 5.67E-07 9.51E-05

Prespliceosome 5.67E-07 9.51E-05

U1 snRNP 3.68E-09 1.44E-06

Molecular Function RNA binding 0 0

mRNA binding 5.81E-9 5.45E-6

snRNA binding 4.60E-5 2.88E-2

Biological Process Positive regulation of mRNA processing 2.27E-05 1.15E-02

mRNA splice site selection 2.06E-05 1.10E-02

Positive regulation of RNA splicing 4.19E-07 4.23E-04

Positive regulation of mRNA splicing, via spliceosome 7.14E-06 4.06E-03

Regulation of chaperone-mediated autophagy 8.14E-05 3.89E-02

KEGG pathway Spliceosome 3.19E-5 1.04E-2

Up-regulated RBPs Cellular Component U1 snRNP 2.17E-12 1.06E-10

U4 snRNP 2.81E-9 8.48E-8

U12-type spliceosomal complex 1.33E-15 1.04E-13

Box H/ACA snoRNP complex 3.73E-5 6.09E-4

Histone pre-mRNA 3ʹend processing complex 5.43E-9 1.59E-7

Molecular Function RNA 7-methylguanosine cap binding 1.50E-5 6.40E-4

Exoribonuclease activity, producing 5ʹ-phosphomonoesters 6.66E-16 1.25E-13

Transforming growth factor beta receptor, pathway-specific cytoplasmic mediator 6.62E-5 2.44E-3

Box H/ACA snoRNA binding 6.62E-5 2.44E-3

snRNP binding 4.30E-6 2.18E-4

Biological Process Ribosomal subunit export from nucleus 1.59E-07 1.24E-05

Termination of RNA polymerase II transcription 1.38E-14 1.90E-12

Positive regulation of cytoplasmic mRNA processing body assembly 1.18E-04 4.84E-03

Regulation of ribonuclease activity 2.40E-07 1.80E-05

mRNA cleavage involved in gene silencing 5.97E-05 2.66E-03

KEGG pathway Aminoacyl-tRNA biosynthesis 3.13E-8 1.70E-6

Ribosome biogenesis in eukaryotes 0 0

RNA transport 2.22E-16 2.41E-14

mRNA surveillance pathway 5.33E-15 4.34E-13

RNA degradation 6.75E-14 4.40E-12

Spliceosome 0 0
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prognostic capability of the seven identified hub RBPs, we 
subsequently performed a time-dependent ROC analysis, 
the results of which demonstrated that the area under the 
ROC curve (AUC) of this RBPs RS model was 0.804 
(Figure 3B), indicating the moderate diagnostic perfor-
mance of this model. The survival status of patients, RS 
and expression heat map of the signature consisting of 
seven hub RBPs in the low- and high-risk subgroups are 
displayed in Figure 3C–E.

Validation of Prognostic Model
To further verify the validity of the seven RBPs-based 
predictive model, we analyzed the TCGA testing cohort 
included 184 STAD patients and GEO cohort 
(GSE84437) included 433 STAD patients, the results 
of which showed that compared with patients with 
low-risk score, those with high-risk score had signifi-
cantly worse OS (p<0.05, Figure 4A; p<0.05, 
Figure S1A). AUC of the TCGA testing cohort and 
GEO cohort were 0.644 (Figure 4B) and 0.581 
(Figure S1B), which suggested good sensitivity and 
specificity of the predictive model. The survival status 
of patients, RS and expression heat map of seven hub 
RBPs in the TCGA testing cohorts and GEO cohort are 
shown in Figure 4C–E and Figure S1C–E. Additionally, 
the prognostic significance of different variables was 
assessed among patients of TCGA training cohort, 
TCGA testing cohort and GEO cohort by Cox regres-
sion analysis, the results of which demonstrated that for 
three cohorts, RS were independent prognostic factors of 
OS (p<0.01, Figure 5A; p<0.05, Figure 5B; p<0.01, 
Figure S1F). The prognostic values of the seven hub 
RBPs were also further investigated by Kaplan-Meier 
plotter online tool, the results of which revealed that all 
the seven hub RBPs were not only significantly asso-
ciated with OS but also with relapse free survival (RFS) 
(Figure S2). In summary, all the aforementioned results 
suggested that the seven RBPs-based prognostic model 
was reliable in predicting outcomes of STAD patients.

Building a Predictive Nomogram
A nomogram was constructed to generate a clinically 
practical model that would enable physicians to evaluate 
the prognosis of STAD patients using the seven hub RBPs 
(Figure 6). Based on the results of multivariate Cox ana-
lysis, the corresponding points were assigned to each 
individual variable according to the point scale in the 
nomogram. A horizontal line was drawn to determine the Ta
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Figure 3 Risk score analysis of seven-genes prognostic model in the TCGA training cohort. (A) Survival curve for low- and high-risk subgroups. (B) ROC curves for 
forecasting OS based on risk score. (C) Survival status. (D) Risk score. (E) Expression heat map.
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Figure 4 Risk score analysis of seven-genes prognostic model in the TCGA testing cohort. (A) Survival curve for low- and high-risk subgroups. (B) ROC curves for 
forecasting OS based on risk score. (C) Survival status. (D) Risk score. (E) Expression heat map.
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point of each variable. The total point for each patient was 
calculated by adding up the points of all variables, based 
on which we estimated the survival rate of each patient at 
1 year, 2 years, and 3 years.

Biology Network and Functions of the 
Seven Hub RBPs
To further investigate the functions of the seven hub 
RBPs in STAD, we created TF-gene, micro-RNA and 
tissue-specific PPI network of the seven hub RBPs. TF- 
gene-specific network included 68 nodes, 152 edges and 
7 seeds (PTBP1, PPIH, SMAD5, MSI2, RBM15, 
MRPS17, and ADAT3) (Figure 7A), miRNA-gene-speci-
fic network 36 nodes, 64 edges and 4 seeds (MRPS17, 
MSI2, SMAD5 and PTBP1) (Figure 7B), and tissue- 
specific PPI network 14 nodes, 19 edges and 5 seeds 
(PPIH, RBM15, PTBP1, SMAD5 and MSI2) 
(Figure 7C). Finally, function enrichment analysis 
revealed that they were enriched in tRNA wobble base 

modification, thrombopoietin-mediated signaling path-
way, Mullerian duct regression, poly-pyrimidine tract 
binding and U4/U6 snRNP (Figure 7D). All these 
results suggested that the seven hub RBPs were widely 
involved in many biological processes.

Assessment of Tumor Immune Infiltration
The effects of the seven RBPs on tumor immune infiltra-
tion were also explored, the results of which demonstrated 
that expression of MRPS17 and PTBP1 was negatively 
significantly correlated with the abundance of TILs. It 
was also revealed that expression of MRPS17 was nega-
tively correlated with Th1 cell, Tem-CD8 cell, NKT cell 
and NK cell abundance (Figure 8A). The expression of 
PTBP1 was also revealed to be negatively correlated with 
Th1 cell, Tem-CD4 cell, NKT cell and eosinophil abun-
dance (Figure 8B). All these results indicated that 
MRPS17 and PTBP1 may reduce the infiltration of 
immune cells.

Figure 5 The prognostic value of different clinical parameters. (A, B) Univariate and multivariate COX regression analysis of different clinical parameters in TCGA training 
and TCGA testing cohort.
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The Downregulation of PTBP1 Weakened 
the Migration and Invasion Capability of 
STAD Cells
Since the role of PTBP1 in STAD is still unclear, we 
further explored the effect of PTBP1 on the migration 
and invasion capability of STAD cells. PTBP1 mRNA 
expression in multiple STAD cell lines was detected by 
RT-PCR (Figure 9A). Subsequently, siRNAs (si-NC, si- 
1, and si-2) were transfected into AGS and HGC27 
cells. RT-PCR and Western Blotting assays showed 
that PTBP1 expression was significantly down-regulated 
in STAD cells (AGS and HGC27) transfected with si-1 
or si-2 compared with those transfected with si-NC 
(Figure 9B). Then, it was proven by transwell assays 
that both migration and invasion of AGS (p<0.01, 
Figure 9C) and HGC27 (p<0.01, Figure 9D) were sig-
nificantly reduced by knockdown of PTBP1. Therefore, 
we could infer that PTBP1 played important roles in 
promoting metastasis of STAD.

Discussion
In the present study, 362 differentially expressed RBPs 
were identified from GEPIA based on STAD TCGA 
data. We comprehensively analyzed the relevant biological 
functions and pathways. Additionally, seven hub RBPs 

were found to be prognosis-related by univariate and mul-
tivariate Cox regression analysis, and ROC analysis. A 
risk model based on the seven hub RBPs was established 
in TCGA training cohort and validated in TCGA testing 
cohort and GEO cohort. The risk model was proved reli-
able in predicting OS. To improve its clinical practicality, 
we then constructed a nomogram to evaluate the survival 
of STAD patients at 1 year, 2 years and 3 years. 
Furthermore, to understand the mechanisms and functions 
through which they contributed to STAD, we investigated 
TF gene, miRNA gene, and tissue-specific PPI network 
and assessed their effects on tumor immune infiltration. In 
addition, we assessed the effects of PTBP1 expression on 
the migration and invasion capability of STAD cells. 
These findings may enable us to better understand the 
mechanisms involved in the occurrence and progression 
of STAD and develop novel biomarkers for diagnosis and 
predicting prognoses of STAD patients.

Although 362 differentially expressed RBPs were 
identified in STAD, functional enrichment analysis 
demonstrated that they were significantly enriched in 
post-transcriptional regulation of RNA, including 
mRNA processing, RNA splicing, termination of RNA 
polymerase II transcription, cytoplasmic mRNA proces-
sing body assembly, ribonuclease activity, and mRNA 

Figure 6 Nomogram for predicting 1, 2, and 3 year OS of STAD patients in the TCGA training cohort.
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cleavage involved in gene silencing. As known to all, it 
has been reported that post-transcriptional regulation of 
RNA plays an important role in many types of cancers.6 

A recently published study revealed that RBPs signifi-
cantly affected the mRNA alternative splicing process 
and led to altered expression of tumor-associated genes.18 

As one kind of RBP, SRSF1 promoted the occurrence and 
progression of non-small cell lung cancer through stabi-
lizing LIG1 mRNA.19 Additionally, it was revealed by 
KEGG pathway analysis that it was by affecting spliceo-
some, aminoacyl-tRNA biosynthesis, RNA transport, 
mRNA surveillance pathway and RNA degradation that 

RBPs contributed to the occurrence and progression of 
STAD.

To explore the prognostic significance of the hub 
RBPs, we performed Cox survival analysis for these dif-
ferentially expressed RBPs in TCGA training cohort. A 
total of seven RBPs that included PTBP1, PPIH, SMAD5, 
MSI2, RBM15, MRPS17, and ADAT3 were proven to be 
prognosis-related. Subsequently, based on the seven iden-
tified hub RBPs, we established a risk model for predicting 
prognoses of STAD patients in TCGA training cohort. The 
ROC analysis demonstrated that the seven RBPs-based 
risk model was reliable in selecting out STAD patients 

Figure 7 Biology network and functions of the seven hub RBPs. (A) TF-gene network. (B) miRNA-gene network. (C) Tissue-specific PPI network. (D) Functional 
enrichment network.
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with poor prognosis, which was further validated by the 
TCGA testing cohort and GEO cohort. The aforemen-
tioned reliability of the risk model was also revealed by 
Kaplan-Meier plotter online tool. Consistent with our find-
ings, Su et al20 demonstrated that high expression of 
RBM15 was associated with better survival of STAD 
patients. Additionally, revealed by multiple Cox regression 
analysis of the three cohorts, RS was an independent 
prognostic factor for STAD patients. All the aforemen-
tioned findings of our study suggested the clinical practi-
cality of this seven RBPs-based prognostic model. To 
enable the physicians to predict patients, survival at 1 
year, 2 years, and 3 years more intuitively, we constructed 
a nomogram.

Nevertheless, the molecular mechanisms through which 
these seven RBPs contribute to the pathogenesis of STAD 
remains poorly understood. To solve this puzzle, we further 
investigated the potential mechanisms at different levels. As 
shown in the network of TF-gene, these RBPs can be 
regulated by various TFs. As we all have known TF, MYC 
promotes the progression of STAD through regulating 
downstream genes and different pathways.21 FOXM1 has 
also been testified to play a crucial role in the occurrence 
and chemoresistance of gastric cancer.22 As the potential 
targets of TFs, RBPs and their roles in STAD deserve our 

further efforts. Network analysis of miRNA-gene revealed 
that many miRNAs could target PTBP1, MSI2, MRPS17, 
and SMAD5. The roles miRNAs play in cancer need no 
further illumination as it has been revealed by many studies 
that miRNA acts as oncogene or tumor suppressor gene in 
many kinds of cancers.23 It has been reported that miRNA- 
133b inhibited the growth of gastric cancer cells through 
silencing PTBP1.24 Despite the crucial roles played by 
miRNA155-5p,25 miRNA-12426 and miRNA-17,27 it 
remains unclear whether they regulate RBPs. Thus, the 
roles of miRNA-RBPs axis in STAD deserve to be further 
investigated. In our study, tissue-specific PPI was also con-
structed to confirm the proteins that interacted with the 
seven RBPs, the results of which demonstrated that 
PTBP1, MSI2, PPIH, RBM15, and SMAD5 interacted with 
nine other proteins that included HMGA2, FN1, SOX2, 
CUL3, CUL7, RPA2, RNF2, CALCOCO2, and 
MAP1LC3A. HMGA2 promoted the metastasis and epithe-
lial-to-mesenchymal transition of chemoresistant gastric 
cancer.28 Down-regulation of FN1 suppressed the prolifera-
tion, migration and invasion of gastric cancer cells.29 The 
role of SOX2 in gastric cancer is still controversial.30,31 

Thus, it is necessary to confirm the roles of these hub 
RBPs and other proteins to help us understand the mechan-
isms contributing to STAD. For the last part, the effects of 

Figure 8 The relationship between the hub RBPs expression and TILs abundance. (A) The relationship between MRPS17 expression and TILs abundance. (B) The 
relationship between PTBP1 expression and TILs abundance.
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the seven RBPs on tumor immune infiltration were 
explored, the results of which demonstrated that both 
MRPS17 and PTBP1 were negatively associated with the 
abundance of TILs, such as Th1 cell, NKT cell, Tem CD8 

cell, and Tem CD4 cell. As known to all, these infiltrated 
cells are indispensable in killing cells,32 which may explain 
the phenomenon that MRPS17 and PTBP1 affect the prog-
nosis of STAD. Multiple studies have reported that PTBP1 

Figure 9 The downregulation of PTBP1 weakened the migration and invasion capability of STAD cells. (A) PTBP1 mRNA expression level in STAD cells. (B) PTBP1 
knockdown AGS and HGC27 cells were constructed and then confirmed by RT-PCR and Western blotting. (C, D) Migration and invasion capability of AGS and HGC27 cells 
were significantly weakened by downregulation of PTBP1. (**p<0 0.01, ***p <0.001).
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is closely associated with immune response. PTBP1 is 
crucial to B-cell receptor-mediated activation33 and knock-
down of PTBP1 inhibits tumor-promoting functions of 
SASP and influences immune surveillance.34 All these stu-
dies remind us that RBPs play multiple roles at different 
levels.

To further verify the role of these hub RBPs in STAD, 
we performed functional experiments in STAD cells. 
PTBP1 was selected for in-vitro experiments because its 
role in STAD is still unclear. Transwell assays showed that 
the downregulation of PTBP1 significantly weakened the 
migration and invasion capability of STAD cells. These 
results suggested that PTBP1 played important roles in the 
metastasis of STAD, which provided more powerful sup-
port for us to further explore the roles of RBPs in STAD. 
Although the mechanisms through which RBPs contribute 
to STAD remain to be solved, comprehensive investigation 
of abnormally expressed RBPs that are closely related to 
the occurrence and progression of STAD may bring us the 
potential targets to design novel strategies and the chances 
to improve outcomes of STAD patients.

Conclusion
In conclusion, we comprehensively investigated the prog-
nostic values and potential functions of differentially 
expressed RBPs in STAD. A risk model that can reliably 
predict the prognosis of STAD patients was constructed 
based on the seven identified RBPs and validated by the 
TCGA testing cohort and GEO cohort. Our study may 
provide important evidences for future studies on the 
roles of RBPs in STAD.
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