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Background: Immunotherapy has revolutionized the treatment of clear cell renal cell 
carcinoma (ccRCC). However, the therapy is constrained by drug resistance. Therefore, 
further characterization of immune infiltration in ccRCC is needed to improve its efficacy.
Methods: Here, we adopted the CIBERSORT method to analyze the level of 22 immune cells, 
and analyzed the correlation of immune cells and clinical parameters in ccRCC in The Cancer 
Genome Atlas. We used consensus clustering to cluster ccRCC and identified differently 
expressed genes (DEGs) between hot and cold tumors using the “Limma” package, and then 
performed enrichment analysis of DEGs. Finally, we constructed and validated a Cox regression 
model using the “survival”, “glmnet”, and “survivalROC” packages, implemented in R.
Results: Regulatory T cells upregulated in tumor tissue increased during tumor progression, 
and correlated with poor overall survival in ccRCC. Consensus clustering identified four 
clusters of ccRCC. To elucidate the underlying mechanisms of immune cell infiltration, we 
subdivided these four clusters into two major types, immune hot and cold, and identified 
DEGs between them. The results revealed different transcription profiles in the two tumor 
types, with hot tumors being enriched in immune-related signaling, whereas cold 
tumors were enriched in extracellular matrix remodeling and the phosphatidylinositol 
3-kinase–AKT (PI3K/AKT) pathway. We further identified hub genes and prognostic- 
related genes from the DEGs, and constructed a Cox regression model for predicting the 
overall survival of patients with ccRCC. The areas under the receiver operating character-
istics curve for the risk model for the training, testing, and external Zhengzhou validation 
cohorts were 0.834, 0.733, and 0.812, respectively. Notably, gene sets in the prediction model 
could also predict the overall survival of patients receiving immunotherapy.
Conclusion: These findings provide a comprehensive characterization of immune infiltra-
tion in ccRCC, while the constructed model can be used effectively to predict the overall 
survival of ccRCC patients.
Keywords: clear renal cell carcinoma, transcriptome profiling, immune infiltration, Cox risk 
model

Introduction
Renal cell carcinoma is a common urinary malignancy that accounts for about 5% and 
3% of all malignant tumors in male and female cases, respectively. In the urinary 
system, the incidence rate of renal cell carcinoma is second to bladder cancer. The 
global cancer statistics of 2020 predicted that there will be 73,750 new cases and 
approximately 14,830 deaths from kidney cancer.1 Clear cell renal cell carcinoma 
(ccRCC) is the most common type of renal carcinoma, accounting for about 70% of 
all renal cell carcinoma cases.2 ccRCC is characterized by robust lipid and glycogen 
accumulation.3 Alteration of hypoxia-induced factor (HIF) signaling and activation of 
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its downstream genes, including vascular endothelial growth 
factor (VEGF) and platelet-derived growth factor (PDGF), 
activates the mammalian targets of the rapamycin (mTOR) 
signaling pathway.4 Over the past decade, treatment therapies 
for ccRCC have mainly employedreceptor tyrosine kinase 
inhibitors that target VEGF signaling, such as sunitinib. 
However, the efficiency of this therapy has been limited by 
acquired resistance.5

Immunotherapy has revolutionized the therapies for treat-
ing tumors.6 For example, accumulating evidence 
suggests that blockade of an immune checkpoint (pro-
grammed cell death ligand-1 [PD-L1]) alone or in combina-
tion with bevacizumab prolongs patient survival.7–9 

However, response rates vary depending on the tumor, with 
most limited to 10–25%. Furthermore, some patients do not 
respond to immunotherapy, whereas those who initially 
respond to immune checkpoint inhibitors are reported to 
develop disease progression, commonly known as innate 
and acquired resistance.10 Resistance to immunotherapy is 
mainly attributed to a complex tumor microenvironment 
(TME) generated by immune and stromal cells, extracellular 
matrix molecules, and numerous cytokines and chemokines. 
The TME, which is in a dynamic state, is associated with 
prognosis of patients.11 Immune escape of tumor cells is one 
of the crucial mechanisms resulting in disease progression.12 

Consequently, immunotherapy based on restoring the func-
tion of the immune system in patients has become the fourth 
type of available tumor therapy, after surgery, chemotherapy, 
and radiotherapy. Therefore, understanding the underlying 
molecular mechanisms and cell composition of the TME is 
critical to developing therapies to effectively manage cancer 
progression and the immune response.13,14

Advances in next-generation sequencing technology have 
enabled the identification of numerous genetic alterations and 
enhanced the characterization of tumor heterogeneity. In 
particular, bioinformatics analysis provides researchers with 
convenient and user-friendly platforms, guiding the imple-
mentation of basic experiments.15 The comprehensive use of 
biology, computer science, and information technology 
allows the generation of datasets that can be used to analyze 
the immune infiltration in tumor tissues.16,17 To date, the role 
of immune infiltration in ccRCC remains unknown.

In this study, we analyzed 22 immune cells in ccRCC 
and evaluated the association between immune infiltration 
and clinical pathological parameters. Furthermore, we iden-
tified four ccRCC clusters, based on infiltration patterns of 
the immune cells, and elucidated the underlying mechanisms 
of infiltration of immune cells by redefining the four clusters 

as two major subtypes, referred to as hot and cold tumors. 
Our results indicated that alterations of extracellular matrix 
remodeling, and phosphatidylinositol 3-kinase–AKT (PI3K/ 
AKT) signaling, inhibit immune infiltration. We also con-
structed a Cox regression model, based on the differently 
expressed gene (DEGs), and validated it in our clinical 
cohort to predict the overall survival of ccRCC patients. 
Taken together, our findings provide new insights into the 
mechanisms regulating immune cell infiltration. The model 
established herein provides a reliable method for predicting 
the overall survival of ccRCC patients.

Materials and Methods
Ethics Statement
Kidney renal clear cell carcinoma specimens were 
obtained from patients at the First Affiliated Hospital of 
Zhengzhou University. All participants signed an informed 
consent form approved by the ethics committee of the First 
Affiliated Hospital of Zhengzhou University prior to inclu-
sion in the study (ethics number: 2019–1Y89). The study 
was conducted in accordance with the Declaration of 
Helsinki and approved by the ethics committee of the 
First Affiliated Hospital of Zhengzhou University.

Data Collection and Multiple Analysis 
Strategy Construction
RNA-sequencing data and clinical information on ccRCC 
patients were downloaded from the UCSC Cancer Browser 
(https://genome-cancer.ucsc.edu), as the log2(x+1)- 
transformed RSEM normalized count. Processed RNA 
sequencing datasets, as well as clinical information for meta-
static urothelial cancer and renal cell carcinoma with immu-
notherapy, were downloaded from a previously reported 
platform.18,19 The strategies used in the analysis are shown in 
Figure 1.

Analysis of Relationship Between Immune 
Infiltration and Clinical Parameters
For this part of analysis, patients with complete informa-
tion on gender, age, pathological TNM stage, and overall 
survival were selected. In contrast, patients were excluded 
if these parameters were missing or unknown. The chi- 
squared test was used to analyze the correlations between 
immune infiltration and gender, age, and pathological 
TNM stage. The log-rank test was used to analyze 
differences in overall survival and level of immune 
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infiltration. Heatmaps, Kaplan–Meier curves, and forest 
plots were used to visualize the results.

Immune Cell Estimation
We used the package “CIBERSORT”, implemented in 
R software, to estimate 22 types of immune cells in 
ccRCC samples, then selected samples with p<0.05 for 
further analysis.20,21 The package “ssGSEA” was used to 
calculate immune cells in supplied cell markers of 28 cell 
types.22 Data for six cell types were downloaded from the 
online tool TIMER (https://cistrome.shinyapps.io/timer/). 
23 We used “ESTIMATE” to calculate immune and stromal 
scores, as well as tumor purity.

Enrichment and Protein–Protein 
Network Analyses
DEGs in both hot and cold tumors, with p<0.05, were selected 
for enrichment analysis. GO enrichment was performed using 
the “clusterprofile” package, for which p<0.05 and q<0.05 
were selected, whereas KEGG pathway analysis was per-
formed using the online tool Database for Annotation, 
Visualization and Integrated Discovery (DAVID, https:// 
david.ncifcrf.gov/), with FDR<0.05 being selected. PPI 

networks were constructed using the online tool STRING 
(https://string-db.org/), and we used confidence=0.9 to select 
the most reliable interactive genes. The top 10 hub genes were 
identified by “cytoHubba” tools in Cytoscape.

Consensus Clustering
Consensus clustering of the 22 immune cells was performed 
using the “ConsensusClusterPlus” package, with reps=100, 
pItem=0.8, and pfeature=1. The optimal number of clusters 
was determined using heatmaps and delta diagrams.

Analysis of Differently Expressed Genes
We divided the four clusters into two groups, based on 
their immune scores and immune cell infiltration. Cluster 4 
was redefined as hot tumors, while clusters 1, 2, and 3 
were redefined as cold tumors. Then, we applied the 
“limma” package to calculate DEGs using the following 
criteria: logFC>1 or <−1 and adjusted p value <0.05. The 
DEGs were visualized as volcano plots and heatmaps 
using the “ggplot2” and “pheatmap” packages.

Construction of a Prediction Model
RNA sequence data for ccRCC with survival information 
was first randomly divided into training and testing sets, 

Figure 1 Workflow of the study: schematic representation of the multi-step analysis strategy.
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using the “caret” package, with 50% in each of the training 
and testing sets. Then, DEGs in the hot and cold tumor 
groups were used for univariate survival analysis, and 
those genes with p<0.05 were selected. Thereafter, the 
“glmnet” package was used to perform LASSO regression 
analysis with maxit=20,000. A stepwise proportional 
hazards model was adopted for model optimization. 
Survival analysis was performed using the “survival” 
package, and receiver operating characteristic (ROC) 
curves were generated using “survivalROC”.

Quantitative Real-Time Polymerase Chain 
Reaction (qRT-PCR)
Fresh tumor specimens were obtained from patients under-
going surgery, then washed three times with PBS. Total RNA 
was isolated from the tumor tissues using Trizol reagent 
(TaKaRa, Tokyo, Japan), according to the manufacturer’s 
instructions. The concentration and purity of the RNA were 
determined using NanoDrop 2000 (Thermo Fisher Scientific, 
MA, USA), then 1 µg was used to generate complementary 
DNA (cDNA) using the ReverTra Ace qPCR RT Kit 
(Toyobo, Osaka, Japan). Primers used for the study were 
designed by and purchased from Sangon Biotech 
(Shanghai, China). Their sequences are listed in Table 1. 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 
used as an internal amplification control.

Statistical Analyses
All statistical analyses were performed in R version 3.5.1. To 
correlate immune infiltration and clinical pathological para-
meters, we divided the cells into two groups based on the 
clinical parameters, then applied the chi-squared test to analyze 
their relationships. Comparison of the infiltration of immune 
cells between normal and tumor tissues, as well as in hot and 
cold tumors, was performed using the Wilcoxon test. Immune 
and stromal scores, as well as tumor purity among the four 

clusters, were compared using analysis of variance (ANOVA). 
For survival analysis, p values were calculated using the log- 
rank test, with statistical significance set at p<0.05.

Results
Relationship Between Immune Infiltration 
and Clinical Parameters in ccRCC
To understand the role of immune infiltration in ccRCC, we 
first calculated the proportion of the 22 immune cells using 
CIBERSORT and evaluated the relationships between immune 
infiltration and clinical pathological parameters, including gen-
der, age, pathological TNM stage, and overall survival. The 
results revealed higher levels of T-regulatory cells (hereafter 
referred to as Tregs) and neutrophils, but lower levels of 
plasma cells, in male than female patients. Moreover, Tregs 
as well as CD8+ T and follicular helper cells (hereafter referred 
to as Tfhs cells) increased during tumor progression. In con-
trast, M2 macrophages (hereafter referred to as M2) and resting 
mast cells decreased, indicating that M2 and Tregs may play 
different roles in mediating immunosuppressive function. 
Notably, we found elevated levels of resting cells in older 
patients (Figure 2A). Survival analysis revealed an association 
between higher infiltration of naïve B cells and good survival 
of patients, whereas Tregs, plasma cells, neutrophils, and Tfhs 
predicted unfavorable outcomes (Figure 2B–G). Overall, these 
results indicate that immune cells can predict malignant fea-
tures of tumors, and the increased infiltration of immune cyto-
toxic cells is accompanied by immunosuppressive cells.

Patterns of Immune Cell Infiltration in 
Normal and Tumor Tissues
To explore patterns of immune cell infiltration in normal and 
tumor tissues, we first estimated the proportion of immune 
cells in each sample. The results revealed different ratios across 
each cell type, affirming the heterogeneity of ccRCC 
(Figure 3A and B). Next, we compared levels of infiltration 

Table 1 Primers Used in This Study

Gene Forward Reverse

OTOF CAACAAGCGTGTCGCCTATG TCCTTGCGCTGTTTGCTGA

BCL3 CCGGAGGCGCTTTACTACC TAGGGGTGTAGGCAGGTTCAC

NOP2 AAGGGTGCCGAGACAGAACT GAGCACGACTAGACAGCCTC
STRADA CAGGAGAGTACGTGACTGTACG CGATATGGCACGATATTGGGATG

PRH1 CCGTGAGATGTAAGAATGATG CGTTGACCGATGTAATTCC

C12orf32 ACACTCAAGTCGAAAACCTACCA CCCCAATGTCTCTGAACTGGAA
OR8S1 ATCTGCCGCCCACTACTTTAT CCATGTTTACAGCTAGGAGGACA

FUCA1 GAAGCCAAGTTCGGGGTGTT GGGTAGTTGTCGCGCATGA
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between tumor and normal tissues, and found that most cells 
responding to immune stimulation, including CD8+ T cells, 
Tfhs, and M1 macrophages (hereafter referred to as M1), 
increased the infiltration in tumor tissues. Notably, there was 
no significant difference in the infiltration of innate immune 
cells between tumor and normal tissues. In contrast, some 
types of naïve and resting cells were more abundant in normal 
than in tumor tissues (Figure 3C). These results indicate that 
immune cells accumulate in tumor tissues in response to the 
stimulation of neoantigens expressed in tumor cells.

Patterns of Immune Cells in Tumor and 
Normal Tissues
Immune activation and inhibition require a synergistic 
interaction among multiple cells. To this end, we sought 
to understand the relationship among the 22 immune cells 
between tumor and normal tissues. The results revealed 
a weak correlation in immune cells in normal tissues 
relative to those in tumor tissues. In particular, CD8+ 

T cells were positively correlated with Tfhs, activated 
natural killer (NK), mast, and dendritic cells, indicating 

that these cells interact during the immune response. 
Notably, CD8+ T cells were also positively correlated 
with Tregs, but negatively associated with M2, indicating 
that Tregs and M2 may have different functions in the 
inhibition of the immune response mediated by CD8+ 

T cells. Similarly, M2 was also negatively correlated 
with Tfh and activated NK cells, with these correlations 
not being observed in normal tissues. In contrast, CD4 
activated memory T cells were positively correlated with 
monocytes, neutrophils, and eosinophils. Based on these 
results, we used consensus clustering to group the 22 
immune cells in tumor tissues (Figure 4A and B). 
Results from the heatmap and delta diagrams revealed 
that the ccRCC could be divided into four clusters, reveal-
ing different infiltration patterns (Figure 4C and D).

Immune Subtyping of ccRCC
We generated a heatmap showing the distribution of the 22 
immune cells and used it to understand patterns of infiltra-
tion of immune cells across the four ccRCC clusters. 
Cluster 1 was mainly enriched in innate immune and 

Figure 2 Correlation between immune infiltration and clinical parameters in ccRCC. (A) Heatmap showing the relationship between immune infiltration and clinical 
pathological parameters. Red denotes significant upregulation in patients with age >65 years, male, M1 stage, N1 stage, grade II–III, and T1; blue indicates downregulation; 
and white shows no significance. (B) Forest plot showing the relationship between immune infiltration and overall survival. (C–G) Kaplan–Meier curves showing the 
relationship between infiltration of naïve B cells, plasma cells, neutrophils, Tregs and Tfhs, and overall survival.
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CD4 adoptive immune cells, including dendritic cells, 
mast cells, eosinophils, macrophages, naïve, and memory- 
activated CD4+ T cells. Cluster 2 was mainly enriched in 
naïve B cells, plasma cells, M2, and monocytes, Cluster 3 
was moderately enriched in B cells, CD8+ T cells, M1, and 
Tfhs, whereas cluster 4 was highly enriched in activated 
immune cells, including CD8+ T cells, Tfhs, and M1 cells. 
These cells play a vital role in antigen presentation and 
immune response, indicating an immune activation in 
cluster 4. Notably, cluster 4 also exhibited a high infiltra-
tion of Treg cells, suggesting that immune activation is 
further accompanied by TME-mediated immune suppres-
sion (Figure 5A). To further characterize the four ccRCC 
clusters, we calculated immune and stromal scores, as well 
as tumor purity. Just as in the above results, cluster 4 had 
the highest immune score relative to the other three clus-
ters, but exhibited the lowest stromal and tumor purity 
scores (Figure 5B–D).

Signaling Alterations in Hot and Cold 
Tumors
Accumulating evidence suggests that immunotherapy has 
potential benefits in patients with high immune infiltration 
in tumors, called hot tumors. In contrast, tumors with low 
levels of immune cells reportedly resist 

immunotherapy.18,24 From our earlier results, it was evi-
dent that clusters 1, 2, and 3 had lower immune scores 
than cluster 4, although some immune cells, excluding 
CD8+ T cells, were enriched in these clusters. To elucidate 
the mechanisms regulating immune cell infiltration in 
tumors, we redivided the four ccRCC clusters into two 
major groups, hot and cold tumors, with cold tumors 
comprising clusters 1, 2, and 3, and hot tumors comprising 
cluster 4. We then applied two other methods to estimate 
and compare immune cells between the tumor groups. The 
results indicated that more immune and antigen-presenting 
cells were highly infiltrated in hot than in cold tumors, 
affirming our definition of ccRCC (Figure 6A and B). 
DEGs between the groups revealed different patterns 
between hot and cold tumors (Figure 6C and D). In parti-
cular, immune-related genes, such as CD8A, CD8B, 
GZMK, and IFNG, were upregulated in hot tumors, 
whereas those involved in extracellular matrix organiza-
tion and the PI3K/AKT signaling pathway were highly 
expressed in cold tumors. GO and KEGG enrichment 
analyses further confirmed high immune activation in hot 
tumors, where cytokine–cytokine receptor interaction, 
T-cell receptor signaling pathway, and NK cell-mediated 
cytotoxicity were all enriched. Enriched DEGs in cold 
tumors were associated with extracellular matrix 

Figure 3 Profiles of immune cell infiltration in normal and tumor tissues. (A) Barplot showing distribution of the 22 immune cells in tumor tissues. (B) Barplot showing 
distribution of the 22 immune cells in normal tissues. (C) Boxplots showing infiltration of the 22 immune cells in normal and tumor tissues.
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organization, extracellular matrix receptors, and PI3K/ 
AKT signaling (Figure 6E–H). Overall, these results sug-
gest that extracellular remodeling in the tumor environ-
ment may prevent immune cell infiltration, and this effect 
may be triggered by oncogenic signaling.

Identification of Hub and Prognostic 
Genes
We further explored the function of the identified DEGs, 
between hot and cold tumors, by constructing PPI net-
works and identifying hub genes. The top 10 hub genes 
in hot tumors were those associated with the immune 

response, including cytokine molecular (IFNG, GZMA, 
GZMB, FASLG, and PRF1), chemokine receptor (CCR5 
and CXCR3), immune checkpoint (CTLA4), and immune 
modulator (KLRK1) genes (Figure 7A). On the other hand, 
the top 10 hub genes in cold tumors were mainly those that 
regulate the extracellular matrix, consistent with the above 
results (Figure 7B). Next, we used The Cancer Genome 
Atlas (TCGA) and our external cohort to ascertain the role 
of DEGs in predicting the overall survival of ccRCC 
patients. Detailed information on the patients is listed in 
Table 2. First, we randomly divided patients in TCGA 
dataset into training and testing sets, based on equal 

Figure 4 Correlations of immune cells between tumor and normal tissues. (A) Corrplot showing the relationship among the 22 immune cells in tumor tissues. (B) Corrplot 
showing the relationship among the 22 immune cells in normal tissues. (C) Heatmap showing the clusters of immune cells. (D) Delta diagram showing the change in area 
under the curve as the cluster changes.
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mortality rates, and performed a uni-Cox analysis, in 
which genes with p<0.05 were selected, and then applied 
a LASSO regression model in the training cohort (Figure 
7C). To optimize the model, we applied a stepwise multi- 
Cox regression model to select the most predictive genes. 
The results revealed a set comprising eight genes, with 
seven genes upregulated in hot tumors and one in cold 
tumors. Detailed information on the eight genes is pro-
vided in Table 3 (Figure 7D). Thereafter, we calculated 
a risk score for each patient in TCGA and validation 
cohorts using the following formula: Risk value= (0.2928 
× OTOF expression) + (0.6238 × BCL3 expression) − 
(0.4764 × NOP2 expression) + (0.8631 × STRADA expres-
sion) + (0.2737 × PRH1 expression) + (0.5369 × C12orf32 
expression) + (1.0196 × OR8S1 expression) – (0.5457 × 
FUCA1 expression).

Construction and Validation of a Model 
for Predicting Overall Survival of ccRCC 
Patients
To test the predictive power of the model, we first calculated 
risk scores in the training and testing cohorts (Figure 8A). 
The results revealed a similar risk score in both cohorts, 
indicating the good stability of both datasets. Survival 

analysis showed that the risk score could separate the patients 
well (Figure 8B). Notably, patients with high risk scores 
showed poor overall survival in both the training and testing 
cohorts (Figure 8C). The area under the curve (AUC) values 
for 5-year survival were 0.834 and 0.743 for the training and 
testing sets, respectively (Figure 8D). We validated the 
model using our clinical samples against an external 
Zhengzhou validation cohort, and found that it performed 
well (AUC=0.851) in predicting the survival of patients in 
this cohort (Figure 8E–H). Previous research showed that 
immune status in the TME can predict the immune response 
of patients to immunotherapy.24 Based on this, we tested the 
ability of our eight-gene signature in predicting the survival 
of patients with immunotherapy across two independent 
cohorts, metastatic urothelial cancer and a renal cell carci-
noma, both treated with anti-PD-L1 antibody. The results 
revealed poor overall survival in high-risk patients in both 
cohorts (Figure 8I and J). These results suggest that this 
model can effectively predict overall survival; hence, it has 
potential for the clinical treatment of ccRCC patients.

Discussion
Clear cell renal cell carcinoma is the most common sub-
type of renal cell carcinoma, accounting for more than 

Figure 5 Immune subtyping of KIRC. (A) Heatmap showing immune clusters of KIRC. (B–D) Immune, stromal, and tumor purity scores in the four clusters.
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Figure 6 Signaling alterations in hot and cold tumors. (A) Immune infiltration in hot and cold tumors calculated by ssGSEA. (B) Immune infiltration in hot and cold 
tumors calculated by TIMER. (C) Volcano plot showing differentially expressed genes between hot and cold tumors. (D) Heatmap showing expression of differentially 
expressed genes in hot and cold tumors. (E) GO enrichment analysis in hot tumor. (F) GO enrichment analysis in cold tumor. (G) KEGG analysis in hot tumor. (H) KEGG 
analysis in cold tumor.
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70% of all cases worldwide.25 ccRCC is characterized by 
high genomic variability, which provides many potential 
therapeutic targets. Current first and second line treatment 
therapies for ccRCC employ tyrosine-kinase inhibitors and 
anti-VEGF agents. However, most patients exhibit poor 
survival rates and acquired resistance to the treatments.26 

Research has shown that immune checkpoint blockade 
alone or in combination with anti-angiogenesis drugs has 
potential in treating advanced ccRCC,19 affirming the 
importance of immunotherapy in this treatment. 
However, some challenges have been documented. For 
example, some people do not respond to treatment while 
many other patients acquire resistance. Most of the resis-
tance by tumor cells to immunotherapy is attributed to the 
heterogeneity of the TME, which comprises various cell 
types that support tumor progression.27 Therefore, charac-
terizing cell components and elucidating the underlying 
mechanisms that regulate different subtypes of TME are 

imperative to the development of effective therapies 
against ccRCC.

In this study, we analyzed infiltration of 22 immune 
cells, with a view to comprehensively understand their 
biological role in ccRCC progression. Our results revealed 
elevated cytotoxic CD8+ T cells and Tfhs along with tumor 
progression. Infiltration of CD8+ T cells was highest in 
tumor samples with TIII and TIV stage, as well as those 
with metastasis. Overall, these results indicate that 
advanced tumors have the potential to stimulate an 
immune response because of cumulative mutation. In 
response to these disadvantages, previous studies have 
indicated that the tumor forms an immunosuppressive 
microenvironment to inhibit the immune response.27–29 

Similarly, we also found high levels of infiltration of 
Tregs in the immune inflamed tumor samples, which are 
known to suppress the immune response.30–33 Besides, 
Tregs predicted poor overall survival in ccRCC patients. 

Figure 7 Identification of hub and prognostic-related genes. (A) PPI network of upregulated genes in hot tumor. (B) PPI network of downregulated genes in hot tumor. Top 
10 hub genes are shown using triangles, with red color indicating the importance of genes. (C) LASSO and partial likelihood deviance coefficient profiles of the selected 
genes. (D) Forest plots showing HRs of selected genes by multivariate Cox analysis.
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Notably, higher expression of Tfhs, neutrophils, and 
plasma cells was associated with poor survival rates, indi-
cating the dysfunctional state of these cells. Danaher et al34 

reported that a high tumor inflammation signature was 
associated with poor survival in low-grade glioma, pros-
tate cancer, and kidney renal papillary cell carcinoma, in 
a similar fashion to the observations in ccRCC. These 
findings suggest that although a stimulated response 
occurred in the tumor tissue, the overall immune micro-
environment is in a suppressed state. Furthermore, our 
results revealed the elevation of activated immune cells 
in tumor tissues relative to adjuvant normal tissues. In 
contrast, nave cells, including naïve B and resting mast 

Table 2 Clinical and Pathological Characteristics of the Patients 
in TCGA and Zhengzhou Validation Cohort Analyzed in This 
Study

TCGA Zhengzhou 
Cohort

Characteristics
Number of samples 366 60

Age (years), median (range) 60 (26–90) 56 (29–81)

Gender

Male 128 (35%) 17 (28%)
Female 238 (65%) 43 (72%)

Additional pharmaceutical 
therapy

Yes 39 (11%) 9 (15%)

No 53 (14%) 51 (75%)
NA 274 (75%)

Additional radiation therapy
Yes 31 (8%) 7 (12%)

No 61 (17%) 53 (88%)

NA 274 (75%)

Histological grade

G1 12 (3%) 12 (20%)
G2 158 (43%) 32 (53%)

G3 142 (39%) 11 (18%)

G4 51 (14%) 5 (9%)
GX 1 (–)

NA 3 (1%)

Pathological M

M0 284 (78%) 50 (83%)

M1 57 (16%) 10 (17%)
MX 23 (6%)

NA 2 (–)

Pathological N

N0 169 (46%) 51 (85%)

N1 12 (3%) 9 (15%)
NX 185 (51%)

Pathological T
T1 191 (52%) 24 (40%)

T2 49 (13%) 20 (33%)

T3 118 (32%) 10 (17%)
T4 8 (3%) 6 (10%)

Pathological stage
1 187 (51%) 19 (32%)

2 40 (11%) 21 (35%)

3 76 (21%) 14 (23%)
4 62 (17%) 6 (10%)

NA 1 (–)

Table 3 Detailed Information of the Eight Genes in the 
Prediction Model

Gene Fold 
Change 
(Hot/ 
Cold)

Adjusted 
p Value

Function

OTOF 0.765 <0.001 Involved in vesicle membrane 

fusion

BCL3 0.374 0.006 Functions as a transcriptional 

coactivator that activates 

through its association with 
NF-kappa B homodimers

NOP2 0.344 <0.001 Involved in rRNA processing 

in the nucleus and cytosol 

and transcriptional 
regulation by the AP-2 

(TFAP2) family of 

transcription factors

STRADA 0.245 <0.001 Involved in STK11-induced 

G1 cell cycle arrest

PRH1 0.236 0.023 Involved in salivary secretion

C12orf32 0.175 0.015 Involved in transition of 

G1–S

OR8S1 0.101 0.045 Interacts with odorant 

molecules in the nose to 

initiate a neuronal response 
that triggers the perception 

of a smell

FUCA1 −0.234 0.016 Involved in the degradation 

of fucose-containing 

glycoproteins and glycolipids
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Figure 8 Construction and validation of a model for predicting overall survival of ccRCC patients. (A) Correlation of risk score and number of patients in the training 
cohort (left panel) and testing cohort (right panel). (B) Correlation of survival and number of patients with high risk and low risk in the training cohort (left panel) and testing 
cohort (right panel). (C) Kaplan–Meier survival curve showing survival of patients with high and low risk in the training cohort (left panel) and testing cohort (right panel). 
(D) ROC curve of 5-year survival for the training cohort (left panel) and testing cohort (right panel). (E, F) Distribution of the risk score (E) and survival status (F) in the 
external validation cohort. (G) Kaplan–Meier survival curve showing the survival of patients with high and low risk in the external validation cohort. (H) ROC curve of 
3-year survival for the validation cohort. (I) Kaplan–Meier survival curve showing survival of patients with high and low risk in the metastatic urothelial cancer cohort. (J) 
Kaplan–Meier survival curve showing the survival of patients with high and low risk in the renal cell carcinoma cohort.
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cells, were more abundant in normal than in tumor tissues. 
M2 macrophages, also known as tumor-associated macro-
phages (TAMs), which abundantly infiltrate most solid 
tumors, contribute to tumor progression by suppressing 
the immune response and promoting the proliferation of 
tumor cells.35 Wang et al reported that TAMs promote 
metastasis and drug resistance of ccRCC through secretion 
of SOX17.36 In addition, tumor-infiltrating macrophages 
secrete IL-23 and enhance Treg function.37 In this study, 
we observed that the ratios of M2 macrophages were 
higher in the early stage of ccRCC, indicating that M2 
macrophages play an important role in forming the immu-
nosuppressive microenvironment in the early phase of the 
tumor. Notably, the CIBERSORT method calculates 
the proportions of 22 immune cells, which do not reflect 
the absolute numbers of infiltrating cells.20

Activation of an immune response usually requires 
synergy by multiple cells, including antigen presentation, 
recruitment, and stimulation of CD8+ T cells by chemo-
kines and cytokines. In this study, we observed that CD8+ 

T cells were correlated with Tfhs, activated NK, and 
dendritic cells. This was not observed in normal tissues, 
indicating that immune activation drives CD8+ T-cell infil-
tration. Accumulating evidence suggests that immune sub-
types in tumors show distinct responses to immune 
checkpoint blockade. Our ccRCC classification, based on 
infiltration of 22 immune cells, revealed four clusters with 
different immune infiltration patterns. Analysis of 
immune, stromal, and tumor purity scores across the four 
clusters indicated that cluster 4 was abundant in CD8+ 

T cells, activated NK cells, and Tfhs, a subtype reportedly 
more responsive to immunotherapy.24 Although the other 
three clusters revealed distinct immune infiltration pat-
terns, their immune, stromal, and tumor purity scores 
were not significantly different, indicating that they have 
the same characteristics. In particular, cluster 3, which was 
enriched in CD8+ T cells, while lacking Tfhs and dendritic 
cells, could not activate effective immunity. These results 
were in line a previous study, which found that only 
stimulation of effector T cells and Tfhs can control tumor 
growth.38

Previous evidence has shown that the density and 
diversity of immune cells in the TME are closely asso-
ciated with immune response and prognosis.39 The TME 
can simply be defined as hot and cold tumors, based on the 
inflamed cytokine expression and T-cell infiltration.40 

Given the immune scores among the four clusters, we 
redefined cluster 4 as hot and the others as cold tumors. 

Expression analyses revealed significant differences 
between the two types of tumors, with upregulation of 
immune inflamed genes, including CD8A, PDCD1, 
LAG3, CXCL13, and IFNG, in the hot tumor. The most 
highly expressed gene in the cold tumor was cellular 
repressor of E1A stimulated genes 2 (CREG2). These are 
secreted glycoproteins and may be novel neuronal extra-
cellular molecules.. GO indicated that this gene is asso-
ciated with oxidoreductase activity.41,42 However, its 
function in immune modulation remains unknown. In 
addition, other genes that are overexpressed in cold 
tumor require further exploration. GO and KEGG analyses 
revealed enrichment of T-cell activation, cytokine–cyto-
kine interaction, and some other immune responses in the 
hot tumor, whereas extracellular matrix and structural 
organization were the highly enriched processes in the 
cold tumor. Previous research has shown that extracellular 
matrix remodeling is the hallmark of tumor progression.43 

Its transition promotes tumor metastasis but also acts as 
a physical barrier to inhibit immune cell infiltration.44 In 
addition, collagen, the major component of the extracellu-
lar matrix, can induce exhaustion of CD8 T cells.45 These 
results suggest that targeting the extracellular matrix may 
be a feasible way to promote immunotherapy.

We also observed that the PI3K/AKT pathway was 
activated in cold tumors. The PI3K/AKT pathway has 
been reported to be hyperactivated in most cancers, 
usually leading to aberrant cell proliferation and apoptosis, 
and thus mediating tumor initiation, progression, and drug 
resistance.46–48 Increasing evidence has confirmed the cru-
cial role of the PI3K/AKT/mTOR pathway in the immune 
response. In PTEN-mutant melanoma murine models and 
PIK3CA-mutated bladder cancer, the administration of 
PI3K inhibitor induces immune activation and the 
response to PD-1 inhibitors.49,50 These reports affirm our 
results and highlight that the combination of inhibition of 
the PI3K/AKT pathway and immunotherapy may enhance 
the anti-tumor response.

Previous works have evaluated the potential of immune 
cells or immune-related long-coding RNAs and mRNA in 
predicting the prognosis of ccRCC patients.51,52 In this study, 
we also explored the prognostic value of the DEGs and built 
a risk model containing eight genes. We found an association 
between B-Cell Chronic Lymphocytic Leukaemia/ 
Lymphoma-3 (BCL3), a well-known oncogene, and poor 
survival in ccRCC patients. BCL3 is identified by its translo-
cation into the immunoglobulin alpha-locus in some cases of 
B-cell leukemia.53,54 Olfactory Receptor Family 8 Subfamily 
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S Member 1 (OR8S1) genes are olfactory receptors that 
interact with odorant molecules in the nose, which initiate 
a neuronal response that triggers smell. We also observed that 
high expression of Alpha-L-Fucosidase 1 (FUCA1), a p53 
targeted gene that encodes a fucosidase, was correlated with 
better survival in ccRCC patients. Upregulation of FUCA1 
was found to suppress tumor growth and promote chemother-
apy-induced cell death.54,55 These results are consistent with 
previous findings. Our prediction model performed well in 
predicting overall survival in TCGA and in the Zhengzhou 
external validation cohort. Notably, the eight gene sets also 
had a good predictive effect in patients with metastatic 
urothelial cancer and renal cell carcinoma receiving anti PD- 
L1 treatment.

There are some limitations of the model. First, only 
one external cohort was used to validate the model. 
Second, this model did not fit the ccRCC patients with 
all kinds of therapies.

Conclusion
In summary, our results reveal that immune infiltration is 
associated with tumor progression. Specifically, infiltration 
of immunosuppressive cells reflects the status of tumor 
progression. We identified four ccRCC clusters, based on 
different immune infiltration, with further analysis show-
ing that extracellular matrix remodeling and the PI3K/ 
AKT pathway may inhibit immune infiltration. We con-
structed a risk model for predicting overall survival rates 
of ccRCC patients, and validated it using our cohort. The 
established model, alongside an eight-gene signature, can 
effectively predict survival rates of ccRCC patients, 
affirming its potential predictive value in guiding the treat-
ment of ccRCC.
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