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Abstract: Cancer is the second leading cause of mortality worldwide. Conventional thera-
pies, including surgery, radiation, and chemotherapy, have limited success because of 
secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are 
urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal 
for cancer treatment because of their low toxicity and high success. NPs cure cancer by 
regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, 
MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mito-
phagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, 
VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the 
induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess 
potent effects against different cancers through apoptosis, autophagy, inflammation, and 
necroptosis. This review summarizes the available studies on PPs against cancer to provide 
a basis for future research. 
Keywords: natural products, saponins, polyphyllins, apoptosis, autophagy, inflammation, 
necroptosis

Introduction
Cancer is the second leading cause of mortality worldwide.1–4 A WHO report 
shows that cancer causes more deaths in the world compared with stroke and 
coronary heart diseases.5 Factors that increase cancer incidence include overpopu-
lation and aging.6 Global epidemiologic and demographic transition signals indicate 
that cancer will increase in the next decade, especially in countries with low or 
middle income.7 A recent report has estimated that 18.1 million new cancer cases 
excluding non-melanoma skin cancer (17.0 million cases) and 9.6 million cancer- 
related deaths excluding non-melanoma skin cancer (9.5 million cases) were 
recorded in 2018.8 In both genders combined, lung cancer (11.6% of total reported 
cases) was more common, followed closely by female breast (11.6%), prostate 
(7.1%), and colorectal (6.1%) cancers. Lung cancer was also the leading cause of 
death (18.4% of the total reported cases), followed by colorectal cancer (9.2%), 
stomach (8.2%), and liver (8.2%) cancers.8

Available clinical treatment for cancer includes surgery, chemotherapy, and 
radiotherapy.9 Conventional therapies, including surgery, radiation, and chemotherapy, 
have limited success because of secondary resistance.1,10 Therefore, safe, non-resistant, 
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less toxic, and convenient drugs are urgently required.1,10 

NPs, primarily sourced from medicinal plants, are ideal for 
cancer treatment because of their low toxicity and high 
success.1,11,12 These NPs cure cancer by regulating different 
pathways, such as PI3K/AKT/mTOR, NF-kB, autophagy, 
MEK-ERK, inflammation, oxidative stress, and apoptosis.11

Paris (Melanthiaceae) consists of 29 species,13 many 
of which are used as traditional herbal medicines14 and 
distributed in Eastern Asia and Europe. Among 29 spe-
cies of Paris,13 22 are found in China and its diversity 
center in China is South-west China.15 In China, extracts 
from Paris species are extensively used as herbal 
medicine.16 Paridis, the dry rhizome of Paris, is used 
as a main raw material in patent Chinese drugs, includ-
ing “GongXue Ning,” “Jidesheng snake tablet,” and 
“Yunnan Baiyo”.17 For a thousand years, this herb has 
been used in traditional Chinese medicine for the treat-
ment of various diseases, such as snakebite, parotitis, 
hemostasis, abscess, and fractures.17 Modern research 
explored its new pharmacological activities, including 
cytotoxic, hemolytic, antibiotic, spermicidal, styptovit 
analgesic, calming, immunoregulatory, anthelmintic, 
anti-inflammatory, and anticancer activities.18–22

Photochemical research found several active ingredi-
ents in the dried rhizome of Paris, including flavonoids, 
endophytic fungi, fatty acid ester, and steroid saponins, 
such as Polyphyllin I (PPI), Polyphyllin II (PPII), 
Polyphyllin VI (PPVI), and Polyphyllin VII 
(PPVII).17,21,23 Modern research revealed that the PPs 
have potential pharmacological, analgesic, and anticancer 
activities for the induction of cytotoxicity through 
apoptosis.24–26

PPI,15,27–31 PPII,15,27–31 PPVI,15,27–31 and PPVII15,27–32 

have been isolated from 13 Paris species, 
including, P. polyphylla (ChongLou),32 

P. caobangensis,15,27,28 P. cronquistii,15,27,28 P. cronquistii 
var. xichouensis,15,27,28 P. delavayi var. petiolata,15,27,28 

P. fargesii,15,27,28 P. mairei,15,27,28 P. polyphylla,15,27–29 

P. polyphylla var. alba,15,27,28 P. polyphylla var. 
chinensis,15,27,28 P. polyphylla var. younaninsis,15,27,28,30,31 

P. vitenaminsis,15,27,28 P. axialis pseudothi,15,27,28 and 
P. polyphylla var.15,27,28 These studies reported that the amount 
of isolated compounds from the same species of different 
regions varies possibly because of climate changes.15,27 

PPD,23,33–37 Paris-VII23,33,34 are derived from Rhizoma 
paridis,23,33,34 Paris polyphylla,37 P. forrestii.35,36 Rhizoma 
Paridis extracts also containing PPI, PPII, PPVI and PPVII.38

Among these PPs, PPI has a significant therapeutic 
effect on hepatocellular carcinoma, lung adenocarcinoma, 
and gastric cancer.39–41 PPII has different pharmacological 
activities, including hemolytic effect42 and anticancer (eg, 
against ovarian cancer).43 PPVI inhibits colon cancer by 
inducing apoptosis, PPVII is a potent compound for the 
treatment of cervical cancer by inhibiting the growth of 
Hela cells.44 PPD exerts a potent antiproliferative effect 
against different types of cancer cells, including HepG-2, 
MCF-7 and MDA-MB-231.25,45,46 These PPs exhibit an 
anticancer effect against different cancers through differ-
ent mechanisms. This review summarizes the anticancer 
mechanisms of these PPs to provide basic knowledge for 
further studies.

Non-Mechanistic Studies of PPs in 
Different Cancers
This section discusses those studies in which PP mechan-
isms are not reported. PPD inhibits the growth of HMEC-1 
cells and decreases angiogenesis by suppressing cell pro-
liferation, tube formation, and migration in vitro.47 PPD 
induces apoptosis in HL-60, SMMC-7721, A-549, MCF-7, 
and SW480 cell lines.35 PPD inhibits the proliferation of 
ovarian cancer (OVCA) cell lines, including TYKNU, 
M41-R, TYKNU-R, M41-R, PE01, A2780S, Skov3, 
OVCAR8, MCAS, A2780CP, HEYA8, and OVCAR5. In 
all cell lines, PPD treatment can significantly decrease 
cisplatin IC50.48 Paris polyphylla mixtures containing 
PPD inhibit the migration of LA795 cells in vitro and 
inhibit the tumor growth in vitro.37 PPVII induces death 
in different cell lines, including gastric cancer SNU-5, 
lung cancer A-549, skin cancer carcinoma A431, oral 
cancer OECM-1, breast MCF-7, pancreas MiaPaca-2, 
colon HTB-39, human normal fibroblasts (FR2).

Mechanistic Studies of PPs in 
Different Cancers
This section discusses those studies in which PP mechan-
isms are reported.

Apoptosis: PPs Induce Apoptosis in 
Different Cancers Through the Following 
Mechanisms
Oxidative Stress
Oxidative stress is the disturbance in redox signaling and 
regulation or physiological imbalance in the production 
of reactive oxygen species (ROS), such as oxygen (O2) 
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or hydrogen peroxide (H2O2), and the body’s ability to 
remove them.49 ROS are generated throughout the body 
as by-products of cellular aerobic metabolism, exposure 
to X-rays or ultraviolet light, and on-going stress.50 ROS 
play pivotal roles in cell signaling and the regulation of 
growth factors, transcription, cytokines, hormones, neu-
romodulation, apoptosis, and immunomodulation.50,51 

ROS also function in different cell processes, including 
cell survival, proliferation, differentiation, gene expres-
sion, elimination of pathogens or foreign particles, and 
enzyme regulation.52,53 The high oxidative stress in can-
cer cells increases cell survival, proliferation, angiogen-
esis, and metastasis; disrupts cell death signaling; and 
causes drug resistance.54–56 Although ROS increase cell 
proliferation, they have been recently deemed useful in 
cancer treatment. Plant-derived compounds induce apop-
tosis in cancer cells by promoting ROS generation in 
these cells above the threshold level.54,56–58

Several PPs induce apoptosis in cancer cells through 
oxidative stress, which promotes the generation of ROS 
and the dissipation of mitochondrial membrane potential 
(MMP). In these PPs, PPI generates ROS and dissipates 
MMP in HCT 116 and MDA-MB-231 cells,59–61 PPII in 
HepG2,62 PPVI in HepaRG,63 PPG or PPVII in HepG-2 
cells.64 Furthermore, PPD or PSI and PPG or PPVII cause 
dissipation of MMP in K562/A02 human leukemia drug- 
resistant and K562 cells65 and human NPC cells, 
respectively.66 ROS generation and MMP dissipation are 
reversed by the ROS inhibitor N-acetyl-l-cysteine (NAC) 
treatment.62–64 Oxidative stress is further summarized in 
Figure 1A. 

Mitochondrial-Dependent Pathway
The mitochondrial-dependent pathway is important for 
apoptosis induction, and any disturbance in this pathway 
prevents apoptosis. This pathway is regulated by B cell 
lymphoma-2 (Bcl-2) family proteins through changes in 
the permeability of the mitochondrial membrane for the 
release of different apoptotic proteins, including cyto-
chrome-c (Cyt-c).67 Anti-apoptotic proteins, such as 
B cell lymphoma extra-large (BclxL), Bcl-2, Bcl-2-related 
protein A1, and myeloid cell leukemia 1, increase cell 
survival. Pro-apoptotic proteins, including Bcl-2 homolo-
gous killer, Bcl-2 associated X (BAX), and Bcl-2 homol-
ogy domain 3 (BH3)-only proteins act as receptor 
mediators and cause apoptosis by inducing mitochondrial 
stress.68

BH3-only proteins have two subclasses: activators and 
depressors/sensitizers. Activators include total BH3 inter-
acting domain death antagonist and Bcl-2 like protein-11. 
This subclass activates BAX/BAK directly and causes 
MMP depolarization. Depressor/sensitizers include Bcl- 
2-associated death promoter, Bcl-2-interacting killer, phor-
bol-12-myristate-13-acetate-induced protein-1, hara-kiri, 
and upregulated modulator of apoptosis p53. Instead of 
BAX/BAK activation, this subclass counterbalances anti- 
apoptotic proteins.69,70 Meanwhile, anti-apoptotic proteins 
block the death signaling pathway through the direct inhi-
bition of activator BH3-only proteins or BAX/BAK 
activation.71 Anti-apoptotic proteins (Bcl-2 and Bcl-xl) 
cause cancer progression72 and therefore increase the 
resistance of tumor cells to different types of cell death 
stimuli, including anticancer drugs.70

In hepatocarcinoma cells, PPI and formosanin 
C synergistically downregulate BCL2 inhibition and 
BAX upregulation and release of cytochrome from the 
mitochondria. Cytochrome c release from the mitochon-
dria activates caspase-3,9 and induces hepatocarcinoma 
cell apoptosis.73 In 143-B, MG-63, U-2 OS, non-small 
cell lung cancer (NSCLC), Saos-2, A549, SK-MES-1, 
H460, MDA-MB-231, MCF-7, U251, HepG-2, 
RPMI8226, SMC7721, and HO-8910M cells, PPI induces 
apoptosis through the mitochondrial-dependent pathway 
(MDP).74–83 In the MDP, PPI inhibits Bcl-274–79 and 
Bclxl75 while activating Bax74,75,78 and Bak,75 triggering 
Cyt-c release from the mitochondria to the cytosol.61,78,79 

The PPI-induced release of Cyt-c in the cytosol activates 
caspase-9,61,82,83 caspase-3,74–77,80,82 and 
PARP.61,74–76,80,82 The activated PARP enters the nucleus 
and causes DNA damage, leading to cell apoptosis.77

PPII induces apoptosis in HepG2 cells through mod-
ulation of the mitochondrial pathway via downregulation 
of Bcl-2 and upregulation of Bax, triggering cytochrome 
c release from the mitochondria and caspase-9 activation. 
Activated caspase-9 further activates caspase-3 and PARP, 
respectively, resulting in apoptosis.62

In MCF-7 and MDA-MB-231 cells, PPD induces mito-
chondrial-dependent apoptosis through MMP dissipation,24 

Bcl2 downregulation,24 and Bax upregulation,24 which 
further activate caspase-9,24 leading to cell apoptosis.24

In HepG2,25 R-HepG2,25 NB-69,84 K562/A02,65 U87 
glioma,85 SGC790187, MCF-7,24 MDA-MB-231,24 and 
NSCLC cells, PPD or PSI induces apoptosis by modulating 
the mitochondrial-dependent pathway. In the mitochondrial- 
dependent pathway, PPD or PSI downregulates 
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Bcl224,65,85–87 and upregulates Bax.24,65,85–87 As a result, 
the mitochondrial membrane becomes permeable, and cyto-
chrome c65,86 and AIF25 are released from the mitochondria 
to the cytosol, causing the activation of caspase-9,84,86 

caspase-3,25,65,84–87 and PARP24,25 and the apoptosis of 
cells.24,25 PPD-induced apoptosis was reversed by pretreat-
ment with the inhibitor SP60012585 through modulation of 
Bcl-2,85 Bax,85 caspase-385 and with the caspase inhibitor 
z-DEVD-fmk through downregulation of caspase-3 in 
HepG2 and R-HepG2 cells.25

PPD or PSI also increases the apoptotic activity of 
other compounds, including camptothecin,88 10- 
hydroxycamptothecin,88 cisplatin,89 and hyperthermia.90

In H460,88 H446,88 and SGC-790189 cells, PSI sensi-
tizes camptothecin-, 10-hydroxycamptothecin-, and 
cisplatin-89 induced apoptosis through modulation of the 
mitochondrial pathway. In the mitochondrial pathway, PSI 
inhibits Bcl288,89 and Bclxl88 while upregulating Bax,88,89 

causing mitochondrial membrane permeability and 
cytochrome-C88 release from the mitochondria into the 

Figure 1 Molecular anticancer mechanisms of PPs. (A) In cancer cells, PPD, PPI, II, VI, and VII induce ROS generation, inhibit MMP, upregulate Bax, Bak, Bim, and tBid, and 
downregulate Bcl-2 and Bcl-xl, resulting in mitochondrial membrane permeability, allowing Cyt-c and AIF to enter the cytoplasm from the mitochondria. When Cyt-c and 
AIF accumulate in the cytoplasm, they cause the activation of caspase-3, caspase-9, and PARTP, leading to cell apoptosis. (B) In mitochondrial-independent pathway, PPII, VI, 
and VII upregulate FAS, DR3, and DR5 and downregulate DcR3, which further activate caspase-8, caspase-3, and PARO and cause cancer cell apoptosis. (C) In the STAT3 
pathway, PPI and PPVII downregulate the Malat1 and IL-6 activation of STAT3 and cause apoptosis. (D) In the Wnt/β-catenin pathway, PPI inhibits Wnt5A, GSk-3B, and β- 
catenin and its translocation into the nucleus, leading to cell apoptosis.
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cytosol. As result, PSI increases caspase-988 and caspase-3 
expression.88,89 Furthermore, PSI and hyperthermia at 43° 
C induce apoptosis in NSCLC cell lines through inhibition 
of Bcl2, Bax, and caspase-3 protein expression.90

PPVI in HepaRG cells induces MDP apoptosis through 
Bcl-2 downregulation and Bax upregulation, triggering 
cytochrome c release from the mitochondria and upregu-
lating caspase-9,3 and PARP.63

PPVII66 or PPG64,91 induces apoptosis in SAS,91 

OECM-192, HepG-2,64 and NPC66 cells through downre-
gulation of Bclxl66,91 and Bcl264,66,91 and upregulation of 
Bak,91 Bad,64 Bax,64,66 Bim,91 and tBid91 levels. This 
phenomenon causes cytochrome c64 release from the mito-
chondria to the cytosol, which further increases the clea-
vage of caspase-364,66,91 and −9.64,66,91 z-VAD-FMK (a 
broad-spectrum caspase inhibitor) was used in the follow-
ing experiments to clarify the relevance of PPG-induced 
cell death. PG combined with Z-VAD-FMK substantially 
increases the viability and decreases the apoptosis of 
HONE-1 and NPC-039 cells.66 Formosanin C and PPVII 
increase apoptosis in NCI-H460 cells by downregulating 
Bcl-2 and upregulating Bax, caspase-3, −8, and 9.92 The 
summarized form of the mitochondrial-dependent pathway 
is depicted in Figure 1A.

Extrinsic Apoptotic Pathway
Tumor-necrosis-factor (TNF) family proteins, such as Fas 
or TNF receptor (TNFR-1), activate the extrinsic apoptotic 
pathway.93 Fas or TNFR-1 upregulates caspase-8 through 
Fas-associated death domain, generating a death signaling 
complex that activates caspase-3 and results in cell 
death.94,95 In different cancers, NPs regulate the extrinsic 
apoptotic pathway.96,97

PPII induces the apoptosis of HepG2 cells by modulating 
the extrinsic apoptotic pathway via upregulation of FAS, 
caspase-8, and caspase-3.62 PPVI induces apoptosis in 
a dose-dependent manner in HepaRG,63 A549,98 and NCI- 
H129998 cells by upregulating the expression of death recep-
tor-3 (DR3),98 DR5,98 Fas,63,98 caspase-8,63 caspase-3,63,98 

and cleaved PARP63,98 but downregulating the expression of 
decoy receptor-3 (DcR3).98 Pretreatment with Z-VAD-FMK 
(caspase inhibitor) on HepaRG cells increases the percentage 
of viable cells, indicating that PPVI induces cell apoptosis 
through the mitochondrial pathway and the Fas death- 
dependent pathway.63 PPVII or PPG induces apoptosis in 
a dose-dependent manner in human NPC,66 A549,98 NCI- 
H1299,98 HepG-2,64 SAS,91 and OECM-192 cells by upre-
gulating the expression of DR3,98 DR5,98 Fas,98 caspase- 

8,64,66,91 cleaved PARP,98 and cleaved caspase-364,66,91,98 

but downregulating the expression of DcR3.98 The summar-
ized form of the extrinsic apoptotic pathway is depicted in 
Figure 1B.

Signal Transducer and Activator of Transcription-3 
Pathway
Signal transducer and activator of transcription-3 (STAT3) 
regulates different cellular processes, including prolifera-
tion, differentiation, immune function, and survival.99 

STAT3 is activated through its phosphorylation at tyro-
sine-705 (Y705) or serine-727 (S727).100,101 STAT3 can 
be activated by growth factor receptors, cytokine recep-
tors, Janus activated kinases, sarcoma family kinases, and 
Abelson murine leukemia family kinases.102,103 STAT3 is 
expressed in different cancers 104,105 and leads to transfor-
mation, resistance to chemotherapy, and tumorigenesis.106 

These findings show that STAT3 is a good therapeutic 
target in the development of new drugs against cancer.

In NSCLC cells, the overexpression of lncRNA- 
metastasis-associated lung adenocarcinoma transcript-1 
(MALAT1) increases STAT3 expression, which causes 
resistance to gefitinib, whereas PPI reverses the MALAT1- 
induced overexpression of STAT3 and causes cell 
apoptosis.76 Another study demonstrated that PPI reverses 
the IL6/STAT3-induced resistance to erlotinib in HCC827 
cells 108. PP7- or PPVII-induced apoptosis in HepG2 cells 
by downregulating STAT3.64 The STAT3 pathway is 
further summarized in Figure 1C.

Wnt/β-Catenin Pathway
Wnt/β-catenin pathway is an oncogenic pathway that plays 
a crucial role in cancer progression.108 β-catenin is an 
intracellular signal transducer that plays an important 
role in cadherin protein complex and activates the Wnt/β- 
catenin pathway during embryonic development and 
tumorigenesis.109–111 Following activation of this pathway, 
wnt binds to membrane proteins, including serpentine 
receptors, frizzled family, and low-density lipoprotein 
receptor-related protein-5/6, which is necessary for dishev-
eled (Dsh/Dvl) phosphorylation. Activated Dsh/Dvl works 
at intermediate and transfer signals from the Wnt/β-catenin 
-receptor complex to axis and glycogen-synthase-kinase 
-3β (GSK-3β) to downregulate the phosphorylation of β- 
catenin.112–114 As a result of Wnt binding to its receptors, 
the unphosphorylated β-catenin accumulates in the cyto-
plasm. The accumulated β-catenin enters the nucleus, 
where its downstream target genes, such as c-myc, are 
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activated.115 Furthermore, the Wnt-signaling pathway con-
trols different cellular functions, including apoptosis, cell 
proliferation, migration, and invasion, which enhance the 
Wnt-dependent carcinogenesis.116,117

PPI inhibits cell growth, proliferation, and metastasis 
and induces apoptosis in 143-B, HOS, RPMI8226, and 
HO-8910M cells through the Wnt/β-catenin pathway. In 
the Wnt/β-catenin pathway, PPI inhibits Wnt5A and 
p-GSK-3β, further inhibiting β-catenin and its nuclear 
translocation.74,80,81,83 The PPI-reduced cell viability is 
abolished by GSK-3β specific inhibitor CHIR99021 
while potentiated by β-catenin silencing.74 Furthermore, 
PPI inhibits the downstream regulator of b-catenin, such 
as surviving,80 as depicted in Figure 1D.

Cell Cycle
Cell cycle regulates cell growth at different checkpoints 
through the interaction of cyclin among exact cyclin- 
dependent kinases (CDKs), forming active complexes. 
The process ends before entering the new phase of the 
cell cycle.118 Then, CDKs are negatively regulated through 
different CDK inhibitors. CDK p21 controls the cell cycle 
at various checkpoints.119,120 Failed regulation of these 
checkpoints causes genomic rearrangement and mutation, 
resulting in genetic disturbance and ultimately cancer.120 

Meanwhile, p53 is a key component that plays a crucial 
role in cell cycle regulation. A wide spectrum of damages 
and stresses activates p53.121,122 When p53 is activated 
through genotoxic stress, it controls the p21WAF1/CIP1/ 
SDI1 genes encoding CDKs universal inhibitors, resulting 
in cell cycle inhibition.123 A plethora of research demon-
strated that the anticancer compound causes death in can-
cer cells through induction of cell cycle arrest.124

In hepatocarcinoma, HCT 116, osteosarcoma 143-B, 
HOS, MG-63, U-2 OS, Saos-2, human myeloma 
RPMI8226, U266 cells, Du145, and PC3 cells, PPI causes 
cell cycle arrest in different phases, including G1, G2/M, 
S-phase, and G0/G1.59,73–75,78,80,125 In hepatocarcinoma 
cells, PPI and formosanin C synergistically upregulate 
p53, p21, and p27 and downregulate PCNA, CDK2, and 
Cyclin E, which lead to G1 phase cell cycle arrest.73 PPI 
in human myeloma RPMI8226 and U266 cells, U251 
human glioma cells, HCT 116 cells 143-B and HOS 
cells induced ROS mediated G2/M phase cell cycle arrest 
through p21 upregulation which results in downregula-
tions of cyclin B1, CD1 and c-myc.59,74,78,80 The ROS- 
mediated G2/M phase cell cycle arrest is reversed by 
NAC treatment.59 One study reported that PPI can cause 

S-phase cell cycle arrest in MG-63, U-2 OS, and Saos-2 
osteosarcoma cells through downregulation of c-myc, 
Cyclin B1, Cyclin D1, and CDK1 time-dependently; 
this result suggests that the cell cycle arrest is due to 
cyclin/CD1 complex disturbance.75 Another study 
reported that PPI causes the G0/G1 phase cell cycle arrest 
in Du145 and PC3 cells with an unknown molecular 
mechanism.125

PPD or PSI induces G2/M phase cell cycle arrest in 
SGC7901,86 NSCLC,87 K562,65 and K562/A0265 through 
upregulation of CD1465 and p2165 and downregulation of 
cyclin B1,65,86 cyclin-dependent protein kinase,65 and 
Cdk1.86 PSI increases the cisplatin-induced G2/M phase 
cell cycle arrest in SGC-7901 cells through P21waf1/cip1 
activation.89 PSI and hyperthermia at 43°C induce G2/M 
phase cell cycle arrest in NSCLC cell lines.90

PPVI induces apoptosis and G2/M phase cell cycle 
arrest in a dose-dependent manner in A549 and NCI- 
H1299 cells by upregulating the expression P53 and 
p21 Waf1/Cip1, which may inhibit cyclin B1 in NCI- 
H1299 cells.98 PPVI induces S phase cell cycle arrest 
in HepaRG cells by decreasing the expression of cyclin 
A2 and CDK2 and upregulating the expression of 
p21.63

In oral cancer OECM-1,91,126 SAS,91 NPC,66 

A549,98 and NCI-H129998 cells, PPVII or PG induces 
cell cycle arrest at different stages, including G2/ 
M,98,126 S-phase,91 and sub-G167 phase. PPVII induces 
G2/M phase cell cycle arrest by upregulating P53,98 

p27,126 p21 Waf1/Cip1,98,126 Cdc251C,126 checkpoint 
kinases 1/2 (Chk1/2),126 and ataxia telangiectasia 
mutated126 and by downregulating cyclin B198,126 with 
no effect on p-Cdc21 (Tyr15).126 The G2/M phase cell 
cycle arrest due to p21and p27 has been confirmed 
through siRNA treatment.126 PPG or PPVII induces 
S-phase cell cycle arrest through the downregulation of 
Cyclin A and CDK2 expression in a dose-dependent 
manner. In addition, p21 and p27, inhibitors of the G1- 
to-S-promoting complex cyclin E-CDK2, significantly 
increase the protein level.91 However, the molecular 
mechanisms for sub-G1 phase cell cycle are 
unexplored.66 In gefitinib-sensitive PC-9 cells and 
acquired gefitinib-resistant H1975 cells, PPVII increases 
the sensitivity of gefitinib and induces G1 phase cell 
cycle arrest by upregulating p21 and downregulating 
CDK2, CDK4, Cyclin E, and Cyclin D1.127 The cell 
cycle is further summarized in Figure 2A–D.
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Phosphatidyl-Inositol 3-Kinase/Protein Kinase-B/ 
Mammalian Target of Rapamycin Signaling Pathway
The phosphatidyl-inositol 3-kinase/protein kinase-B/mamma-
lian target of rapamycin (PI3K/AKT/mTOR) pathway pro-
motes cell survival and growth through different molecular 
mechanisms.128,129 This pathway is activated in different types 
of cancer through multiple mechanisms.130–133 For example, 
AKT becomes activated as the phosphorylation of two residues 
including serine 473 (Ser 473) and threonine (Thr 308) of AKT 
occurs.134 After activation, AKT enters the nucleus, where they 
change the activities of transcription regulating factor. PI3K/ 
AKT signaling elevates mTOR expression, which is associated 
with poor prognosis. Different NPs cure cancer through inhibi-
tion of the PI3K/AKT/mTOR pathway.135

PPI inhibits the proliferation and metastasis in ovarian 
cancer HO-8910M cells by downregulating PI3Kc2b.83 PP 
II increases the sensitivity of drug-resistant PC-9/ZD cells 
to gefitinib through the PI3K/Akt/mTOR pathway, in 
which it inhibits PI3K, AKT, and mTOR, which further 
activate Bax, caspase-9, and caspase-3 and trigger cell 
apoptosis.136 The PI3K/AKT/mTOR pathway is further 
summarized in Figure 3A.

Endoplasmic Reticulum Stress
The endoplasmic reticulum (ER) plays a role in the synth-
esis, signaling, and sensing of eukaryotic cells. In perform-
ing these functions, the ER must regulate oxidizing and the 
Ca2+-rich folding environment. In the ER, Ca2+ buffering 

Figure 2 Anticancer molecular mechanisms of PPs. (A) In the PI3K/AKT/mTOR pathway, PI3K, PI3Kc2b, Akt, and mTOR are downregulated while Bax and caspase-3,9 and 
upregulated, leading to cell apoptosis. (B) In the ER stress pathway, PPI upregulates UPR, p-ERK, Bip, elF2α, ATF-4, and CHOP. PPD upregulates Bip/GRP78, PDI, and CHOP. 
Once CHOP becomes activated, it enters the nucleus and regulates UPR target genes, resulting in apoptosis. (C) In the JNK signaling pathway, PPI and PPD activate JNK and 
c-jun expression and result in cell apoptosis, while JNK inhibitor (SP600125) reverses the apoptosis.
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and protein folding are regulated by a number of chaper-
ons, including calnexin, calreticulin, glucose-regulated 
protein GRP78 (BiP), and protein-disulfide isomerase. 
A number of pathophysiological conditions, including ER- 
Ca2+ depletion, viral infection, hypoglycemia, oxidative 
injury, and hypoxia, affect the ER homeostasis and cause 
ER stress. The ER responds to these path-physiological 
changes by activating integrated signal transduction path-
ways through unfolded protein response (UPR).137 The 
UPR controls the ER homeostasis by activating ER folding 
machinery components, controlling ER quality, and coor-
dinating gene transcription and ER-associated degradation 
(ERAD) pathway. When ER stress increases, the UPR 
changes from pro-survival to pro-death response, which 

leads to the activation of intrinsic apoptosis.138 Mammals 
have various ER stress transducers, including activating 
transcription factor 6 (ATF6), inositol requiring enzyme 1, 
and protein kinase RNA like endoplasmic reticulum 
(p-ERK). The UPR has pro-survival and pro-apoptotic 
responses; pro-survival response activates ER chaperons, 
translation attenuation, and ERAD, whereas pro-apoptotic 
response activates C/EBP homologous protein-10 
(CHOP)/GADD153 and caspase-12.139

PPI in MG-63, U-2 OS, and Saos-2 osteosarcoma cells 
dose-dependently activates the PERK branch of UPR, as 
determined by the increase in Bip expression, robust in 
eIF2α phosphorylation, and upregulation of ATF4 and 
GADD153 (CHOP) transcriptional factors.75

Figure 3 PPs induce cell cycle arrest in cancer cells. (A) PPI increases ROS generation and p21 expression while downregulating CB1, CG1 and c-myc expression, causing 
G2/M phase cell cycle arrest. (B) PPD, PPVI, and PPVII upregulate the expression of ATM, which increases p53, p21Waf1/Cip1, and p27 expression while activating chk1/2 
and Cdc25C. The activated p27 and Cdc25C further inhibit cyclinB1 and CDK1 and cause G2/M phase cell cycle arrest. (C) PPI+FC upregulates the expression of p53, p21, 
and p27, which further inhibit CDK1, Cyclin E, CD1, and CDk4, resulting in G1 phase cell cycle arrest. PPI+FC also causes the G1 phase cell cycle arrest by inhibiting PCNA. 
(D) PPI, VI, and VII activate p53, p21, and p27, which further inhibit the expression of cmy-c, cyclin-B1, CDK1, Cyclin D1, Cyclin A, and CDK2 and lead to S phase cell cycle 
arrest.
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PPD induces the ER stress in human NSCLC NCI- 
H460 cell line by upregulating glucose-regulated protein 
78 (Bip/GRP78), protein disulfide isomerase (PDI), and C/ 
EBP homologous transcription factor (chop), triggering 
cell apoptosis.26 The ER pathway is further summarized 
in Figure 3B.

c-Jun N-Terminal Kinase Signaling Pathway
The c-Jun N-terminal kinase (JNK) pathway regulates 
various physiological processes, such as cell differentia-
tion, death, survival, inflammation, protein expression, and 
proliferation. Any failure in this pathway causes 
a spectrum of diseases, including cardiac hyper-therapy, 
diabetes, cancer, asthma, and auto-immune diseases.140 

JNK plays a major role in oncogenic changes. The JNK 
pathways eliminate apoptosis by downregulating Ras 
transformation.141 Different NPs induce apoptosis in can-
cer cells by regulating the JNK pathway.142–144

In human glioma U251 and ovarian cancer HO-8910M 
cells, PPI induces apoptosis through the JNK pathway by 
upregulating JNK and c-Jun.78,81,83 Furthermore, PPI inhi-
bits tumor growth by upregulating c-Jun.81 PPD induces 
apoptosis in U87 glioma cells by upregulating NH2- 
terminal kinase (JNK) phosphorylation, which is reversed 
by JNK inhibitor SP600125; this result suggests that the 
apoptosis is due to JNK pathway regulation.85 The JNK 
pathway is further summarized and depicted in Figure 3C.

Nuclear Factor Kappa B Pathway
The nuclear factor kappa B (NF-kB) pathway is a complex 
pathway consisting of five homo- and hetero-dimers of the 
reticuloendotheliosis oncogene cellular homolog (Rel) 
family, such as RelA (p-65), RelB, c-Rel, NF-kB1 (p-50/ 
p-65), and NF-kB2 (p50/p65).145 In cancers, the NF-kB 
pathway becomes dysregulated.146 Active NF-kB has been 
reported in different cancers, including breast, prostate, 
colon, liver, leukemia, lymphoma, and ovarian 
cancer.147–149 As the DNA becomes damaged, the NF-kB 
pathway becomes activated, which results in the activation 
of NF-kB targeted genes, including Cyclo-oxygenase-2 
(COX-2)150 and inducible nitric oxide synthase (iNOS).151

These genes play pivotal roles in pro-survival anti- 
apoptosis. Therefore, NF-kB is a candidate for therapeutic 
resistance in different cancers. Different NPs have poten-
tial therapeutic efficacy against cancer by inhibiting NF- 
kB pathway activation in cancer cells.152

PPI alone or in combination with formosanin C or 
cisplatin inhibits cancer through the NF-kB pathway in 

different cancer cell lines, including hepatocarcinoma 
cells, osteosarcoma 143-B, and HOS cells.73,75,79 In the 
NF-kB pathway, PPI alone or in combination downregu-
lates NF-kB p-6573 and IKBα. It also inhibits p65 translo-
cation from the cytoplasm into the nucleus.73,75 

Furthermore, this inhibition causes the downregulation of 
vascular endothelial growth factor (VEGF) and matrix 
metalloproteinase (MMP-9), leading to cell 
inhibition.73,79 One study demonstrated that the PPI in 
Du145 and PC3 cells inhibits NF-kB p65 in the cytoplasm, 
which further inhibits MUCIN1 directly and through 
HOTAIR. Furthermore, PPI inhibits p65 in the nucleus 
and HOT transcript antisense RNA (HOTAIR), which 
inhibits MUCIN1 expression and decreases Du145 and 
PC3 cell proliferation.125

PPI inhibits the migration, invasion, and proliferation 
of PC3 and DU145 cells by inhibiting HOTAIR, which 
further inhibits DNA methyl-transferase 1 (DNMT1) and 
enhancer of zeste homolog 2 (EZH2) expression. 
Inhibition of EHZ2 expression also inhibits cell 
proliferation.153 The NF-kB pathway is further summar-
ized and illustrated in Figure 4A.

Mitogen-Activated Protein Kinase/Extracellular 
Signal-Regulated-Kinase Pathways
The mitogen activated-protein kinase/extracellular signal- 
regulated kinase (MAPK/ERK) or Ras-Raf-MERK-ERK 
pathway possesses different cascades, but Ras-Raf-MERK 
-ERK 1 and 2 (ERK1/2) are mostly dysregulated in human 
cancer.154 This pathway regulates different cellular func-
tions, including cell growth, differentiation, apoptosis, pro-
liferation, migration, and senescence.155 The protein 
molecules of the MAPK/ERK pathway are activated 
through phosphorylation. Following activation, ERK 
enters the nucleus, where different transcription factors 
are activated. When these transcription factors are acti-
vated, they attach to the promoter region with different 
genes, including apoptosis inhibitory genes, cytokines, 
growth factors, and genes that increase cell 
proliferation.156 Dysregulation of this pathway causes 
drug resistance, tumorigenesis, and senescence,155,157,158 

as detected in many human cancers.159,160 The MAPK 
pathway consists of ERK, JNK, and p-38MAK,161 which 
play a critical role in normal and cancerous cell prolifera-
tion and cause drug resistance.162,163 Small molecules 
targeting kinases in the MAPK pathway are not only 
useful in patients with NSCLC but also in patients with 
SCLC.164 NPs have a potential effect against cancer 
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through MAPK pathways. Recently reported NPs, includ-
ing PSI or PPD, PPVII or PPG have a potential antitumor 
effect through MAPK pathways.64,88,91

PSI or PPD sensitizes the CPT/HCPT-mediated 
inhibition of p38 MAPK and activation of phosphory-
lation of p38 MAPK in H1299 cells and the suppres-
sion of AKT and ERK pathway activation in H460 
cells.88

PPVII or PPG induces apoptosis in HepG-2,64 OECM- 
192, and SAS91 cells by upregulating AKT,91 JNK,64,91 

ERK,64,91 and p38.64,91 The involvement of the MAPK64,91 

was evaluated using Akt inhibitor (LY294002),91 JNK inhi-
bitor SP600125,64,91 ERK inhibitor PD98059,64,91 (5 μM), 

and p38 inhibitor SB20358064,91 to pre-treat HepG2,64 

OECM-192, and SAS91 cells before the treatment of PP7. 
The MAPK64 (AKT, ERK1/2, p38 and JNK1/2)91 inhibitors 
could significantly reduce the expression of apoptosis-related 
proteins in HepG2, OECM-1,91 and SAS91 cells and decrease 
the apoptosis64,91 and necrosis64 of HepG2 cells treated with 
PP7.64

PPG-induced apoptosis in NPC cells through ERK1/2 
and JNK1/2 and confirmed through the use of ERK1/2 
inhibitor (U0126) increases the apoptosis and JNK1/2 
inhibitor (SP600125), which inhibit the apoptosis caused 
by JNK upregulation.66 The PP anticancer effect through 
MAPK pathways is further summarized in Figure 4B.

Figure 4 PPs inhibit cancer cell proliferation and induce apoptosis in cancer cells through the NF-kB and MAPK pathways. (A) In the NF-kB pathway, PPI+FC or Cisplatin 
inhibit the IKBα, which further inhibit the NF-kB p65, on one side its translocation to nucleus while on other side they inhibit the HOTAIR, MUCIN1 which further inhibit 
the HOTAIR translocation into nucleus. Once they inhibit the p65 and HOTAIR translocation into nucleus, they further inhibit VEGE, MMP-9, MUCIN1, DNMT1 and EZH2 
which lead to inhibition of cell proliferation. (B) In the MAPK pathway, PPD and PPVII inhibit AKT, JNK1/2, and ERK1/2 expression, which further inhibit caspase-8, Bcl-2, and 
Bcl-xl while upregulating Bak and Bax, resulting in mitochondrial membrane permeability, allowing Cyt-c to translocate from the mitochondria into the cytoplasm. PPD and 
PPVII activate p38MAPK, thereby increasing Cyt-c expression; as a result, caspase-9 also becomes activated. PPD and PPVII also activate p38 and caspase-9, respectively. 
Upon activation, caspase-9 further activates caspase-3 and PARP, triggering the apoptosis of cancer cells.
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AUTOPHAGY: PPs Induce Autophagy in 
Different Cancers Through the Following 
Mechanisms
PPs Induces Autophagy Through the PI3K/AKT/ 
mTOR and AMPK/mTOR Pathways
A new target for cancer treatment is autophagy, which is 
activated through chemotherapy, nutrient deprivation, and 
oxidative stress and causes the degradation of damaged 
cytoplasmic organelles and proteins in response to external 
stress.165,166 Different signaling pathways are involved in 
autophagy, including adenosine mono-phosphate activated 
protein kinase (AMPK) and PI3K/AKT/mTOR 
pathways.167,168 The PI3K/AKT pathway serves as 
a positive regulator of the mTOR pathway and 
a negative regulator of autophagy in cancer cells169 [11], 
but the disruption of PI3K/AKT/mTOR pathways through 
anticancer agents results in autophagy. AMPK regulates 
energy homeostasis and causes autophagy through inhibi-
tion of mTOR complex 1.168,170 Furthermore, the JNK 
pathway is involved in the autophagy of cancer cells in 
response to pharmacological stress.171,172 A number of 
studies revealed that autophagy is triggered by inhibition 
of the PI3K/AKT/mTOR pathway through a link with 
activation of the JNK pathway.173,174 Autophagy protein 
Beclin-1 interacts with Bcl-2, forms Beclin-1/Bcl-2 com-
plex, and inhibits autophagy.175 Activated JNK causes 
Bcl-2 phosphorylation, results in Bcl-2 degradation, dis-
sociates Beclin-1 from the Beclin-1/Bcl-2 complex, and 
causes autophagy.176–179 Furthermore, JNK activation is 
essential for anticancer agent-induced autophagy cell 
death.176,180

One of the hallmarks of autophagy is the conversion of 
light chain 3I (LC3I) into its lapidated form LC3II, which 
is essential for autophagosome formation in autophagy.181 

Another marker of autophagic flux is P62, which has an 
inverse relation to autophagy activity. It binds to LC3 and 
degrades in autophagy.182 Moreover, in the study of autop-
hagy, a commonly used approach is the examination of 
autophagic flux and autophagosome formation. A critical 
crosstalk between apoptosis and autophagy is Bcl-2, which 
inhibits autophagy through binding with Beclin-1 that 
initiates autophagosome formation during autophagy.175

PPI induces protective autophagy through the PI3K/ 
AKT/mTOR pathway by inhibiting mTOR (S2448), AKT 
(S473), 70-kDa ribosomal protein S6 kinase (p70S6K 
(T389)), and 4E (eIF4E)-binding protein 1(4EBP1 (T37/ 
46)) and increasing LC3I conversion into LC3II. In 

SMMC7721 and HepG2 cells, EGF markedly increases 
the phosphorylation of Akt and p70S6K and reverses 
LC3II, which suggests that the autophagy is due to the 
PI3K/AKT/mTOR pathway.82

PPI induces ROS-mediated autophagy in HCT 116 
cells by inhibiting mTOR (s2448) and AKT (S473), p62 
expression and increasing LC3II expression.59 The 
increase in LC3II is reversed by NAC pre-treatment.59

PPVII or PPG treatment induces autophagy in HepG- 
2,183 HONE-1, and NPC-03966 cells via the PI3K/AKT/ 
mTOR and AMPK/mTOR pathways. In the PI3K/AKT/ 
mTOR pathway, PPVII inhibits the expression of 
PI3K,66,183 Akt183 and mTOR,66,183 activated mTOR 
(ser2448),66 total mTOR,66 Raptor,66 Rictor,66 and GβL66 

in a dose-dependent manner.66,183 PPG-induced autopha-
gic death is confirmed when Baf A1 and wortmannin 
(autophagy inhibitors) increase cell viability and PPG 
treatment alone exerts no effect on the apoptosis of 
HONE-1 and NPC-039 cells.66 PPVII also increases 
AMPK phosphorylation, which further inhibits mTOR 
and induces autophagy in HepG-2 cells through modula-
tion of the AMPK/mTOR pathway.183 These mechanisms 
are further summarized in Figure 5.

PPs Induces Autophagy Through the Akt, p38MAPK, 
ERK1/2, and JNK Signaling Pathways
A new target for cancer treatment is autophagy, which is 
activated through chemotherapy, nutrient deprivation, and 
oxidative stress and causes the degradation of damaged 
cytoplasmic organelles and proteins in response to external 
stress.165,166 Previous research demonstrated that the AKT 
and MAPK pathways are involved in autophagy and 
apoptosis.172,184–186

PPG or PPVII induces autophagy through the Akt, 
p38MAPK, ERK1/2, and JNK pathways in HepG-2,183 

NPC-039,66 OECM-1,91 and SAS91 cells. PPG or PPVII 
activates JNK1/266,91,183 and inhibits AKT,66 p38 
MAPK,66 and ERK1/2,91 which further increases the con-
version of LC3I to LC3II,66,183 P62 degradation,66,183 and 
formation of LC3-positive structures or LC3 puncta.66,183 

Furthermore, PPVII treatment decreases total Bcl-2183 

while increases p-Bcl-2183 and Beclin.66,183 The AKT 
inhibitor (LY294002)66 and JNK1/2 inhibitor 
(SP600125)66,183 decrease PPG-induced autophagy, 
whereas p38 MAPK inhibitor (SB203580)66 increases 
this process, suggesting that the PPG-induced autophagy 
is due to the Akt, p38 MAPK, and JNK1/2 pathways.66,183 

Moreover, LY294002, U0126, and SP600125 significantly 
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attenuate PG-induced LC3-II activation, suggesting that 
the activation of ERK1/2 and JNK1/2 is involved in PG- 
induced autophagy.91 These mechanisms of autophagy are 
further summarized in Figure 5.

Inflammation Pathway
Inflammation is a physiological response for the protec-
tion of the body from tissue injury or infection and plays 
a critical role in different types of human cancers and 
other chronic diseases.187 In innate immune system, 
macrophages are the immune cells that play a central 
role in inflammation and protect the body from harmful 

stimuli. Active macrophages play important roles in host 
defenses against pathogens. They exert phagocytic activ-
ities and enhance inflammatory responses by producing 
different inflammatory factors, such as nitric oxide (NO) 
and prostaglandin-E2; proinflammatory mediators, such 
as iNOS, nitrogen species, metalloproteinases, and COX- 
2; and pro-inflammatory cytokines, such as TNF-α, inter-
leukin-6 (IL-6), and IL-1β, which trigger other immune 
cells to the infection site.188–190 The overexpression of 
inflammation-related cytokines and mediators by acti-
vated macrophages is associated with the pathophysiol-
ogy of different inflammatory and autoimmune 

Figure 5 PPI induces protective autophagy through the PI3K/AKT/mTOR pathway by inhibiting AKT (S473), mTOR (S2448), p70S6K (T389), and 4EBP1 (T37/46) and 
increasing the conversion of LC3I conversion into LC3II. EGF markedly increases the phosphorylation of Akt and p70S6K and reverses LC3II, suggesting the autophagy is due 
to the PI3K/AKT/mTOR pathway. In the PI3K/AKT/mTOR pathway, PPVII inhibits PI3K Akt and mTOR activated mTOR (ser2448), total mTOR Raptor, Rictor and GβL in 
a dose-dependent manner. PPVII also increases AMPK phosphorylation, which further inhibits mTOR and induces autophagy in HepG-2 cells by modulating the AMPK/ 
mTOR pathway. PPG or PPVII induces autophagy through the Akt, p38MAPK, ERK1/2, and JNK pathways. PPG or PPVII activates JNK1/2 and inhibits Akt, p38 MAPK, and 
ERK1/2, which further increase the conversion of LC3I to LC3II, P62 degradation, and formation of LC3-positive structures or LC3 puncta. Furthermore, PPVII treatment 
decreases the level of total Bcl-2 decreases but increases those of p-Bcl-2 and Beclin. The AKT inhibitor (LY294002) and JNK1/2 inhibitor (SP600125) increase, suggesting 
that PPG induces autophagy via the Akt, p38 MAPK, and JNK1/2 pathways. Moreover, LY294002, U0126, and SP600125 significantly attenuate PG-induced LC3-II activation, 
suggesting that the activation of ERK1/2 and JNK1/2 is involved in PG-induced autophagy.
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diseases.191–193 Lipopolysaccharide (LPS) is a potent 
macrophage activator and endotoxin derived from the 
cell wall of Gram-negative bacteria.194 When LPS sti-
mulates the macrophages, the expression of cytokines 
and mediator is regulated by NF-kB through MAPKs, 
including JNKs, ERKs, and p38-MAPK.195,196 

Macrophages secrete MMP-9, which controls leukocyte 
migration in inflammatory diseases.197 In macrophages, 
MMP-9 is regulated by LPS via the NF-kB and MAPK 
pathways.198–200 Therefore, targeting MAPKs, NF-kB, 
and MMP-9 through NPs may have a potential effect 
on the treatment of inflammatory diseases.

In RAW264.7 cells, PPVII inhibits the LPS-induced 
phosphorylation of p38, JNK, and ERK, which indicate the 
involvement of MAPKs in the suppression of cytokines and 
mediator by PPVII.199 Macrophage produces pro- 
inflammatory cytokines (major components of inflamma-
tion), including interleukin-6 (IL-6), IL-1β, and TNF-α, and 
the PPVII-inhibited productions of these cytokines are mark-
edly increased in LPS-treated cells.199 Furthermore, PPVII 
inhibits IkB-α phosphorylation, increases the p65 level in the 
cytoplasm that is inhibited in the nucleus, and downregulates 
PGE-2, NO, iNOS, COX-2, and MMP-9 at the mRNA and 
protein levels in LPS-activated cells.199 The above discus-
sion suggests that PPVII inhibits inflammation through the 
MAPK and NF-kB pathways, as illustrated in Figure 6A.

Necroptosis
Cell death usually occurs through two main pathways, 
namely, programmed cell death or apoptosis200 and direct 
cell damage or necrosis. Programmed necrosis or necrop-
tosis is a new type of necrosis that has been recently 
reported.201 Necroptosis mechanisms involve the initial 
formation of a complex that contains receptor-interacting 
protein kinase-1 (RIPK1) induced by LPS and TNF. 
Furthermore, a complex is formed among RIPK3, 
RIPK1, Fas bound death domain protein, and caspase- 
8.202 By contrast, when the caspase-8 is inactive, RIPK3 
and RIPK1 become activated and a RIP3 substrate known 
as mixed lineage kinase domain-like (MLKL) is phos-
phorylated, which attach to the cell membrane and form 
a hole in the cell membrane that causes the destruction of 
the cell membrane via necroptosis.203–205

PPD-induced necroptosis in LA-N-2 and IMR-32 cells, 
which is confirmed when the cells are co-treated with 
necrosulfonamide (a specific inhibitor of RIPK3 associated 
with necroptosis), through inhibition of PPD-induced cell 
death,84 as illustrated in Figure 6B.

Mitophagy
Mitochondrial autophagy or mitophagy is a cellular pathway 
that helps in the removal of damaged mitochondria.206,207 

Mitophagy plays a crucial role in the control of cancer micro-
environment, cancer cell survival, and death. The study of 
molecular mechanisms of mitophagy might be important for 
the development of new cancer therapies.208 The PIKK1/ 
PINK2 pathway regulates mitophagy. PARK-2 is a RING 
domain-containing E3 ubiquitin ligase, which is activated via 
autoubiquitination.209 In depolarized state, mitochondria use 
the uncoupling reagents, including carbonyl 
cyanide m-chlorophenyl-hydrazone (CCCP), and PARK2 
enters the mitochondria and promotes its degradation.210 

Furthermore, PARK2 overexpression induces the degradation 
of depolarized mitochondria via mitophagy.211 Given that 
PARK2 also selectively binds only to damaged mitochondria, 
it might help ensure the specificity of mitophagy.212 PTEN- 
induced kinase 1 (PINK1) has a targeting sequence located in 
the mitochondria.213 PINK1 protects the mitochondria from 
neurotoxin-induced injury, whereas loss of PINK1 function or 
mutation causes ROS-mediated mitochondrial injury.214 The 
full-length expression of PIK1 increases CCCP-mediated 
mitophagy or autophagy.215 Under stress conditions, the depo-
larization of mitochondrial membranes prevents the mitochon-
drial uptake and processing of PINK1; therefore, the 
unprocessed PINK1 on the outer membrane of the mitochon-
dria recruits PARK2 and eliminates the damaged mitochondria 
through mitophagy.210 Dynamin-related protein 1 (DRP1) 
inhibitor mdivi-1 prevents mitophagy by inhibiting the 
fusion–fission cycle, which shows the importance of mito-
chondrial fission in mitophagy.216 The mitochondrial fission 
mediated by DRP-1 causes LC3B lipidation and mitophagy, 
for which PINK1 and PARK2 are required.217 A recent study 
has demonstrated that the LC3B-II autophagosome targets the 
mitochondrial membrane through interaction with C18- 
ceramide-LC3B-II, increases lethal mitophagy, and inhibits 
tumor growth.218 The above description demonstrates that 
mitophagy might be helpful in the identification of new thera-
pies for cancer treatment.

In MDA-MB-231 cells, PPI induces DRP1 transloca-
tion to the mitochondria through dephosphorylating of 
DRP1 at ser-637, causing mitochondrial fission. PPI 
increases the stabilization of full-length PINK1 at the sur-
face of mitochondria, leading to P62, PARK2, ubiquitin, 
and LC3B-II recruitment to the mitochondria and mito-
phagy. PPI-induced mitophagy is suppressed markedly 
with PINK1 knockdown. DRP1 suppression through 
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shRNA or mdivi-1 inhibits the knockdown of PINK1 and 
PPI-induced mitochondrial fragmentation. These results 
suggest that PINK1 depletion leads to fission and mito-
chondrial fragmentation,61 as shown in Figure 6C.

In vivo Anticancer Effect and Toxicity of 
PPs
PPI inhibits tumor growth in lung cancer tumor 
xenograft77 and xenograft orthotopic mouse model74 with-
out any side effects.74 PPI inhibits ovarian tumor in nude 
mice by downregulating Wnt5a,81 in PC-9-ZD xenograft 
by inhibiting MALAT1 and STAT3 expression,76 and in 

prostate cancer xenograft mouse model by inhibiting 
HOTAIR, DNMT1, and EZH2 expression.153 

Furthermore, in MDA-MB-231 xenografts, PPI inhibits 
tumor growth that is enhanced by PINK1 knockdown. 
These findings show that PPI might be a good therapy 
for cancer.61 PPI inhibits the vasculogenic mimicry and 
microvessel density in PLC and PLC/Twist1 cells. 
Furthermore, immunohistochemically staining showed 
that PPI inhibits the expression of Twist1, VE-cadherin, 
vimentin, VEGFR1, and VEGFR2 and increases 
E-cadherin expression in tumor xenograft.219 PPI also 
overcomes the erlotinib resistance in HCC827-tumor 

Figure 6 PPs inhibit inflammation and induce necroptosis and mitophagy in cancer cells. (A) PPVII inhibits the inflammation by inhibiting the LPS-induced expression of TNF- 
α, IL-1B, and IL-6. PPVII also inhibits the inflammation through the NF-kB and MAPK pathways. In the NF-kB pathway, PPVII inhibit the IKB-α, p65 and its translocation to the 
nucleus which further inhibit iNOS, COX-2, and MMP-9 and inhibit inflammation. In the MAPK pathway, PPVII inhibits p38-MAPK, ERK1/2, and JNK1/2, resulting in inhibition 
of inflammation. (B) PPD induces necroptosis in cancer cells, whereas necrosulfonamide reverses this inhibition. (C) PPI induces the translocation of DRP1 to the 
mitochondria by dephosphorylating DRP1 at ser-637, causing mitochondrial fission. PPI increases the stabilization of full-length PINK1 at the surface of the mitochondria, 
leading to P62, PARK2, ubiquitin, and LC3B-II recruitment to the mitochondria and then to mitophagy. PPI-induced mitophagy is suppressed markedly by PINK1 knockdown. 
DRP1 suppression through shRNA or mdivi-1 inhibits the knockdown of PINK1 and PPI-induced mitochondrial fragmentation. These results suggest that PINK1 depletion 
leads to fission and mitochondrial fragmentation.
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xenografts by inhibiting IL-6; decreasing mesenchymal 
markers FN1, VIM, and SNAIL; and upregulating epithe-
lial marker E-cadherin 109. In the embryo of zebrafish, 
PPD decreases the formation of inter-segmental 
vessels.47 PPD markedly inhibits the tumor in MCF-7 
bearing nude mice with no obvious toxicity to heart and 
liver tissue nor increases the level of plasma enzymes, 
including aspartate transaminase, alanine transaminase, 
lactase dehydrogenase, and creatine kinase.24 PPD- 
containing saponins inhibit tumor growth in H22 tumor- 
bearing mice.35 In A549 xenografts, PPVI inhibits the 
tumor by causing apoptosis and G/M phase cell cycle 
arrest through upregulation of DR3, DR5, and p53 and 
attenuation of cyclin B1.98 PPVII and gefitinib inhibit 
tumor growth in acquiring gefitinib-resistant xenograft 
compared with either treatment alone. Furthermore, in 
xenograft model, PPVII and gefitinib activate the expres-
sion of p21 while reducing the expression of CDK4, 
CDK2, Cyclin D1, and Cyclin E compared with either 
treatment alone.127 In the NPC orthotopic graft model, 
PPG inhibits tumor growth by downregulating Ki67.66

In vivo Anti-Inflammatory Effect 
and Toxicity of PPs
In Mice
PP7 dose-dependently suppresses the formation of xylene- 
induced ear edema in mice, suggesting that PP7 can 
potently inhibit acute inflammation in vivo. PP7 inhibits 
cotton pellet-induced granuloma formation in a dose- 
dependent manner in mice, indicating that it also inhibits 
chronic inflammation.199

In Zebrafish
Zebrafish (Danio rerio) is a freshwater fish used as 
a vertebrate model organism for different inflammation 
studies because its acquired and innate immunity is highly 
similar to that of mammals. The transparency of zebrafish 
embryo and larvae allows the dynamic and noninvasive 
imaging of in vivo inflammation.220–224 In adult zebrafish, 
the most abundant leukocytes are neutrophils; in 
BACmpx::GFP transgenic zebrafish, larvae possess green 
fluorescence in neutrophils, allowing the observation of 
neutrophil distribution in zebrafish.225,226 The numbers of 
neutrophils circulating near the lateral line neuromasts 
allow the measurement of inflammation. Copper sulfate 
and Lip+o-polysaccharide induce inflammation in 
zebrafish.

PPVII strongly inhibits NO generation and decreases 
the heartbeat and the size of yolk sac edema in LPS- 
stimulated inflammation in zebrafish embryos.199 

Furthermore, pre-treatment with PPVII reduces the recruit-
ment of neutrophils to the injured area, suggesting the 
potential effect of PVII against inflammation.199

Conclusion
PPs, including PPI, II, III, VI, VII, and PPD, are derived 
from different plants. These PPs exhibit potential effects 
against various cancers through different mechanisms 
in vitro and in vivo. PPs show their therapeutic effect on 
different cancers through apoptosis, autophagy, necropto-
sis, mitophagy, and inflammation. Among PPs, PPI targets 
apoptosis and autophagy through the PI3K/AKT/mTOR 
pathway. Thus, PPI is a candidate therapeutic drug for 
cancers activated by this pathway. In addition, although 
PPs target different pathways, a specific link among all 
pathways is lacking. Thus, researchers need to focus and 
find the link among these pathways. These PPs are ideal 
therapeutic drugs, and further research on their anticancer 
effect is highly encouraged.
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