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Abstract: Collectively, hematological malignancies account for the fourth most common 
malignancy. Myeloma and lymphoma are the most common types of hematological malig-
nancies. Unfortunately, the management of refractory myeloma and lymphoma remains 
challenging. The discovery of new immunological therapies, namely chimeric antigen 
receptors T cells (CAR-T), outlined unprecedented B cell malignancies results. In this 
context, the CAR-T-based approach has led to the proliferation of many clinical studies. In 
this review, we will deal with the CAR-T structure, and we will summarize the primary 
clinical studies assessing the risks and benefits of CAR-T cell therapy. We will also deal with 
the adverse events and management of cytokine release syndromes/immune effector cell- 
associated neurotoxicity syndrome (ICANS). Subsequently, we will review potential future 
improvements to overcome refractoriness and improve expansion while decreasing CAR-T’s 
off-target effects. The advances in the CAR-T platform represent a step forward with 
promising unlimited future possibilities that made it a paradigm-shifting for the management 
of B cell malignancies. 
Keywords: multiple myeloma, relapsed, refractory, treatment, chimeric antigen receptor, 
T cells, cytokine release syndrome, lymphoma, leukemia

Introduction
Hematological malignancies are collectively the fourth most common of all cancers 
in the United States.1 Despite the major leaps forward in treatment options, relapsed 
and refractory disease remains a challenge. Progress for hematological malignan-
cies has been exceptionally rapid due to improvements in treatment protocols, 
including the development of targeted therapies. For example, the multiple mye-
loma (MM) 5-year relative survival rate increased from 25% in the 1970s to 56% in 
2012, and close to 75% in US-academic centers.1,2 However, it is estimated that 
every 9 minutes, someone in the US dies from a hematological malignancy.1 When 
chemotherapeutic options fail, novel immunologic approaches are needed.

During initial tumor progression, tumor cells escape immune recognition and 
become less immunogenic in a process termed “cancer immune editing.”3 The role 
of immunotherapy in stimulating the immune response against cancer cells might 
represent the future of hematological malignancy treatments. A new treatment 
concept for genetically engineered T cell immunotherapy is now available. This so- 
called chimeric antigen receptor CAR-T cell therapy leads to considerable overall 
response rates, even in highly pretreated and refractory hematological malignancies. 
Hence, the US Food and Drug Administration (FDA) granted the first breakthrough 
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designation for a CD19-CAR-T cell therapy for patients 
with relapsed/refractory NHL in 2017.4 Also, another 
approval was granted for patients 25 or younger with 
relapsed/refractory B-cell acute lymphoblastic leukemia 
(B-ALL). Others followed this approval for relapsed 
refractory mantle cell lymphoma in 2020 and diffuse 
large B-cell lymphoma in 2021.5,6 More approvals are 
likely to follow 2021.

CAR-T consists of genetically modified cells either 
through transfection (DNA plasmid inclusion) or transduc-
tion (using viral vector), introducing a new antigen on the 
T-cell surface to enable cancer cell detection. Since its 
introduction, multiple methods for CAR-T production 
have developed. Transduction methods may use either 
a lentivirus or gamma-retro virus as vectors for genetic 
modification, whereas the transfection method could trans-
fer the new genes to a T-cell without using a virus vector. 
Examples of transfection methods include Sleeping 
Beauty® or piggyBacTM methods.7,8

The end product is a new T-cell powered by a specific 
antibody directed against a selected antigen. One advan-
tage of these CAR-T activities is that they do not depend 
on antigen HLA presentation. The CAR molecule consists 
of three parts: 1) an extracellular domain containing 
a single-chain fragment variable directed against 
a specifically targeted antigen and an antigen recognition 
site connected with a linker. The extracellular domain is 
then attached with a hinge to 2) a transmembrane domain, 
part of CD3, CD8, CD28 or FcεRI, which is then con-
nected to 3) an intracellular domain, consisting of the 
intracytoplasmic activating domain (CD28, CD27, 
CD134, CDB7, or CD3ζ) with or without a second costi-
mulatory factor (CD28, or 4-1BB). Figure 1.

CAR-Ts could be autologous or off-the-shelf allogenic, 
depending on the source. Autologous CAR-T is more 
frequently used because it has a simpler structure, and its 
clinical development started earlier. However, allogenic 
CAR-T is a more convenient off-the-shelf option.9,10 Due 
to GVHD concerns, allogenic CAR-Ts are usually supple-
mented with a suicidal gene or death receptor-like CD20, 
protease/protease inhibitor system, synthetic notch recep-
tors, or a small molecule gated zeta chain associated 
protein kinase 70 (ZAP70) suicidal switch.9,10

CAR-T Engineering Issues
Several factors can influence CAR-T’s overall outcomes 
and can be divided into CAR-T manufacturing factors and 
clinically related factors. First, CAR-T cell quality is 

assessed by color, presence of transgenes, number and 
percentage of T-cells and viable T-cells, CD4:CD8 ratio, 
the extent of expression of CAR on the cell surface, 
cytokine production, presence of bacterial endotoxins, the 
risk of insertional oncogenesis, presence of residual mag-
netic beads, and sterility. Secondly, clinical factors include 
immune-dependent cancer antigen selection, preferably 
cancer-specific antigen; CAR-T persistence in the patient; 
and the associated toxicity profile with cytokine release 
syndrome (CRS) and immune effector cell-associated neu-
rotoxicity syndrome (ICANS). While CAR-T’s goal is to 
direct the new T-cells against cancers, it should be noted 
that the off-target effect should always be considered. For 
example, persistent CAR-T against SLAM-F7 or Kappa 
light chain in multiple myeloma, theoretically, could lead 
to prolonged immune suppression, which in turn might 
offset the benefit of myeloma control. Similarly, B-cell 
aplasia is a concern for CD19 CAR-T treatment.11,12

Table 1 summarizes the currently available/proposed 
targets for myeloma and lymphoma with a list of potential 
off-target expressions. CD19 is the primary target for 
lymphoma clinical trials, whereas B-cell maturation anti-
gen (BCMA) is the main target for myeloma.13 CD19 is 
a transmembrane protein expressed on the surface of nor-
mal and neoplastic B cells that modulates intracellular 
signaling pathways, including the B cell receptor signaling 
pathway that is dysregulated in many B-NHL types.14 

BCMA supports survival and promotes cell growth and 
chemotherapy resistance.15 Hence as expected, expression 
of BCMA increases with progression from MGUS to 
active myeloma and is associated with worse outcomes.15 

Many other targets could be exploited as alternative 
options for CAR-T in MM and lymphoma treatment. 
(Table 1).

Data from clinical trials are accumulating about each of 
those different targets. However, herein we will summar-
ize the most clinically relevant results.

CAR-T Cells in Clinical Trials for 
Lymphoma
CAR-T Cells for Diffuse Large B Cell 
Non-Hodgkin’s Lymphoma
Outcomes for patients with relapsed/refractory aggressive 
B cell non-Hodgkin lymphoma (B-NHL) are poor. The 
efficacy of salvage chemotherapy regimens for refractory 
diffuse large B cell lymphoma (DLBCL) is dismal, with 
response rates ranging from 20–31% and complete 
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response rates 2–15%.16 Overall survival for patients with 
relapsed/refractory DLBCL is estimated to be 6.3 months 
after salvage therapy initiation, with only 20% of patients 
alive at two years.16 Similarly, the overall survival of 
mantle cell lymphoma (MCL) patients who have failed 

front-line therapy and BTK inhibition is 2.9 months, only 
slightly improved to 5.8 months for patients fit for addi-
tional therapy.17 Patients with indolent B cell non-Hodgkin 
lymphoma enjoy a longer survival, but relapse is inevita-
ble Responses and overall life expectancy are shorter with 
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Figure 1 CAR-T cell use in hematological malignancies.
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Table 1 CAR Antigens Being Examined in Hematological Malignancies

Target Indication On Tumor Target Off-Tumor Refs

BCMA Multiple myeloma Near universal expression by MM cells in 
most patients

Plasmacytoid, DCs [15,68,69]

BCMA+ B cell 

lymphomas and 

leukemias

SLAMF7 Multiple myeloma Expression in 95% of MM Plasma cells, NK cells, NK-like T cells, CD8+ 

T cells

[29,70]

CD38 Multiple myeloma Most MM 80–100% Early B-cells, NK cells, activated T-cells, basophils, 

monocytes, hematopoietic progenitors, DCs, cardiac 
and smooth muscle cells, cornea, gut, pancreas

[71–73]

CD138 Multiple myeloma Most MM cells in most patients 90–100% Epithelial cells, pre-B-cells [74]

CD56 Multiple myeloma Strong expression in 70–90% MM Muscle cells, neurons, NK cells, NK-like T-cells [75–77]

CD74 Multiple myeloma 95% of plasma cells in >50% of patients DCs, B-cells, DC, activated-T-cells, monocytes, 

macrophages

[35,78]

CD40 Multiple myeloma Variable expression most MM 70–100% Plasma cells, DCs, APCs [36,79]

Kappa 
Light Chain

Multiple myeloma Expression in 35% of the MM Clonogenic MM precursors, mature B-cells [80,81]
FL, MZL, MCL

Lewis 
Antigen

Multiple myeloma Expression in 52% of MM Epithelial cells and granulocytes [82]

NY-ESO 
-1/LAGE-1

Multiple myeloma Expression in about 34% of the HLA-A2 
positive MM.

Restricted expression to germ cells and malignant 
tissues

[83,84]

CD19 Multiple myeloma Expressed only on 5% of MM cells Clonogenic MM precursors, pan-B-cell marker [80,85]
B-NHL, CLL, 

B-ALL

Nearly universal expression in B-NHL

CD229 Multiple myeloma Expressed in all plasma cell dyscrasias, 

especially with plasma cells showing the 
CD56+ aberrant phenotype.

Expressed on T and NK cells. [86,87]

NKG2D Multiple myeloma NKG2D upregulated in response to DNA 
damage, infection with certain pathogens, 

and importantly, malignancies like MM.

Present on NK cells, invariant NKT cells, γδ T- 
cells, CD8 T-cells, and a small fraction of CD4 

T-cells.

[88]

APRIL Multiple myeloma A proliferation-inducing ligand (APRIL) is 

members of the tumor necrosis factor 

(TNF) family. APRIL stimulates BCMA

B lymphocytes, fibroblasts. [89,90]

GPRC5D Multiple myeloma A member of the G protein-coupled 

receptor family

Hair follicles [91]

FcRH5 Multiple myeloma A member of the immunoglobulin receptor 

superfamily and the Fc-receptor like family.

Epstein-Barr virus- transformed lymphocytes, 

spleen, and the terminal ileum of the small intestine

[92]

CD79b B-NHL, B-ALL Expressed on the surface of 2/3 of B-NHL B lymphocytes [93,94]

CD20 B-NHL Expressed by 90% of B-NHL and 40% of 

B-ALL

Pan-B cell marker, follicular dendritic cells [95]

(Continued)
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each subsequent line of therapy.18 Although CAR-T ther-
apy is still early in development, early results promise to 
improve these outcomes considerably.

CAR-T cells targeting the CD19 antigen on B-NHL 
cells’ surface are furthest in clinical development, with 
FDA-approved anti-CD19 CAR-T constructs for DLBCL 
and MCL and approvals for additional constructs and 
indications anticipated within the next 1–2 years.

Axicabtagene ciloleucel was the first anti-CD19 CAR-T 
approved for lymphoma in the United States.4 In the land-
mark Phase 2 ZUMA-1 study, 101 patients with DLBCL 
refractory to chemotherapy or relapsed after autologous 
stem cell transplant were treated with a single dose of axi-
cabtagene ciloleucel, which elicited an 82% objective 
response rate and 54% complete response rate.19 At 
a median follow-up of 15.4 months, 42% of patients had 
a continued response, with an unprecedented 40% still in 

complete response.19 The estimated 2-year progression-free 
survival of patients who were in CR at three months was 
72%. The latest long-term follow-up from the ZUMA-1 
study (median follow-up 39.1 months) was presented at the 
ASH annual meeting in 2020 and reported durable responses 
with 47% 3 years overall survival.20 Tisagenlecleucel is 
a second-generation anti-CD19 CAR-T construct that is com-
mercially available for use in patients with relapsed/refrac-
tory DLBCL following at least two lines of prior therapy. In 
the phase 2 JULIET study, 93 relapsed/refractory DLBCL 
patients received tisagenlecleucel infusion. At a median fol-
low-up of 14 months, the overall response rate was 52%, 
with the majority of patients achieving a complete response, 
and the 12-month relapse-free survival was 79% in patients 
who achieved a complete response.21 In the TRANSCEND 
NHL 001 study, a third CD19-directed CAR-T therapy, liso-
cabtagene maraleucel, enrolled patients with a median of 

Table 1 (Continued). 

Target Indication On Tumor Target Off-Tumor Refs

CD22 B-NHL, B-ALL, 

CLL

Expressed by most B-NHL, B-ALL and CLL Epithelioid histiocytes, B lymphocytes [62,96]

ROR1 MCL, CLL, B-ALL Highly expressed in CLL, but less than 10% 

expression in B-ALL

B-lymphocyte precursors [97,98]

CD30 Hodgkin 

lymphoma, 

B-NHL, T-NHL

Highly expressed in ALCL and classical 

Hodgkin lymphoma; variable expression in 

other PTCL and B-NHL

Granulocytes, plasma cells, activated B, T ad NK 

cells, monocytes

[37]

CD70 B-NHL, AML, 

MM, T-NHL

Highly expressed in DLBCL, FL, LPL and 

Hodgkin lymphoma; CLL and AML

Activated B and T cells, thymic stromal cells, NK 

cells, dendritic cells; Aberrantly overexpressed by 
multiple solid tumors

[99]

CD7 NK/T cell 
lymphoma, 

T-ALL, AML

Highly expressed in T-ALL and most NK 
cell lymphomas; Expressed in a subset of 

myeloid malignancies

T lymphocytes, NK cells, thymocytes; variably 
expressed in monocytes, early myeloid cells, pre-B 

cells

[100,101]

CD4 PTCL, NOS, AITL, 

ALCL, CTCL

Expressed in many post-thymic T cell 

lymphomas

T helper cells, thymocytes, granulocytes, 

macrophages, DC

[102]

CD5 T-ALL, PTCL, 

CTCL

Uniformly expressed on T-ALL; Variable 

expression in PTCL and CTCL

Expressed on virtually all peripheral T lymphocytes, 

thymocytes;

[66,103]

TCR 

(TRBC1)

PTCL, NOS, 

AITL, ALCL

>95% of PTCL homogeneously express 

either TRBC1 or TRBC2

T lymphocytes [104,105]

CD37 B-NHL, CLL, 

PTCL, CTCL, 

T-PLL

Highly expressed in both B-NHL and 

T-NHL

Expressed on non-neoplastic B and T cells [102]

Abbreviations: BCMA, B-cell maturation antigen; DC, dendritic cells; B-ALL, B cell acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; B-NHL, B cell non- 
Hodgkin lymphoma; NK, Natural Killer; APC, antigen presenting cell; MM, multiple myeloma; ROR1, receptor tyrosine kinase-like orphan receptor 1; PTCL; NOS, 
peripheral T cell lymphoma; not otherwise specified; AITL, angioimmunoblastic T cell lymphoma; ALCL, anaplastic large cell lymphoma; CTCL, cutaneous T cell lymphoma; 
T-PLL, T-cell prolymphocytic leukemia; T-NHL, T cell non-Hodgkin lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma.

OncoTargets and Therapy 2021:14                                                                                         submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
2189

Dovepress                                                                                                                                                    Atrash and Moyo

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


three previous lines of systemic treatment, and 67% had 
chemotherapy-refractory disease, 3% had secondary CNS 
involvement, 33% of patients had a previous autologous 
stem cell transplant, and 3% had a previous allogenic stem 
cell transplant.22 TRANSCEND NHL 001 demonstrated 
73% ORR and 53% CR rate and has just received an 
approval for commercial use soon.5,22 Importantly, these 
unprecedented response rates have been confirmed in so- 
called “real world” or standard of care analyses,23–25 and 
older patients have also been shown to derive benefit from 
CAR-T administration with manageable side effects.26 

Importantly, the safety analyses highlighted some differences 
in side effect profiles of these constructs. The JULIET study 
used a different grading system for CRS. However, the risk 
of grade ≥3 cytokine release syndrome was notably lower 
with lisocabtagene maraleucel (2% vs 13% and 22% with 
axicabtagene ciloleucel and tisagenlecleucel, respectively), 
and the risk of grade ≥3 neurotoxicity was higher with 
axicabtagene ciloleucel (28% vs 10–12% with the other 
two constructs).19,21,22

The current FDA indications for anti-CD19 CAR-T 
therapy in lymphoma require a failure of two lines of 
therapy. With more experience in the management of 
expected side effects of CAR-T therapy and the develop-
ment of safer constructs, multiple studies are now investi-
gating the incorporation of anti-CD19 CAR-T therapy 
earlier for chemo-refractory aggressive B-NHL. At 
a median follow-up of 3.5 months, all nine transplant- 
ineligible patients with DLBCL in the first relapse treated 
with lisocabtagene maraleucel in the PILOT study achieved 
an objective response with no CRS or neurologic events 
reported.27 Importantly, five of those patients were success-
fully treated in the outpatient setting.27 In the planned 
interim analysis of the ZUMA-12 trial, 15 patients with 
double-or triple-hit lymphoma who had FDG avid disease 
on an interim PET after 2 cycles of induction chemotherapy 
were treated with axicabtagene ciloleucel. Of those 15 
patients with more than three months of follow-up after 
CAR-T infusion, 80% achieved a CR, with the majority 
achieving durable response.28,29 Axicabtagene ciloleucel is 
being evaluated in a Phase 3 study randomizing DLBCL 
patients who fail first-line therapy to standard salvage che-
motherapy + autologous stem cell transplant versus axicab-
tagene ciloleucel (ZUMA-7, NCT03391466).

CAR-T Cells for Mantle Cell Lymphoma
In 2020, brexucabtagene autoleucel was approved for use 
in relapsed/refractory mantle cell lymphoma.6 The 

ZUMA-2 study included patients relapsed after or refrac-
tory to at least two lines of therapy, including anti-CD20 
therapy, anthracycline or bendamustine, and BTK 
inhibition.30 Of the 60 patients included in the efficacy 
analysis, 67% achieved a complete response, and 57% 
maintained their response at a median follow-up of 12.3 
months.30 CRS was nearly universal (91%) and occurred 
early with a median time to onset of 2 days, but grade ≥3 
CRS occurred in only 15%, and there were no fatal CRS 
events. Neurotoxicity was also frequent (31% grade ≥3 
neurologic events) but was fully reversible in the major-
ity of patients (complete resolution in 86% of patients, 
the median time to resolution 12 days).30 The preliminary 
results of lisocabtagene maraleucel in relapsed/refractory 
mantle cell lymphoma suggest similar response rates and 
enhanced safety. Fifty-nine percent of relapsed/refractory 
MCL patients achieved CR after lisocabtagene maraleu-
cel, including 57% of patients with blastoid variant MCL. 
CRS was seen in 50% of the cases, but only a single 
grade ≥3 CRS event occurred, and less than 10% experi-
enced grade ≥3 neurologic events.31

CAR-T Cells for Indolent Lymphoma
CD19-directed CAR-T therapy has also demonstrated pro-
mising results in indolent B-NHL. The ORR for patients 
with indolent B-NHL (predominantly follicular lym-
phoma) treated with axicabtagene ciloleucel was 92%, 
with a CR rate of 75%.32 Tisagenlecleucel has also demon-
strated impressive preliminary overall and complete 
response rates (83% and 65%, respectively) in relapsed/ 
refractory follicular lymphoma, with the median duration 
of response not reached.33 Multiple novel CD19 CAR-T 
constructs are still under investigation in B-NHL.

Due to concerns about the risk of neurotoxicity, in the 
registration studies for the currently approved anti-CD19 
CAR-T therapies, patients with central nervous system 
involvement were excluded. However, “real world” 
experience in patients with DLBCL and secondary CNS 
involvement has shown no significant difference in the 
safety of axicabtagene ciloleucel or tisagenlecleucel.33–36 

Future studies are explicitly targeting patients with CNS 
involvement. One such proposed study will investigate 
a novel CD19 CAR-T construct in patients with relapsed 
primary CNS lymphoma and is planned to incorporate 
both intravenous and direct intraventricular administration 
of CD19 CAR-T cells (NCT04443829).
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CAR-T Cells for Hodgkin Lymphoma and 
T-Cell Lymphoma
The superior efficacy of anti-CD19 CAR-T therapy and 
broad applicability in patients with aggressive B-NHL 
after multiple lines of therapy has led to trials evaluating 
alternative targets that may expand access to patients with 
Hodgkin lymphoma and T cell non-Hodgkin lymphoma. 
CD30 is a tumor necrosis factor receptor that is over- 
expressed in Hodgkin lymphoma and some T-NHL 
subtypes.37 Anti-CD30 therapy has proven successful in 
these lymphoma types, which has led to the exploration of 
anti-CD30 CAR-T therapy in patients with relapsed/refrac-
tory disease. In a study of anti-CD30 CAR-T therapy in 
patients with multiple relapsed Hodgkin lymphoma who 
had seen up to seven lines of prior therapy, including anti- 
CD30 therapy with brentuximab vedotin, response rates 
were promising (ORR 72%, CR 59%) and durable.38 This 
construct has also been tested in a limited number of CD30 
+ anaplastic large cell lymphoma, a T-NHL subtype, with 
mixed results.39

Multiple Myeloma CAR-T Cells in 
Clinical Trials
After the approval of several new drugs in the last decade, 
the multiple myeloma management landscape has substan-
tially changed. Treatment options for multiple myeloma 
have substantially improved over time, and therapeutic 
options include agents such as proteasome inhibitors 
(PIs), immunomodulatory drugs (IMiDs), monoclonal 
antibodies (MoAbs), antibody-drug conjugates, nuclear 
export inhibitors, and stem cell transplantation. However, 
overall survival for patients with IMiDs, PIs, and MoAbs- 
refractory disease remains around six months.40 Hence, 
new treatments with a novel mechanism of action are 
needed. Harnessing the immune system’s ability to over-
come refractoriness to conventional drugs can be achieved 
with monoclonal antibodies, antibody-drug conjugates, 
T-cell engagers, and chimeric T-cell based therapies.

Multiple myeloma CAR-T cells mostly targeted 
BCMA (also known as CD269 and TNFRSF17) in early 
clinical results.41 BCMA is a 20 kilodalton, type III mem-
brane protein that is part of the tumor necrosis receptor 
superfamily. Initial clinical trials chose BCMA as the 
target because it is predominantly expressed in B-lineage 
cells and plays a critical role in B cell maturation and 
subsequent differentiation into plasma cells with 
a relatively higher expression on malignant plasma 

cells.41 Prior to delivering CAR-Ts, almost all clinical 
trials used the same conditioning chemotherapy of fludar-
abine 30 mg/m2 and cyclophosphamide 300 mg/m2 on 
days −5, −4, and −3.

Currently, three major ongoing clinical trials pathways 
are exploring BCMA CAR-T. First, Idecabtagene 
Vicleucel (ide-cel) CAR-T cells for patients with 
relapsed/refractory multiple myeloma (RRMM).42 Ide-cel 
was tested in the KarMMa clinical trials; after lymphode-
pletion chemotherapy, it was given with a dose-escalation 
fashion then dose-expansion phase. The expansion phase 
enrolled patients who had received ≥3 prior lines of ther-
apy. The overall response rate for the expansion dose, 
150–450 x10−6 CAR-T, was 76%, including 39% patients 
with CR and 30 patients (out of 37 patients tested) achiev-
ing MRD negative status to the level 10−4 by next gene 
sequencing. Those results are unprecedented for patients 
with highly refractory multiple myeloma. Notably, the 
duration of response in that group of patients was around 
11.3 months, and the median progression-free survival was 
around 12.1 months. Safety signal was significant for 
cytokine release syndrome (CRS) higher than or equal to 
grade 3 in about 7% of patients. The CRS incidence 
correlated with CAR-T dose. Out of 128 patients enrolled 
in the trial, 107 patients experienced CRS, while only 
seven patients had a CRS grade ≥3. One patient had 
grade 5 CRS.43 Most patients required at least one dose 
of tocilizumab for CRS management. Twenty-seven per-
cent of patients reported neurologic toxicity, which is 
mostly of grade 1/2. However, one patient had grade 3 
neurotoxicities and one patient had grade 4 neurotoxicities.

Building on those results, it was felt that enriching 
CAR-T cells with memory T-cells to increase the persis-
tence of CAR-T cells will help with more durable 
responses. The bb21217 CAR-T cells are produced by 
culturing Ide-cel with a PI3K inhibitor.44 Clinically, 
bb21217 is undergoing a Phase 1 multicenter study for 
MM patients who received ≥3 prior regimens, including PI 
and IMiD agents. Investigators published initial results on 
44 patients. The CR rate was 18%. CRS developed in 67% 
of patients, including one patient with grade 5 CRS. More 
importantly, higher expression of CD127, a long-lasting 
memory T-cell marker, was positively correlated with 
duration of response (DOR), while multiple markers 
were associated with differentiated T-cells and exhaustion 
(eg EOMES+, TBET+) correlated negatively with DOR.45

Secondly, Orvacabtagene-Autoleucel (orva-cel), also 
previously known as JCARH125, is equipped with 
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a fully human binder.46 Orva-cell was evaluated in the 
EVOLVE phase 1 study and showed promising results 
with CAR-T dosing between 50 and 150 x 106 cells with-
out dose-limiting toxicities.47 Recently, another 51 patients 
were added to the EVOLVE dose escalation with CAR-T 
dose between 300–600 x 106 cells after lymphodepleting 
chemotherapy. Orva-cel yielded a 91% ORR with 39% CR 
in a highly refractory population. However, it is too early 
to report on the final overall survival or median PFS.46 

Based on those results, another ongoing trial, 
NCT04394650, is testing the next generation manufactur-
ing platform designed to deliver a CAR T-cell product with 
less-differentiated composition and reduce turnaround 
time (Nex-TTM). Nex-T CAR-T will likely replace orva- 
cel.

Third, Ciltacabtagene Autoleucel (Cilta-Cel),48 also 
known as LCAR-B38M or JNJ-4528, is genetically engi-
neered to contain a 4-1BB costimulatory domain and two 
binding sites that attach to BCMA to confer avidity. The 
overall response rate was 94.8% (95% CI 88.4–98.3), with 
a stringent CR rate of 55.7% (95% CI 45.2–65.8), VGPR of 
32.0% (95% CI 22.9–42.2), and partial response rate of 
7.2% (95% CI 3.0–14.3). Also, out of 52 patients with 
evaluable minimal residual disease (MRD), 94.2% were 
MRD negative 10−5 by next gene sequencing. The 
6-month PFS and OS rates were 87.4% and 93.8%, respec-
tively. Unfortunately, eight patients died during the trial due 
to toxicities. Table (3) summerizes pivotal CAR-T trials.

CAR-T Related Toxicities
Cytokine Release Syndrome (CRS)
CRS is a systemic inflammatory response observed after 
adoptive T-cell therapy. This condition results from upre-
gulation of CD25 and CD69, secretion of cytokines IL-6, 
IL-10 and IFN γ, the proliferation of immune cells, and 
production of granzyme and perforin.49 This toxicity is 
non-antigen specific, and it is related to high immune 
activation and, in some patients, CRS-related clinical and 
laboratory findings are like macrophage activation syn-
drome/hemophagocytic lymphohistiocytosis (MAS/HLH).

Clinically, CRS presents with cardiac (tachycardia and 
arrhythmias), gastrointestinal (nausea and vomiting), labora-
tory (coagulation, renal and hepatic), neurological, respira-
tory, skin, vascular (hypotension), and constitutional (fever, 
rigors, headaches, malaise, fatigue arthralgia) symptoms. 
However, after ruling out infection, fever, hypotension, and 
hypoxia are the mainstay of CRS clinical manifestations.50

Initial reports speculated that CRS is essential for clinical 
response against cancer; however, it is clear now that tumor 
burden is also related to the increased incidence of CRS,51 

and the absence of CRS does not preclude tumor response.
CRS is graded by different methods with minor 

difference.50,52,53 In general, CRS severity depends on 
hypotension and hypoxia. Earlier, Lee et al53 published 
criteria for grading CRS, which was later modified to the 
ASTCT criteria.50 However, CRS-induced end-organ 
damage remains a part of the CTCAE (currently v. 5.0) 
grading system.54

While grade 1 CRS is defined as the presence of con-
stitutional symptoms with or without fever, mild hypoten-
sion and mild hypoxia are the mainstays of grade 2 CRS. 
However, hypotension that requires vasopressors or 
hypoxia that requires a low-flow nasal cannula (6 L/min-
ute) is considered grade 3 CRS. The use of multiple 
vasopressors (excluding vasopressin) or hypoxia requiring 
positive pressure defines grade 4 CRS.54

Management of CRS syndrome is summarized in 
Figure 2. The management of CRS grade ≥ 2 requires 
tocilizumab. At least two doses of tocilizumab must be 
available before infusion of CAR-T cells. In severe or 
refractory cases, siltuximab, anakinra, and cyclophospha-
mide might be helpful. Figure 2.

Neurotoxicity: Immune Effector 
Cell-Associated Toxicity (ICANS)
The earliest manifestations of ICANS are tremor, dysgra-
phia, mild difficulty with expressive speech (especially in 
naming objects), impaired attention, apraxia, and mild 
lethargy. Seizures are possible, hence the use of levetira-
cetam prophylaxis in most CAR-T protocols.55 In general, 
the diagnosis is made by clinical symptoms. Except with 
seizures, electroencephalography (EEG) or brain imaging 
findings are non-specific in ICANs.56 However, MRI brain 
might be helpful to role out while the underlying mechan-
isms. The increased blood-brain barrier permeability does 
not shield the CSF from high serum cytokine concentra-
tions; also, the presence of CAR-T cells in CSF might play 
a role in producing local cytokines.57 Nonetheless, the 
exact mechanism behind neurotoxicity is not fully eluci-
dated. While severe neurotoxicity is more common with 
severe CRS, ICANS could also happen without CRS. 
Early severe CRS (within 36 hours) with elevated IL-6 
and monocyte chemoattractant protein-1 (MCP) might 
indicate a higher risk for developing ICANS.56
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The CAR-T-cell-therapy-associated toxicity 10-point 
neurological assessment (CARTOX-10) is one of the 
most commonly used scores because it is easy to use 
clinically.55 In the CARTOX-10, one point is assigned 
for each of the following tasks that are performed cor-
rectly: orientation to year, month, city, hospital, and 
President/Prime Minister of the country of residence 
(total of 5 points); name three objects (maximum of 3 
points); write a standard sentence (1 point). Normal cog-
nitive function is defined by an overall score of 10. 
A score between 7–9 defines Grade-one (mild impair-
ment); the grade-two score is 3–6; while a score of 0–2, 
stage 1–2 papilloedema, CSF opening pressure <20 mmHg 
or partial/non-convulsive seizure on EEG that is respond-
ing to benzodiazepine defines grade-three (severe 

impairment). Grade four is obtundation, stage three to 
five papilloedema, CSF opening pressure ≥20 mmHg, 
cerebral edema, or generalized seizure/unresponsive non- 
convulsive status epilepticus. Figure 2 includes a summary 
of ICANS treatment.

Challenges and Future Directions
Challenges with Clinical Efficacy
Despite the success rates, some patients relapse after 
CAR-T therapy. Also, in myeloma, anti-BCMA CAR- 
Ts have limited clinical efficacy with a median progres-
sion-free survival < 12 months. In addition, in lym-
phoma, not all patients achieve a durable response 
with anti-CD19 CAR-Ts. This limitation is due to multi-
ple factors:

Figure 2 Management to CRS/neurotoxicity.
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Table 2 Directed CAR-T Studies in Lymphoma

Challenge: Limited Efficacy of CD19 CAR-Ts in B-NHL

Strategies Under Investigation Selected Clinical Trials Refs

Tandem/Multiplexed CAR-T therapy to 

reduce CD19 escape

NCT04260932, NCT04697290, NCT03881761, NCT04723914, NCT03870945, NCT03271515, 

NCT04486872, NCT04215016, NCT04007029, NCT04553393 (CD19/CD20 CAR-T) 

NCT04715271, NCT04539444, NCT03593109, NCT04648475, NCT04649983, NCT04204161, 

NCT03287817, NCT04412174, NCT04626908, NCT04029038 (CD19/CD22 CAR-T) 

NCT04603872, NCT04162353 (CD19/BCMA CAR-T) 

NCT04429438 (multiple targets)

Adjunctive therapy to improve efficacy of 

CD19

NCT04381741, NCT04163302, NCT04539444, NCT02706405 (PD1 inhibition) 

NCT04484012, NCT04257578 (Acalabrutinib)

[50]

NCT04234061 (ibrutinib) 

NCT04697940, NCT04553393 (Decitabine) 

NCT03310619 (multiple combinations)

[51]

Modified CD19 CAR constructs NCT03929107, NCT04381741 (IL7 x CCL19 expression) 

NCT04213469 (PD1 knockout) 

NCT03790891, NCT03497533, NCT03720496, NCT03910842 (PDL1 inhibition and T activation domains) 

NCT04037566 (HPK1 edited) 

NCT04450069 (adaptable CAR-T construct)

[52]

Consolidative allogeneic HSCT NCT03366350, NCT03110640

Challenge: Undefined Treatments for B-NHL Post-CD19 CAR-T Relapse

Strategies Under Investigation Selected Clinical Trials Refs

Retreatment with CD19 CAR-T NCT04419909

Treatment with alternatively targeted CAR-Ts NCT04036019, NCT04316624 (CD20 CAR-T)

Other immunotherapies/ 

immunomodulatory therapies

NCT04703686, NCT02290951 (CD20 x CD3 bispecific Ab) 

NCT02650999 (pembrolizumab) 

NCT02926833 (atezolizumab) 

NCT04205409 (nivolumab) 

NCT04136756 (NKTR-255) 

NCT03648372 (TAK-981) 

NCT04074330 (TAK-981 + rituximab)

Radiation therapy to residual sites to re- 

prime response

NCT04601831, NCT04473937

Challenge: Limited Access to CAR-T Therapy

Strategies Under Investigation Selected Clinical Trials Refs

Outpatient administration of CAR-T NCT03744676, NCT01853631, NCT03233854

Allogeneic CAR-T therapy NCT03939026, NCT04416984, NCT04637763, NCT03166878, NCT04264039, NCT03666000, 

NCT04026100, NCT03229876, NCT04035434, NCT04629729 (CD19) 

NCT03398967 (CD19 + CD20/CD22) 

NCT04030195 (CD20) 

NCT04264078, NCT04620655 (CD7) 

NCT04502446 (CD70) 

NCT04288726 (CD30) 

NCT03881774 (cord blood derived CAR-T) 

NCT01430390 (EBV-CTL CAR-T)

Shorten manufacturing time NCT04638270 (CD19) 

NCT04303247 (CD19 + CD22)

(Continued)
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1. Intrinsic factors due to CAR-T exhaustion or senes-
cence leading to target-positive relapses. A potential 
strategy to overcome this would be using naïve and 
stem/central memory CAR-T because it has a better 
proliferation ability to overcome this exhaustion.58

2. Tumor-related factors relating to target loss; for 
example, biallelic loss of BCMA might play a role 
against reapplying the same CAR-T treatment upon 
progression.59 One future option here is to include 
more than one target in CAR-T design. Another 
option is to target the ligand of the receptor; for 
example, in myeloma, a proliferation-inducing 
ligand (APRIL) is a ligand of BCMA and  

Transmembrane activator and CAML interactor 
(TACI); therefore, by targeting APRIL, we could 
exploit the benefits of BCMA and avoid tumor 
escaping mechanism.60

Clinical trials are underway, incorporating CAR-T 
with multiple targets to improve efficacy and reduce 
antigenic escape. Both sequential and combinatorial 
CAR-T therapy are being investigated. One example 
in lymphoma is the dose-finding study of MB-CAR- 
T2019.1, the tandem CD19 and CD20 targeted CAR-T 
product was well tolerated and had promising response 
rates in lymphoma patients.61,62 CD22, CD30, CD38, 

Table 2 (Continued). 

New indications NCT04443829, NCT04532203, NCT4608487 (PCNSL)

Earlier employment of CAR-T therapy NCT04531046, NCT03570892, NCT03483103

Alternative targets in:

Hodgkin lymphoma NCT03383965, NCT02917083, NCT04268706, NCT04653649, NCT04526834, NCT03049449, 

NCT03602157, NCT04008394, NCT02663297, NCT04083495, NCT02690545 (CD30)

Peripheral T cell lymphoma NCT04004637, NCT04033302, NCT04599556, NCT03690011, NCT04480788 (CD7) 

NCT04594135, NCT03081910 (CD5) 

NCT03590574 (TRBC1) 

NCT04219319, NCT04162340,

Cutaneous T cell lymphoma NCT04712864, NCT03829540 (CD4)

B-cell non-Hodgkin lymphoma NCT04169932, NCT03664635, NCT04176913, NCT03277729 (CD20) 

NCT04163575, NCT04571138, NCT04007978, NCT03262298, NCT02315612 (CD22) 

NCT04609241 (CD79b) 

NCT04662294 (CD70) 

NCT02954445 (BCMA) 

NCT04223765 (kappa light chain) 

NCT02706392 (ROR1) 

NCT04136275 (CD37) 

NCT04427449 (CD44v6)

Challenge: Safety Concerns with CAR-T Therapy

Strategies Under Investigation Selected Clinical Trials Refs

Targeted studies in vulnerable populations NCT04661020 (elderly) 

NCT04088864, NCT04610125, NCT03373071, NCT03448393, NCT03241940 (pediatrics)

Adjunctive therapies to prevent CRS/ 

neurotoxicity

NCT04359784, NCT04432506, NCT04148430, NCT04150913, NCT04205838 (anakinra) 

NCT04603872 (dasatinib) 

NCT03954106 (defibrotide) 

NCT04514029 (IT dexamethasone + simvastatin) 

NCT04314843 (lenzilumab)

[106]

Inducible “safety switch” NCT03696784 (Caspase 9)
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and CD70 directed CARs are additional targets under 
investigation in conjunction with CD19 CAR-Ts in 
B-NHL (Tables 1 and 2).63,64 It remains to be seen if 
these multi-targeted CAR-T constructs will produce 
more remissions.

3. Tumor-microenvironment related factors. Some 
patients relapse with target+ cells and CAR-T 
circulating. This type of relapse suggests that 
CAR-T cell persistence and antigen presence are 

not sufficient to exert immunity. Perhaps immune 
suppression in the tumor microenvironment may 
have a role here.

Finally, the best timing of CAR-T administration in 
earlier lines of treatment remains questionable.

Challenges with Target Selection
Targeting T cell antigens for peripheral and cutaneous 
T cell lymphoma has proven challenging. T cell antigens 

Table 3 BCMA Directed CAR-T Studies in Myeloma

Idecabtagene 
Vicleucel (Ide-Cel) 
/bb2121

bb21217 Orvacabtagene- 
Autoleucel 
(Orva-Cel)

Ciltacabtagene 
Autoleucel (Cilta-Cel) 
/LCAR-B38M

P- BCMA- 
101

Sponsor BMS BMS BMS Jansen/China Poseida 

Therapeutics

Study KARMMA Study 

CRB-40113,42,43

CRB-40244 EVOLVE Ph 1/2 

Trial46

CARTITUDE-148/ 

LEGEND

PRIME107

Design Lentiviral vector 4–1BB Ide-cel cultured with 

PI3Ki to enrich memory 

like T cells

Fully human 

(CD28/41BB).

BCMA-targeting with two 

single chain binding sites

PiggyBac® 

transposon- 

based system1:1 CD4:CD8 ratio

Population (n) 128 patients 24 escalation and 22 in 

expansion

51 pts dose 

escalation

97 pts (29 in Phase1, 68 in 

Phase2)

43 pts

Median Number of 

Prior lines

6 lines 6 lines 6 lines 7

CAR-T dose (cell/kg) 150–450 x106 150–450 x 106 300–600 x106 Target dose of 0.75×106 0.75–15 x 106

Refractory to IMiD and PI 98% – – – 100%

Refractory to IMiD, PI, 

and CD38 MoAb

84% 57% 92% exposed 87.6% 93%
41.2% penta-refractory

Previous ASCT 94% – – – 58%

ORR 73% 55% 91% 94.8% 57%

CR≥ 33% 18% 39% 55.7%

PFS/DFS/DOR 10.7 months 11.9 months – NR –

OS 19.4 months – NR –

Median time to CRS 1 day 3 days 7 days –

Grade 3/4 CRS 6% 2 pts (1 death) 1 pt 4.1% 1 pt

Neurotoxicity ≥grade 3 3% 3 pts 2 pts 10.3% 1 pt

Reference NEJM/ASH2020 ASH2020 ASCO2020 ASH2020 ASH2020

NCT02658929 NCT03274219 NCT03430011 NCT03548207 NCT03288493

Next generation Bb21217 – NEX-T – Nano-plasmid

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                           

OncoTargets and Therapy 2021:14 2196

Atrash and Moyo                                                                                                                                                    Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


are frequently downregulated or lost during T cell 
lymphomagenesis,65 limiting CAR-T’s applicability in 
T cell non-Hodgkin lymphoma. Furthermore, expression 
of the target antigen on the CAR-T cell surface results in 
fratricide, with blunted expansion and CAR-T cells’ 
reduced viability. Finally, targeting markers expressed by 
normal T cells results in profound immunosuppression and 
risk of infection, in contrast to B-cell aplasia seen with 
CD19 CAR-T, resulting in hypogammaglobulinemia. 
Nevertheless, T cell antigen targets such as CD4, CD5, 
CD7, CD37, and TRBC1 (Table 1) are in clinical devel-
opment for lymphoma patients. Other promising targets 
such as NKG2D, APRIL, GPRC5D, and FcRH5 are fol-
lowing. (Table 1) Additional modification of the CAR-T 
cells to down-regulate the target antigen expression has 
been employed to counteract fratricide.66 Incorporation of 
a “kill switch” may reduce the risk of T-cell aplasia.

The Future of CAR-T Manufacturing
Currently approved anti-CD19 CAR-T therapies are autolo-
gous products, which may require up to four weeks for 
manufacturing. For patients whose disease progresses 
rapidly, this constraint may deprive a portion of patients of 
this potentially life-saving therapy. Induced pluripotent stem 
cells were transduced with target-specific or BCMA chimeric 
antigen receptors to generate CAR-Ts that demonstrated 
effective target-specific cell killing in preclinical studies.67 

This technology is being developed to generate a renewable 
source of allogenic CAR-T products that may significantly 
reduce the time from patient identification to CAR-T 
infusion.10 Off-the-shelf, allogenic CAR-Ts from various 
sources and targeting various tumor-specific antigens are 
currently in clinical development (Table 2). In addition to 
the typical side effects of autologous CAR-Ts, allogenic 
CAR-Ts have additional potential but not insurmountable 
complications, including graft versus host disease and graft 
rejection. Similarly, derived allogenic CAR-NK (natural 
killer) cells are also under investigation.

Conclusion
Mounting evidence indicates that immune therapy will be 
the next revolution in hematological malignancies care. 
CAR-Ts’ technology is a platform with vast opportunities 
to develop a plethora of different manufacturing techniques 
and structures. Many questions remain unanswered relating 
to the target selection and best timing in treatment lines to 
employ CAR-T therapy. However, this treatment is 
a launchpad for unlimited possibilities in the future.
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