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Abstract: Long noncoding RNAs (lncRNAs) are a class of RNA molecules that are longer 
than 200 nucleotides and cannot encode proteins. Over the past decade, lncRNAs have been 
defined as regulatory elements of multiple biological processes, and their aberrant expression 
contributes to the development and progression of various malignancies. Recent studies have 
shown that lncRNAs are involved in key cancer-related signaling pathways, including the 
Hippo signaling pathway, which plays a prominent role in controlling organ size and tissue 
homeostasis by regulating cell proliferation, apoptosis, and differentiation. However, dysre-
gulation of this pathway is associated with pathological conditions, especially cancer. 
Accumulating evidence has revealed that lncRNAs can modulate the Hippo signaling path-
way in cancer. In this review, we elaborate on the role of the Hippo signaling pathway and 
the advances in the understanding of its lncRNA-mediated regulation in cancer. This review 
provides additional insight into carcinogenesis and will be of great clinical value for 
developing novel early detection and treatment strategies for this deadly disease. 
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Introduction
Cancer is a major disease that threatens human health and life, and its incidence and 
mortality are increasing rapidly. According to global cancer statistics, approxi-
mately 18.1 million new cancer cases were diagnosed and 9.6 million cancer- 
related deaths occurred worldwide in 2018, and the global burden of cancer has 
since increased.1 Cancer has the biological characteristics of abnormal cell differ-
entiation and proliferation, uncontrolled cell growth, invasiveness and metastasis, 
and its development involves genetic alterations in specific genes and their related 
signaling pathways.2,3 Accumulating studies have identified several canonical sig-
naling pathways that are frequently genetically altered in cancer, such as the Notch, 
cell cycle, PI3K-Akt-mTOR, RTK-RAS, TGFβ, p53, and β-catenin/Wnt pathways, 
as well as the Hippo signaling pathway.4 Drugs that target some of these well- 
known cancer pathways, such as RTKIs that target the RTK-mediated signaling 
pathways, have been approved and demonstrated clinical efficacy.5 It is hypothe-
sized that signaling pathways play an important role in the development of cancer 
and provide new avenues for therapeutic intervention.

The Hippo signaling pathway was initially discovered in a genetic screen for genes 
that inhibit tissue growth in Drosophila.6,7 The Hippo pathway is a conserved signal-
ing cascade that controls tissue growth and organ size during development. Later, 
studies showed that the Hippo signaling pathway also exists and is highly conserved in 
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mammals.8 Similar to other key cancer pathways, the Hippo 
pathway is involved in coordinating diverse cellular pro-
cesses, including cell proliferation, apoptosis, and differen-
tiation. It also participates in stem cell self-renewal and 
tissue regeneration and mediates immune responses and 
cell competition, which play a pivotal role in the homeo-
static control of multicellular organisms.9–11 However, dys-
regulation of this pathway appears to be associated with 
various pathological conditions, especially cancer.12

Long noncoding RNAs (lncRNAs) are defined as a class 
of RNA molecules that are longer than 200 nucleotides (nt). 
In the last decade, lncRNAs have been reported to exert 
crucial effects on multiple biological processes by modulat-
ing gene expression via different mechanisms, such as epi-
genetic, transcriptional and posttranscriptional regulation, 
depending on their subcellular location.13 At the epigenetic 
level, lncRNAs regulate gene expression through DNA 
methylation, histone modification, and chromatin 
remodeling;14 at the transcriptional level, lncRNAs can 
interact directly with DNA or recruit transcription factors 
to regulate gene transcription;15 at the posttranscriptional 
level, lncRNAs usually interact with proteins to regulate 
their function and localization or with mRNAs to regulate 

their splicing, translation and stability. In particular, a variety 
of lncRNAs can act as competing endogenous RNAs 
(ceRNAs) to sponge microRNAs (miRNAs), thus reducing 
their regulatory effect on target mRNAs16 (Figure 1). In 
addition, the dysregulation of lncRNAs has been found to 
be closely associated with the growth, proliferation, inva-
sion, metastasis and angiogenesis of tumor cells.17–19 

LncRNAs can function as oncogenes or tumor suppressors 
to regulate cancer-related signaling pathways either directly 
or indirectly, thereby influencing the development and pro-
gression of various human cancers.20,21 For instance, upre-
gulation of the lncRNA MALAT1 can contribute to the 
proliferation and cisplatin resistance of gastric cancer cells 
by regulating the PI3K/Akt pathway.22 Recently, emerging 
evidence has indicated that lncRNAs are also involved in the 
regulation of the Hippo signaling pathway,23 but no detailed 
summary of this role has been presented.

Here, we elaborate on the role of the Hippo signaling 
pathway and the advances in the understanding of its 
lncRNA-mediated regulation in cancer. This study pro-
vides additional insight into carcinogenesis and will be 
of great clinical value for developing novel early detection 
and treatment strategies for cancer.
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Figure 1 The molecular mechanism of lncRNAs. (A) LncRNAs act as ceRNAs to sponge specific miRNAs, thus reducing their regulatory effect on target mRNAs. (B) 
LncRNAs interact with mRNAs to regulate their translation. (C) LncRNAs regulate mRNA stability. (D) LncRNAs interact with proteins to regulate their function. (E) 
LncRNAs regulate the localization of proteins. (F) LncRNAs interact with mRNAs to regulate their splicing. (G) lncRNAs regulate gene expression through chromatin 
remodeling. (H) lncRNAs regulate gene expression through histone modification. (I) lncRNAs regulate gene expression through DNA methylation. (J) lncRNAs regulate 
gene transcription through recruiting transcription factors or interacting directly with DNA.
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General Overview of the Hippo 
Pathway
The heart of the Hippo pathway includes the core kinases 
and downstream effectors. In mammals, the core kinase 
components of the Hippo pathway comprise the serine/ 
threonine kinases MST1/2 (also known as STK4/3), large 
tumor suppressor kinase 1/2 (LATS1/2), and their adaptor 
proteins SAV1 and MOB1.24–26 The downstream effectors 
of the pathway include two transcriptional coactivators, 
yes-associated protein (YAP) and its paralog transcrip-
tional coactivator with PDZ-binding motif (TAZ). Due to 
the lack of a DNA-binding domain, YAP/TAZ mainly 
interacts with transcriptional factors such as TEA domain 
family members (TEADs), the key DNA-binding plat-
forms for YAP/TAZ, to regulate target gene 
expression.27–29 Mechanistically, when the Hippo pathway 
is activated, MST1/2 complexes with SAV1 to phosphor-
ylate and activate the LATS1/2 kinases, which then form 
a complex with their regulatory protein MOB1. The acti-
vated LATS1/2-MOB1 complex in turn phosphorylates 
YAP/TAZ and sequesters it in the cytoplasm by promoting 

its binding with 14-3-3 or degrading it in a ubiquitin- 
proteasome-dependent manner.30,31 Conversely, when the 
Hippo pathway is inactivated, dephosphorylated YAP/TAZ 
translocate into the nucleus, where they bind to and acti-
vate TEADs to initiate target gene transcription and pro-
mote cell survival, proliferation and self-renewal10,29 

(Figure 2). In addition to interacting with TEADs, YAP/ 
TAZ can also interact with other transcription factors, 
including p73, SMADs, TBX5, Runx1/2, ErbB4, and 
Pax3, to regulate the transcription of target genes.32 In 
summary, as the key effectors of the Hippo pathway, 
phosphorylated YAP/TAZ represent the major players.

The Hippo signaling pathway has been identified as 
a tumor suppressor pathway, because the loss of core 
Hippo kinases that suppress YAP/TAZ results in an over-
growth phenotype.33 To date, many studies have con-
firmed that the expression of YAP/TAZ is upregulated 
in various cancers and contributes to the tumorigenesis 
and development of these cancers by regulating cell 
proliferation, metastasis, and epithelial-mesenchymal 
transition (EMT).34–36 However, some studies reported 
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Figure 2 The molecular mechanism of the Hippo signaling cascade.
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that YAP can be phosphorylated by other kinases to exert 
the opposite effect. For example, YAP1 phosphorylation 
mediated by the tyrosine kinase YES1 can induce 
embryonic stem cell self-renewal.37 Moreover, in some 
hematological malignancies, YAP promotes cell 
apoptosis.38 These findings suggest that the Hippo-YAP 
signaling pathway can exhibit a dual role in carcinogen-
esis and cancer suppression. Therefore, a better under-
standing of the upstream regulators of the Hippo 
pathway is crucial for understanding tumorigenesis.

Studies have shown that the Hippo pathway can 
respond to a broad range of extracellular and intracellular 
signals, including cell-cell adhesion, apical-basal polarity, 
changes in cell shape and size, junctional complexes, 
G protein-coupled receptor (GPCR) stimulation, and the 
cellular energy status.39–43 To date, more than 20 mole-
cules have been found to regulate the activity of the core 
components of the Hippo signaling pathway.44 For 
instance, the apical membrane-associated FERM domain 
protein Merlin (NF2 in mammals) acts as an important 
upstream inhibitor of YAP/TAZ, possibly by directly bind-
ing to LATS and recruiting it to the cell membrane, where 
it is activated by the Hippo kinase complex, or by indir-
ectly promoting the assembly of protein scaffolds, for 
example, by forming a complex with Expanded (Ex) and 
the WW domain-containing protein Kibra that allows 
LATS activation.45,46 Moreover, cell junction proteins, 
such as angiomotin (AMOT) and E-cadherin, have been 
confirmed to be regulators or interacting partners of Hippo 
kinases.47,48 In addition, FAT tumor suppressor homolog 4 
(FAT4), a member of the atypical cadherin family, can 
regulate Hippo-YAP pathway activity by acting as 
a signal receptor to transduce signals produced by extra-
cellular stimulation into cells.49 In addition to the above-
mentioned regulatory proteins, many other molecules, 
including MAP/microtubule affinity-regulating kinases 
1–4 (MARK1-4), RAS association domain-containing 
family protein (RASSF), FERM domain-containing 6 
(FRMD6), the apical transmembrane protein Crumbs 
(Crb), the Scribble (Scrib) complex (Scrib/Dlg/Lgl), and 
so on, have been reported to modulate the Hippo 
pathway.50–54

Recently, accumulating evidence has clarified that 
lncRNAs also participate in Hippo pathway regulation at 
different subcellular levels depending on their localization. 
They function as upstream regulators and directly or indir-
ectly target the core components of the Hippo pathway, 
including MST1/2, LATS1/2 and YAP/TAZ. On the one 

hand, nuclear lncRNAs can modulate the transcription of 
the key Hippo kinases or their upstream regulators through 
diverse mechanisms, including methyltransferase- 
mediated methylation, chromatin remodeling, and tran-
scription factor recruitment.55–58 On the other hand, 
cytoplasmic lncRNAs can act as ceRNAs to sponge spe-
cific miRNAs, such as miR-200a-3p and miR-497-5p.59,60 

In addition, lncRNAs can directly bind to Hippo core 
proteins to control their subcellular localization or mediate 
the interactions between them. For example, the lncRNA 
B4GALT1-AS1 can directly bind to YAP to promote its 
nuclear translocation, while the lncRNA LEF1-AS1 
directly interacts with the LATS1 protein, abolishing the 
interaction between LATS1 and MOB and leading to inac-
tivation of the Hippo pathway.61,62 LncRNAs can also 
indirectly influence the Hippo pathway by interacting 
with the Hippo regulatory proteins. For instance, the 
lncRNA UCA1 can inactivate the Hippo signaling path-
way by binding to AMOT63 (Figure 3).

LncRNAs Regulate the Hippo 
Pathway in Cancers
Head and Neck Cancers
Thyroid cancer (TC) is one of the most common malignan-
cies in the head and neck and endocrine system.64 The 
global incidence of thyroid cancer has increased rapidly 
over the past few decades.65,66 LncRNAs have been 
reported to play an important role in the development of 
thyroid cancer, including in the steps of cell growth, survi-
val and metastasis.67 Several studies have indicated that 
some lncRNAs modulate cell growth via the Hippo signal-
ing pathway. Qin et al68 identified the lncRNA MIR22HG 
as a prognostic biomarker for thyroid cancer by analyzing 
data from the TCGA and GEO databases; MIR22HG was 
downregulated in thyroid cancer, and this downregulation 
was related to a poor survival outcome. Mechanistically, 
MIR22HG was shown through bioinformatics analysis to be 
associated with the Hippo signaling pathway in thyroid 
cancer. Yang et al69 demonstrated that overexpression of 
the lncRNA TNRC6C-AS1 promotes the proliferation of 
thyroid cancer cells while inhibiting their autophagy and 
apoptosis. A further investigation conducted by Peng et al55 

indicated that TNRC6C-AS1 is localized in the nucleus and 
that its overexpression significantly promotes the methyla-
tion of cytosine-phosphate-guanine (CpG) islands in the 
STK4 promoter region via the recruitment of methyltrans-
ferases, thus downregulating the expression of STK4. 

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                           

OncoTargets and Therapy 2021:14 2400

Wang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Simultaneously, the protein expression level of LATS1 and 
the phosphorylation of YAP were decreased. This finding 
suggests that TNRC6C-AS1 acts as an oncogene by inacti-
vating the Hippo signaling pathway in thyroid cancer. 
Moreover, Wu et al59 found that the lncRNA SNHG15 is 
markedly upregulated in papillary thyroid cancer cell lines 
and tissues and that interference with SNHG15 can inhibit 
cell growth and migration. Further mechanistic investiga-
tion showed that SNHG15 can bind to miR-200a-3p as 
a ceRNA to upregulate the expression of YAP1, the down-
stream effector of the Hippo signaling pathway. In addition, 
the mRNA and protein expression levels of MST1/LATS1 
were downregulated by SNHG15. Recently, Li et al70 

reported that overexpressed UCA1 appreciably promotes 
TPC-1 thyroid cancer cell proliferation and EMT as well 
as suppresses TPC-1 cell apoptosis by sponging miR-15a, 
thus inhibiting the Hippo signaling pathway.

Head and neck squamous cell carcinoma accounts for 
95% of head and neck cancers, among which oral squa-
mous cell carcinoma (OSCC) is the most common.71,72 

Zhang et al62 found that expression of the lncRNA LEF1- 
AS1 was notably higher in OSCC tissues than in adjacent 

noncancerous tissues and that a high LEF1-AS1 expres-
sion level was associated with poor prognosis. Functional 
studies revealed that overexpressed LEF1-AS1 can pro-
mote cell survival, proliferation and migration, as well as 
inhibit apoptosis, by directly interacting with LATS1. 
Therefore, the binding of LATS1 to MOB is abolished, 
leading to Hippo signaling pathway inactivation and 
decreased YAP phosphorylation. Notably, accumulating 
evidence has suggested that lncRNAs also participate in 
regulating multidrug resistance.73,74 For example, Zhu et -
al75 reported that a high level of the lncRNA MRVI1-AS1 
can increase the sensitivity of nasopharyngeal cancer 
(NPC) cells to paclitaxel in vitro and in vivo. In addition, 
this group confirmed that MRVI1-AS1 sensitizes NPC 
cells to paclitaxel by targeting miR-513a-5p and miR- 
27b-3p to upregulate activating transcription factor 3 
(ATF3). Moreover, a positive feedback loop between 
ATF3 and MRVI1-AS1 has been identified, which pro-
motes the expression of RASSF1, a regulatory factor of 
the Hippo signaling pathway, further decreasing the 
expression of TAZ at the posttranslational level. In sum-
mary, this finding indicates that MRVI1-AS1 can increase 
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the paclitaxel sensitivity of NPC cells via the Hippo sig-
naling pathway.

Thoracic Cancers
Lung cancer is the most common cancer with high mor-
bidity and mortality.76 Qiao et al77 speculated that 
lncRNAs may play an important role in lung cancer in 
nonsmoking female patients. They used GEO2R, an inter-
active web analysis tool, to screened eight lncRNAs dif-
ferentially expressed in lung cancer samples from three 
GEO datasets (GSE19804, GSE31210, and GSE31548). 
Additionally, 19 miRNAs and 38 mRNAs were associated 
with these 8 key lncRNAs. Functional and pathway 
enrichment analyses using the DAVID databases revealed 
that these target genes were related to the Hippo signaling 
pathway. Moreover, Zhao et al78 found that the expression 
level of the lncRNA NSCLCAT1 is elevated in non-small 
cell lung cancer (NSCLC) and that overexpressed 
NSCLCAT1 can facilitate the proliferation, migration and 
invasion of NSCLC cells while inhibiting their apoptosis. 
Further investigation revealed that NSCLCAT1 can inacti-
vate the Hippo signaling pathway by repressing the tran-
scription of the cadherin1 (CDH1) gene, which encodes 
E-cadherin, a cell-cell adhesion molecule that is expressed 
in the epithelium and has been determined to be a direct 
regulator of the Hippo pathway.79,80

Breast cancer is the leading cause of cancer-related 
mortality in women worldwide.81 Estrogen receptor- 
positive breast cancer accounts for approximately 70% to 
80% of breast cancers, and antihormone therapy is the 
major clinical treatment strategy. However, approximately 
30–50% of patients develop resistance to endocrine 
therapy.82,83 Liu et al84 found that breast cancer patients 
with high expression levels of the lncRNA CYTOR are 
likely exhibit tamoxifen resistance. The results of RT- 
qPCR and dual luciferase reporter assays showed that 
CYTOR can directly bind to miR-125a-5p as a ceRNA 
to elevate the expression of serum response factor (SRF), 
which enhances the transcription of the Hippo effector 
TAZ by binding to its promoter.85 This study revealed 
that CYTOR contributes to the development of tamoxifen 
resistance by inactivating the Hippo signaling pathway. 
Moreover, several lncRNAs have been proven to promote 
the initiation and development of breast cancer by regulat-
ing the Hippo pathway. For instance, Li et al86 reported 
that the lncRNA ZFHX4-AS1 is upregulated in breast 
cancer. ZFHX4-AS1 is distributed mainly in the cytoplasm 
and negatively targets FAT4, which has been confirmed to 

act as a tumor suppressor in breast cancer.87 Furthermore, 
RT-qPCR and Western blot analysis showed that ZFHX4- 
AS1 overexpression decreases FAT4 expression at both the 
mRNA and protein levels but promotes the expression of 
both YAP and TAZ. In addition, suppression of ZFHX4- 
AS1 and the Hippo signaling pathway inhibits the prolif-
eration, invasion and migration of breast cancer cells but 
promotes their apoptosis. Recently, Qiao et al88 observed 
that the expression of LINC00673 is elevated in breast 
cancer tissues and cell lines, while its downregulation 
can inhibit cell proliferation in vitro and in vivo. 
Mechanistically, LINC00673 was found to upregulate 
MARK4 by competing for miR-515-5p binding and 
further inactivating the Hippo signaling pathway. 
Moreover, MARK4 has been reported to function as an 
activator of YAP and TAZ by binding to MST and SAV.50 

Another lncRNA, Linc-OIP5, was reported to act as an 
oncogenic regulator in breast cancer, and knockdown of 
Linc-OIP5 was found to significantly inhibit the prolifera-
tion, migration and invasion of breast cancer cells but 
induce their apoptosis via YAP1 downregulation- 
mediated suppression of the Hippo signaling pathway.89 

Additionally, a previous study showed that the lncRNA 
MAYA participates in the activation of YAP to stimulate 
the target gene connective tissue growth factor (CTGF), 
a signature gene that mediates breast cancer bone 
metastasis.90 The molecular mechanism underlying the 
effects of MAYA indicates that MAYA can directly bind 
to both the adaptor protein LLGL2 and the methyltransfer-
ase NSUN6 to form an RNA-protein complex. This com-
plex further methylates MST1 at Lys59, which abolishes 
the kinase activity of MST1 and activates YAP.91 This 
result indicates the promising therapeutic value of 
MAYA against breast cancer bone metastasis.

Abdominal Cancers
Gastric carcinoma is one of the most frequently diagnosed 
cancers and the third leading cause of cancer death 
worldwide.1 A previous analysis of TCGA data showed 
that 3 lncRNAs (CYP4A22-AS1, AP000695.6, and RP11- 
108M12.3) are differentially expressed in gastric cancer 
tissues compared to adjunct noncancerous tissues and are 
significantly related to the prognosis of patients with gas-
tric cancer. Among these lncRNAs, AP000695.6 and 
RP11-108M12.3 are positively associated and CYP4A22- 
AS1 is negatively associated with OS. In addition, func-
tional enrichment analysis showed that these 3 key 
lncRNAs are associated mainly with the Hippo signaling 
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pathway and involved in the cellular apoptotic process. 
This finding provides a useful prognostic biomarker for 
gastric cancer.92 Similarly, Liu et al60 reported that 
LINC00662 expression is significantly increased in gastric 
cancer tissues and that a high level of LINC00662 expres-
sion is strongly related to poor prognosis. Moreover, 
siRNA-mediated silencing of LINC00662 restores the 
response of gastric cancer cells to 5-fluorouracil (FU) 
and decreases their proliferation. Functional analysis 
revealed that LINC00662 can inhibit the Hippo signaling 
pathway by directly binding to miR-497-5p, which leads 
to upregulation of YAP1. In contrast, Chen et al93 found 
that lincRNA-p21 acts as a tumor suppressor in gastric 
cancer progression; a lower level of lincRNA-p21 was 
associated with a deeper invasion depth, higher grade, 
higher incidence of distant metastasis and more advanced 
TNM stage, suggesting the prognostic and therapeutic 
potential of this lncRNA in gastric cancer. Further inves-
tigation demonstrated that knockdown of lincRNA-p21 
promotes proliferation and EMT in gastric cancer cell 
lines, possibly by increasing the protein and mRNA levels 
of YAP and facilitating YAP translocation from the cyto-
plasm to the nucleus in a Hippo-independent manner. 
Colorectal cancer remains a threat to human health, with 
increasing incidence rates in many countries.66 To under-
stand the role of lncRNAs in colorectal cancer progres-
sion, Zhang et al94 used TCGA data to construct a ceRNA 
network comprising 62 lncRNAs, 30 miRNAs, and 59 
mRNAs. The target genes in this lncRNA-associated 
ceRNA network significantly involved in oncogenic path-
ways, including the Hippo signaling pathway, suggesting 
that this pathway participates in colorectal cancer tumor-
igenesis. Moreover, a recent study61 reported that the 
lncRNA B4GALT1-AS1 is significantly upregulated in 
colon cancer cells. Both the in vitro and in vivo results 
indicated that knockdown of B4GALT1-AS1 can attenuate 
the stemness as well as the migration, invasion, and EMT 
processes in colon cancer cells. Ribonucleoprotein immu-
noprecipitation (RIP) analysis showed that the YAP pro-
tein is the direct target of B4GALT1-AS1; its 
transcriptional activity and nuclear translocation are sup-
pressed by B4GALT1-AS1 knockdown, while its overex-
pression reverses B4GALT1-AS1 knockdown-induced 
inhibitory effects on colon cancer cells.

Liver cancer is the second most common cause of 
cancer-related death in males; HCC is the most common 
histologic type, accounting for approximately 80% of total 
liver cancer cases.95 The lncRNA PVT1 is located in the 

known cancer-related chromosomal region 8q24 and has 
been reported to function as an oncogene in many different 
cancers, including HCC.96–98 The results of 
a comprehensive analysis conducted by Zhang et al99 indi-
cated that PVT1 is upregulated in HCC and is markedly 
related to patient sex, patient race, vascular invasion and 
pathological grade. Additionally, the ROC curve indicated 
the high diagnostic value of PVT1 in HCC. Furthermore, 
this group clarified that PVT1 may play a carcinogenic 
role in HCC possibly through modulating the Hippo path-
way. Notably, the lncRNA UCA1 is another well-known 
unfavorable regulator in many malignancies.100,101 

Consistent with these previous findings, Qin et al102 

demonstrated that the expression of UCA1 is significantly 
upregulated in HCC tissues, and a meta-analysis showed 
that patients with a high level of UCA1 are more likely to 
have larger tumors, more advanced TNM stages and 
shorter OS times than those with a low level of UCA1. 
In addition, the results of in vitro experiments and KEGG 
pathway analysis indicated that UCA1 can promote the 
proliferation and inhibit the apoptosis of HCC cells via the 
Hippo signaling pathway. Ni et al103 found that expression 
of the lncRNA uc.134 is markedly downregulated in HCC 
samples and that a low expression level of uc.134 is 
closely related to poor prognosis. The results of in vivo 
and in vitro experiments indicated that uc.134 exerts sup-
pressive effects on the proliferative, invasive, and meta-
static abilities of HCC cells. In addition, the findings 
indicated that uc.134 (nt 1408–1867) can directly bind to 
the CUL4A protein (aa 592–759), which is an E3 ubiquitin 
ligase that mediates the ubiquitination and degradation of 
LATS1,104 to form a RNP complex and retain CUL4A in 
the nucleus. Therefore, CUL4A-mediated ubiquitination 
and degradation of LATS1 in the cytoplasm is inhibited 
by uc.134, leading to the activation of the Hippo kinase 
and phosphorylation of YAP at Ser127. Hepatoblastoma 
(HB) is a common type of liver cancer in children classi-
fied into a variety of subgroups.105 By analyzing the 
GSE75271 dataset, Lv et al106 found LINC01314 over-
expression in the subgroups with good prognosis. Further 
investigation demonstrated that overexpression of 
LINC01314 can reduce HepG2 cell proliferation, migra-
tion, and invasion via the Hippo pathway by increasing the 
expression of MTS1 and facilitating the phosphorylation 
of LATS1 and YAP.

Pancreatic cancer is one of the most lethal cancers, 
with a 5-year survival rate of approximately 5%.107 

Zhang et al108 found that consistent with its role in HCC, 
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UCA1 is closely associated with clinicopathological fea-
tures, advanced clinical stage, and poor prognosis in pan-
creatic cancer, and functional investigation proved that it 
could enhance the migratory and invasive abilities of pan-
creatic cancer cells. Mechanistically, Zhang et al revealed 
that UCA1 upregulates YAP expression and promotes 
YAP nuclear translocation by interacting with MOB1, 
LATS1 and YAP to form a shielding complex, conse-
quently enhancing the luciferase activity of TEAD. 
Moreover, Western blotting and qRT-PCR results showed 
the existence of a positive feedback loop between YAP 
and UCA1. Zhou et al109 claimed that the silencing of 
lncRNA MALAT1 contributes to the apoptosis of pancrea-
tic cancer cells, accompanied by the attenuation of cell 
proliferation, migration, and invasion. Mechanistic inves-
tigation showed that MALAT1 interacts with the Hippo 
signaling pathway by downregulating the expression of 
LATS1 but upregulating the expression of YAP1. In addi-
tion, Gao et al110 focused on the impact of the lncRNA 
GAS5 on the chemoresistance of pancreatic cancer cells. 
They observed that the expression of GAS5 was markedly 
decreased in drug-resistant SW1990/GEM and PATU8988/ 
5-FU cells, while miR-181c-5p showed the opposite trend. 
Further study showed that GAS5 overexpression improved 
the response of drug-resistant cells to gemcitabine (GEM) 
and 5-FU treatment and decreased cell viability, possibly 
by downregulating miR-181c-5p expression, subsequently 
increasing MST1 expression and YAP phosphorylation. 
This finding suggests that the GAS5/miR-181c-5p/Hippo 
signaling axis is a potential therapeutic target for conquer-
ing chemoresistance in pancreatic cancer.

Central Nervous System Tumors
Glioma is the most common type of primary brain tumor, 
accounting for 51.4% of all primary brain tumors, and 
glioblastoma is the most aggressive glioma, with high 
mortality in adults.111,112 In the GSE2223 and GSE59612 
datasets Wang et al113 screened 712 lncRNAs dysregulated 
in glioblastoma multiforme compared with normal control 
tissues. Among these lncRNAs, DLEU1 was found to be 
significantly upregulated and to interact with 315 miRNAs 
and 105 mRNAs associated mainly with tumorigenesis- 
related terms and pathways, including the Hippo signaling 
pathway. Su et al114 reported that overexpression of the 
lncRNA BDNF-AS markedly inhibits the proliferation, 
migration, and invasion of glioblastoma cells while 
increasing their apoptosis, suggesting that this lncRNA 
functions as a tumor suppressor in glioblastoma. 

Furthermore, this group confirmed that BDNF-AS over-
expression can decrease the expression level and mRNA 
half-life of retina and anterior neural fold homeobox 2 
(RAX2), a member of the RAX transcription factor family 
that is essential for vertebrate eye development, through 
STAU1-mediated mRNA decay (SMD).115 In this process, 
imperfect base pairing between the Alu elements of 
BDNF-AS and RAX2 mRNA forms a SBS sequence, 
which is recognized by STAU1 and results in RAX2 
decay. Subsequently, loss of RAX2 induces upregulation 
of discs large homolog 5 (DLG5), which is involved in 
maintaining cell polarity,116 further suppressing the malig-
nant biological behaviors of glioblastoma cells by increas-
ing the phosphorylation of YAP. Gong et al117 observed an 
increased level of the lncRNA KCNQ1OT1 in glioma 
tissues and cells, and knockdown of KCNQ1OT1 signifi-
cantly inhibits the proliferation, migration and invasion but 
induces the apoptosis of glioma cells. In addition, func-
tional studies showed that knockdown of KCNQ1OT1 can 
enhance the expression of miR-370, thus restoring the 
suppressive effects of miR-370 on the expression of 
Cyclin E2 (CCNE2), a member of the Cyclin E family 
that is involved in G1/S transition of the cell cycle,118 

which are mediated by targeting its 3ʹ-UTR. 
Consequently, suppressed CCNE2 upregulates the phos-
phorylation of YAP, the core effector of the Hippo path-
way. A recent study119 reported that LINC00473 was 
notably upregulated in glioma and associated with poor 
survival outcomes. Moreover, that group concluded that 
LINC00473 downregulated miR-195-5p by functioning as 
a ceRNA sponge, possibly promoting the expression of 
YAP1 and TEAD1 and thereby inducing the proliferation, 
invasion and migration of glioma cells, as well as inhibit-
ing their apoptosis. Based on this finding, LINC00473 and 
miR-195-5p are believed to be therapeutic targets for 
glioma. Medulloblastoma (MB) is the most common 
pediatric malignant brain tumor; MB originates mainly 
from cerebellar granule neuron progenitors and has 
a dismal overall prognosis.120 Zhang et al121 found that 
overexpression of the lncRNA Nkx2-2as can impair the 
colony formation and invasion abilities and induce the 
apoptosis of MB cells; in addition, knockdown of Nkx2- 
2as exerts the opposite effects on these cells. Functional 
analysis demonstrated that Nkx2-2as functions as 
a ceRNA to tether miR-103a/107 and miR-548m, resulting 
in sequestration of these miRNAs from their targets, such 
as B-cell translocation gene 2 (BTG2) and LATS1/2, 
which play a tumor-suppressive role in MB.122 
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Consequently, the protein levels of BTG2 and LATS1/2 
are increased in MB tissues and further lead to activation 
of the Hippo signaling pathway.

Urogenital Cancers
Renal cell carcinoma (RCC) is the most common form of 
kidney cancer, accounting for over 90% of renal 
malignancies.123 Accumulating evidence has shown that 
the lncRNA TUG1 acts as a tumor promoter in many 
cancer types, including RCC.124,125 Consistent with these 
previous studies, Liu et al126 reported that TUG1 is over-
expressed in RCC tissues and positively regulates cell 
proliferation and migration. Mechanistically, TUG1 was 
proven to elevate YAP expression at both the mRNA and 
protein levels via a ceRNA mechanism by competing for 
miR-9 binding but was shown to have no influence on 
either the nuclear or cytoplasmic distribution of YAP. In 
addition, Hu et al127 clarified that interference with the 
lncRNA HOTAIR results in marked reductions in cell 
proliferation and migration in vitro and inhibits tumor 
growth in vivo. In addition, high levels of HOTAIR 
expression are closely related to poor patient outcomes, 
suggesting that HOTAIR may also act as an oncogenic 
regulator in RCC. Moreover, this group found a negative 
correlation between HOTAIR and SAV1. Further investi-
gation indicated that HOTAIR promotes the malignant 
behavior of RCC cells by inactivating the Hippo pathway 
through direct binding to the SAV1 protein, the core com-
ponent of the Hippo pathway.

Epithelial ovarian carcinoma (EOC) is the most lethal 
gynecological malignancy, with a 5-year survival rate of 
less than 50%.128 Lin et al63 confirmed that UCA1 con-
tributes to EOC tumorigenesis and development. Tumor 
growth was greatly suppressed in mice injected with 
UCA1 knockout (KO) ovarian cancer cells compared 
with mice injected with UCA1 wild-type (WT) ovarian 
cancer cells. Furthermore, this group confirmed that UCA1 
can inhibit YAP phosphorylation at Ser127 and enhance 
YAP nuclear translocation by directly binding to 
AMOTp130, a known regulator of the Hippo pathway,129 

to promote the interaction between AMOT and YAP, 
whereas the interaction between pLATS1/2 and YAP is 
abolished. Thus, the expression of YAP downstream target 
genes involved in tumor growth, such as CTGF and AXL, 
is increased. Uterine corpus endometrial cancer (UCEC) 
originates from the endometrial epithelium and is another 
of the most common gynecological malignancies.128 

Bioinformatic analysis conducted by Wang et al56 showed 

that the expression of antisense lncRNA FRMD6-AS2 is 
reduced in UCEC, while high expression of FRMD6-AS2 
predicts a better OS in patients with UCEC. In addition, 
the Hippo signaling pathway is dramatically enriched in 
genes targeted by FRMD6-AS2. Consistent with this find-
ing, functional studies verified that FRMD6-AS2 can acti-
vate the Hippo signaling pathway by upregulating FRMD6 
expression by promoting chromatin loop formation in the 
promoter region of FRMD6, thereby inhibiting the growth, 
migration and invasion of UCEC cells. As an upstream 
regulator of the conserved Hippo signaling pathway, 
FRMD6 has been reported to play a tumor-suppressive 
role in breast cancer and glioblastoma.130,131

Other Cancers
Multiple myeloma (MM) is a malignant proliferative dis-
ease of plasma cells and is usually confined to the bone 
marrow.132 Sun et al133 found that the lncRNA MALAT1 
is upregulated in MM and is negatively associated with 
miR-181a-5p. Moreover, this group demonstrated that in 
the context of MALAT1 interference, the proliferative and 
adhesive abilities of myeloma cells were inhibited, 
whereas apoptosis was promoted; miR-181a-5p overex-
pression exhibited similar effects on myeloma cells. 
Mechanistic investigation revealed that MALAT1 can act 
as a ceRNA to sponge miR-181a-5p, while interference 
with MALAT1 expression can upregulate miR-181a-5p to 
increase the expression of LATS1 and phosphorylation of 
YAP, thereby suppressing malignant behaviors of mye-
loma cells via Hippo pathway activation. Osteosarcoma 
is the most frequently diagnosed bone tumor in 
adolescents.134 Su et al57 observed a high level of the 
lncRNA MIR100HG in osteosarcoma tissues and cell 
lines and found that high MIR100HG expression is nota-
bly associated with poor prognosis in patients with osteo-
sarcoma. MIR100HG knockdown leads to suppressed cell 
proliferation, cell cycle arrest, and enhanced apoptosis, but 
these effects can be partially abrogated by knockdown of 
either LATS1 or LATS2, implying that LATS1/2 are the 
underlying targets of MIR100HG. Mechanistically, Su 
et al confirmed that MIR100HG is localized in the nucleus 
and can epigenetically silence LATS1/2 by recruiting 
EZH2, a well-known histone methylation regulator, to 
the LATS1/2 promoter region, resulting in inactivation of 
the Hippo pathway. Cutaneous squamous cell carcinoma 
(CSCC), which is derived from keratinocytes, is 
the second most common cause of nonmelanoma skin 
cancer, and lncRNAs play an important role in its 
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development and progression.135 By analyzing data from 
the TCGA database, Chen et al58 found that upregulation 
of LINC01048 is closely related to a worse survival out-
come in CSCC than low expression of LINC01048. The 
results of in vivo and in vitro experiments indicated that 
knockdown of LINC01048 negatively regulates the prolif-
eration of CSCC cells but promotes their apoptosis, sug-
gesting the carcinogenic role of LINC01048 in CSCC. 
Furthermore, mechanistic experiments showed that 
LINC01048 interacts with the TAF15 protein, which has 
been identified as a transcriptional activator,136 and upre-
gulates its expression; moreover, LINC01048 increases the 
binding of TAF15 to the YAP1 promoter, thus activating 
YAP1 transcription, in CSCC cells. In conclusion, 
LINC01048 may have prognostic or therapeutic value in 
CSCC.

Clinical Application of LncRNAs in 
Hippo Pathway-Related Cancers
Diagnosis and Prognosis
The expression of lncRNAs is highly tissue specific;137 

therefore, there has been great interest in the utilization of 
lncRNAs as potential biomarkers for early detection, 
diagnosis and prognosis. According to the studies pre-
sented in this review, a group of lncRNAs have been 
identified as dysregulated in Hippo pathway-related can-
cers. Some of the Hippo-related lncRNAs are signifi-
cantly correlated with clinicopathological features and 
clinical prognoses in cancers. For example, in HCC 
patients, the expression of UCA1 is significantly upregu-
lated and shows a positive association with a large tumor 
size, an advanced TNM stage and a poor prognosis.102 In 
contrast, a low level of lincRNA-p21 is closely related to 
a deep invasion depth, distant metastasis and an advanced 
TNM stage in gastric cancer.93 As the key downstream 
effectors of the Hippo pathway, YAP/TAZ have been 
found to be upregulated in multiple cancers, such as 
lung cancer and breast cancer, and are correlated with 
a poor prognosis.36,138 For instance, YAP/TAZ are highly 
expressed in most NSCLC specimens and associated with 
lymph node metastasis and short OS.139,140 These find-
ings suggest that YAP/TAZ would be novel prognostic 
biomarkers.

Treatment
Many of the lncRNAs presented in this review have 
been reported to participate in cancer development and 

drug resistance by modulating the activity of the Hippo 
pathway, making them potential therapeutic targets. 
Research focused on targeting lncRNAs as cancer 
treatment is underway. In fact, the direct or indirect 
silencing of lncRNA expression is the most common 
strategy. Advancements in biological agents targeting 
lncRNAs, such as antisense oligonucleotides (ASOs) 
and small interfering RNAs (siRNAs), have indicated 
the feasibility of lncRNAs as a therapeutic 
target.141–143

Numerous studies have shown that the Hippo signaling 
pathway not only regulates the growth of tumor cells but is 
also closely related to the resistance of tumor cells to 
chemotherapy drugs.75,84 Hence, the core components of 
the Hippo pathway are considered potential therapeutic 
targets for cancer. Given that the transcriptional activity 
of YAP/TAZ is mediated by TEADs, blocking the forma-
tion of the YAP/TAZ-TEAD complex may provide a new 
treatment strategy for human cancers. Recently, 
Verteporfin (Vp) was identified as an inhibitor of YAP/ 
TAZ-TEAD function. Yu et al144 reported that Verteporfin 
exhibits an antitumorigenic effect in vitro. This drug can 
selectively kill uveal melanoma cells with elevated YAP 
activity. It may also provide another way to limit YAP/ 
TAZ function by modifying the upstream regulatory sig-
nals of the Hippo pathway, such as GPCR and 
F-actin.39,145 However, because these factors are not path-
way specific and have corresponding physiological func-
tions, the clinical feasibility of this method still needs 
further exploration.

Discussion
Cancer is a common disease that seriously threatens 
human health worldwide. The Hippo signaling pathway 
has been determined to play a crucial role in tumorigenesis 
and development in a wide range of cancers, such as 
thyroid, breast, and gastric cancers. Numerous studies 
have reported that lncRNAs can modulate the Hippo sig-
naling pathway in cancer. In this review, we described the 
core signaling cascade of the Hippo pathway and high-
lighted the important role of lncRNAs in the regulation of 
this pathway in cancer.

As mentioned above, accumulating evidence indicates 
that the Hippo signaling pathway plays an important role 
in the development and progression of human cancers. In 
mammals, the upstream kinases of the Hippo pathway 
consist of the tumor suppressors MST1/2 and LATS1/2 
and their adaptor proteins SAV1 and MOB1, while the 
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downstream effectors consist of the oncogenes YAP/ 
TAZ.24–26 Similar to other central pathways, the conserved 
Hippo pathway can respond to diverse extracellular and 
intracellular signals to regulate the balance between cell 
proliferation and apoptosis to control tissue homeostasis. 
However, deregulation of this pathway destroys the bal-
ance and leads to an overgrowth phenotype and 
tumorigenesis.146,147 According to this review, the 
lncRNA-regulated Hippo pathway can act as both 
a suppressor and promoter of tumor progression. 
Therefore, a better understanding of the complex mechan-
isms underlying the effect of lncRNAs on the Hippo path-
way is necessary for their further clinical applications.

As a group of noncoding RNA transcripts, lncRNAs 
have been confirmed to be functional elements that are 
involved in diverse biological processes in human malig-
nancies, such as cell survival, carcinogenesis, tumor 
invasion, metastasis and angiogenesis.148 Studies have 
reported that lncRNAs are involved in the regulation of 
multiple key cancer-related pathways, such as the Notch, 
PI3K-Akt-mTOR, and β-catenin/Wnt pathways.149–151 In 
this review, we summarized 32 Hippo pathway- 
associated lncRNAs in different cancers, 21 of which 
are upregulated and 11 of which are downregulated 
(Table 1). Similar to regulating other cancer-related path-
ways, lncRNAs can also regulate the activity of the 
Hippo pathway at the epigenetic, transcriptional, and 
posttranscriptional levels by interacting with DNA mole-
cules, RNA molecules or proteins depending on their 
subcellular localization. Mechanistically, in the nucleus, 
lncRNAs participate in the transcription of the core 
Hippo kinases or directly bind to them to control their 
subcellular localization.55,57 In the cytoplasm, lncRNAs 
can function as decoys to compete for binding sites on 
miRNAs or interact with proteins, including Hippo path-
way components and their regulatory proteins, to affect 
their stability and activity.62,63 Compared with other sig-
naling pathways, a certain lncRNA may modulate the 
Hippo pathway in a different manner. For example, 
Gong et al152 found that HOTAIR was upregulated in 
HCC cells. HOTAIR targets the PI3K-Akt-mTOR path-
way by acting as a ceRNA to sponge miR-217-5p, 
thereby promoting the development of HCC. However, 
in the Hippo pathway, HOTAIR can directly bind to the 
adaptor protein SAV1, leading to the inactivation of this 
pathway and promoting the malignant behavior of tumor 
cells.127 Additionally, due to the tissue specificity of 
lncRNAs, the regulatory mechanism of dysregulated 

lncRNAs in the Hippo pathway in different cancers also 
differs. As mentioned in our review, UCA1 is upregulated 
in both thyroid cancer and pancreatic cancer. This 
lncRNA inhibits the Hippo pathway by sponging miR- 
15a in thyroid cancer but promotes the activity of YAP by 
forming a shielding complex with MOB1, LATS1 and 
YAP in pancreatic cancer.70,108

From a clinical perspective, several studies have 
noted that molecules involved in the lncRNA-Hippo reg-
ulatory axis (eg, the lncRNA GAS5/miR-181c-5p/YAP 
axis in pancreatic cancer110) might be candidate thera-
peutic and prognostic biomarkers. However, it should be 
noted that there are still many limitations. First, as 
a prognostic biomarker, it is necessary to determine 
whether the expression pattern of an lncRNA or YAP is 
sufficiently stable It is also essential to establish 
a standard analytical protocol that includes sample 
extraction, detection methods and standard values. 
Second, in most cases, lncRNAs may not be the only 
cause of a dysregulated Hippo signaling pathway. In 
addition, there is crosstalk between the Hippo pathway 
and other signaling pathways. How to selectively target 
the Hippo pathway and ensure its physiological functions 
makes the clinical application of this therapeutic strategy 
highly challenging. Therefore, further studies are needed 
to test whether these molecules can be applied clinically 
for cancer therapy.

However, we still know little about the regulation of 
the Hippo pathway by lncRNAs, and additional lncRNAs 
in the regulatory network of the Hippo signaling pathway 
remain to be discovered. Studies have indicated that 
lncRNAs do not regulate Hippo pathway activity through 
a single molecular mechanism, some of which have been 
described above. It is noted that the correlation between 
lncRNAs and the Hippo pathway tend to show cancer type 
specificity and spatiotemporal differences, and crosstalk 
with other pathways. Further investigations into the novel 
molecular signals regulating the Hippo pathway will be of 
paramount importance for understanding not only this 
pathway but also carcinogenesis.

In conclusion, we highlighted that lncRNAs are part of 
the Hippo signaling pathway regulatory network in cancer 
and summarized the complex underlying mechanisms, 
providing novel insight into carcinogenesis. In addition, 
these observations indicate that targeting these lncRNAs or 
Hippo pathway components is a new strategy for detecting 
and treating cancer.
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Table 1 LncRNA-Mediated Regulation of the Hippo Pathway in Cancer

Cancer LncRNAs Expression Target Mechanisms Functions Clinical Value Reference

Head and 

neck 

cancer

Thyroid cancer MIR22HG Down – – – Prognosis [68]

TNRC6C- 

AS1

Up STK4 TNRC6C-AS1↑- 

STK4↓
Promote 

proliferation, 

inhibit autophagy 

and apoptosis

Therapy [55]

SNHG15 Up YAP1 SNHG15↑-miR 

-200a-3p↓-YAP1↑
Promote cell 

growth and 

migration

Therapy [59]

UCA1 Up - UCA1↑-miR-15a↓- 

Hippo inactivated

Promote cell 

proliferation and 

EMT, suppress 

cell apoptosis

Therapy [70]

OSCC LEF1-AS1 Up LATS1 LEF1-AS1↑-abolish 

the binding of 

LATS1 to MOB

Promote cell 

survival, 

proliferation and 

migration, inhibit 

cell apoptosis

Prognosis, 

therapy

[62]

NPC MRVI1-AS1 Down in the 

paclitaxel- 

resistant 

strains

TAZ MRVI1-AS1↓-miR 

-513a-5p/miR-27b- 

3p↑-ATF3↓- 

RASSF1↓-TAZ↑

Increase NPC 

paclitaxel 

sensitivity

Therapy [75]

Thoracic 

cancer

Lung cancer NSCLCAT1 Up - NSCLCAT1↑- 

CDH1↓
Facilitate cell 

proliferation, 

migration and 

invasion, inhibit 

apoptosis

Therapy [78]

Breast cancer CYTOR Up in the 

tamoxifen- 

resistant cell 

lines

TAZ CYTOR↑- 

miR-125a-5p↓-SRF↑ 
-TAZ↑

Promote 

tamoxifen 

resistance

Therapy [84]

ZFHX4-AS1 Up YAP/ 

TAZ

ZFHX4-AS1↑- 

FAT4↓-YAP/TAZ↑
Promote 

proliferation, 

invasion and 

migration, inhibit 

apoptosis

Therapy [86]

LINC00673 Up MST/ 

SAV

LINC00673↑-miR 

-515-5p↓-MARK4↑- 

attenuate the 

binding of MST/SAV 

to LATS

Promote cell 

proliferation

Therapy [88]

Linc-OIP5 Up YAP1 Linc-OIP5↑-YAP1↓ Promote 

proliferation, 

migration and 

invasion, inhibit 

apoptosis

Therapy [89]

(Continued)
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Table 1 (Continued). 

Cancer LncRNAs Expression Target Mechanisms Functions Clinical Value Reference

MAYA Up MST1 MAYA↑-bind to 

LLGL2 and 

NSUN6-MST1 

methylated

Mediate bone 

metastasis

Therapy [91]

Abdominal 

cancer

Gastric 

carcinoma

AP000695.6, 

RP11- 

108M12.3

Down - - - Prognosis [92]

CYP4A22- 

AS1

Up - - - Prognosis [92]

LINC00662 Up YAP1 LINC00662↑-miR 

-497-5p↓-YAP1↑
Increase 

proliferation, 

decrease the 

sensitivity to 

5-FU

Prognosis, 

therapy

[60]

lincRNA-p21 Down YAP lincRNA-p21↓- 

YAP↑
Inhibit cell 

proliferation and 

EMT process

Prognosis, 

therapy, invasion 

depth grade, 

metastasis, TNM 

stage

[93]

Colorectal 

cancer

B4GALT1- 

AS1

Up YAP B4GALT1-AS1↑- 

YAP nuclear 

translocation↑

Promote cell 

stemness, 

migration, 

invasion, and 

EMT process

Therapy [61]

Hepatocellular 

carcinoma

PVT1 Up - - - Diagnosis, 

gender, race, 

vascular invasion 

and pathological 

grade

[99]

UCA1 Up - - Promote cell 

proliferation, 

inhibit apoptosis

Prognosis, tumor 

size, TNM stages

[102]

uc.134 Down LATS1 uc.134↓-CUL4A 

nuclear export↑- 

LATS1↓

Inhibit cell 

proliferation, 

invasion, and 

metastasis

Prognosis, 

therapy

[103]

LINC01314 Down MTS1 LINC01314↓- 

MTS1↓
Reduce cell 

proliferation, 

migration, and 

invasion

Prognosis, 

therapy

[106]

Pancreatic 

cancer

UCA1 Up YAP UCA1↑-YAP↑ Promote 

migration and 

invasion

Prognosis, 

therapy, 

clinicopathologic- 

al features, 

clinical stage

[108]

(Continued)
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Table 1 (Continued). 

Cancer LncRNAs Expression Target Mechanisms Functions Clinical Value Reference

MALAT1 Up LATS1/ 

YAP1

MALAT1↑-LATS1↓ 
/YAP1↑

Promote 

proliferation, 

migration and 

invasion, inhibit 

apoptosis

Therapy [109]

GAS5 Down in the 

drug- 

resistant cell 

lines

MST1 GAS5↓-miR-181c- 

5p↑-MST1↓
Antagonize the 

development of 

multidrug 

resistance, inhibit 

cell viability

Therapy [110]

Central 

nervous 

system 

tumor

Glioblastoma BDNF-AS Down YAP BDNF-AS↓-RAX2↑- 

DLG5↓-YAP 

phosphorylated↓

Inhibit 

proliferation, 

migration, and 

invasion, increase 

apoptosis

Therapy [114]

Glioma KCNQ1OT1 Up YAP KCNQ1OT1↑-miR 

-370↓-CCNE2↑- 

YAP 

phosphorylated↓

Promote cell 

proliferation, 

migration and 

invasion, inhibit 

apoptosis

Therapy [117]

LINC00473 Up YAP1 LINC00473↑- 

miR-195-5p↓- 

YAP1↑

induce cell 

proliferation, 

invasion and 

migration, reduce 

apoptosis

Prognosis, 

therapy

[119]

Medulloblastoma Nkx2-2as Down LATS1/ 

2

Nkx2-2as↓-miR 

-103a/107, miR- 

548m↑-LATS1/2↓

impair colony 

formation and 

invasion, induce 

cell apoptosis

Therapy [121]

Urogenital 

cancer

RCC TUG1 Up YAP TUG1↑-miR-9↓- 

YAP↑
promote cell 

proliferation and 

migration

Therapy [126]

HOTAIR Up SAV1 HOTAIR↑-SAV1 

activity↓
promote cell 

proliferation, 

migration, and 

tumor growth

Prognosis, 

therapy

[127]

EOC UCA1 Up YAP UCA1↑-the 

interaction between 

AMOT and YAP↑- 

YAP activity↑

promote tumor 

growth

Therapy [63]

UCEC FRMD6-AS2 Down - FRMD6-AS2↓- 

FRMD6↓-Hippo 

inactivated

inhibit cell 

growth, migration 

and invasion

Therapy [56]

Others Multiple 

myeloma

MALAT1 Up LAST1 MALAT1↑-miR 

-181a-5p↓-LAST1↓
promote 

proliferation and 

adhesion, inhibit 

apoptosis

Therapy [133]

(Continued)
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