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Purpose: The search for predictors of antidepressant response is gaining increasing atten-
tion, with epigenetic markers attracting a great deal of interest. We performed a genome-wide 
study assessing baseline differences in DNA methylation between Responders and Non- 
Responders.
Patients and Methods: Twenty-two children and adolescents, receiving fluoxetine treat-
ment for the first time, were classified as Responders or Non-Responders according to CGI-I 
score after 8 weeks of fluoxetine treatment. Genome-wide DNA methylation was profiled 
using the Illumina Infinium MethylationEPIC BeadChip Kit and analyzed using the Chip 
Analysis Methylation Pipeline (ChAMP).
Results: We identified 21 CpG sites significantly (FDR<0.05) associated with fluoxetine 
response that showed meaningful differences (Δβ> ±0.2) in methylation level between 
Responders and Non-Responders. Two genes, RHOJ (Ras Homolog Family Member J) 
and OR2L13 (Olfactory Receptor family 2 subfamily L member 13), presented more than 
one significant CpG sites.
Conclusion: Our findings provide new insights into the molecular mechanisms underlying 
the complex phenotype of antidepressant response, indicating that methylation at specific 
genes could be a promising biomarker that needs further replication in large cohorts.
Keywords: epigenomics, epigenetics, DNA methylation, pharmacogenetics, antidepressants

Introduction
Antidepressants are a first-line treatment for major depressive disorder (MDD) and 
are widely prescribed for other conditions, such as obsessive-compulsive disorder 
(OCD). However, between 40% and 50% of patients on antidepressants do not 
respond to treatment or relapse.1,2 This individual variability could be due to the 
complexity of antidepressant response that involves the interplay of both environ-
mental and genetic factors.3 There are currently no specific sociodemographic or 
clinical markers to predict the response to antidepressants.4

Pharmacogenetic studies have shown that genetic variation influences antide-
pressant response, but have not fully explained individual variability.5 Recent 
reports have indicated that the estimates of heritability due to common genetic 
variants are lower than expected and that significant associations are poorly 
replicated.6,7 Thus, the search for biomarkers other than genetic factors that predict 
antidepressant response is gaining increasing attention,3 with epigenetic markers, 
especially DNA methylation, attracting a lot of interest.8

DNA methylation involves the addition of a methyl group at position 5 of the 
cytosine pyrimidine ring, a reaction catalyzed by members of the DNA 
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methyltransferase (DNMT) family that usually occurs in 
cytosine bases that are immediately followed by a guanine 
(CpG). Large clusters of CpGs, known as CpG islands, 
occur in promoter regions. With some exceptions, active 
promoters are generally unmethylated, while inactive pro-
moters tend to be methylated.

Several studies strongly indicate that antidepressants 
can induce the epigenetic modification of DNMTs, thus 
altering methylation levels and, subsequently, gene expres-
sion. This could explain how antidepressants modulate 
several molecular mechanisms and significantly affect 
synaptic plasticity.3,5.

A number of studies have identified epigenetic biomar-
kers of antidepressant response, with the majority of these 
studies using a targeted approach to examine a limited 
number of CpG sites within a specific gene locus. These 
gene loci include: the brain–derived neurotrophic factor 
(BDNF);9,10 the sodium-dependent serotonin transporter 
(SLC6A4);11–13 the serotonin receptor 1B (HTR1B);14,15 

and the interleukin 11 gene (IL11).16 Recently, a genome- 
wide methylation study identified a set of CpG sites in 
specific genes such as PPFIA4 and HS3ST1 that accurately 
predicted paroxetine response.17

In the present study, we performed a genome-wide 
study assessing differences in DNA methylation that 
were characterized at baseline after 8 weeks of fluoxetine 
treatment in a homogenous sample of child and adolescent 
patients receiving fluoxetine for the first time.

Patients and Methods
Subjects
Twenty-two children and adolescents aged between 13 and 
17 years, receiving fluoxetine treatment for the first time 
participated in the present study. None of the participants 
had been treated previously with antidepressants or other 
psychotropic drugs. Patients were diagnosed using the 
Diagnostic and Statistical Manual of Mental Disorders-V 
(DSM-V).18 The study was carried out at the Child and 
Adolescent Psychiatry and Psychology Service of the 
Institute of Neuroscience in Barcelona. Exclusion criteria 
were comorbidity with other psychiatric disorders, 
Tourette’s syndrome, autism, somatic or neurological dis-
eases, an intelligence quotient <70, and a non-Caucasian 
ethnicity. All procedures were approved by the Hospital 
Clínic ethics committee. Written informed consent was 
obtained from all the parents and verbal informed consent 
was given by all the participants following explanation of 

the procedures involved. All experiments were performed 
in accordance with relevant guidelines and regulations. 
This study was conducted in accordance with the 
Declaration of Helsinki.

Information on illness severity was obtained during the 
initial phase of the study using the following question-
naires: the Children’s Depression Inventory (CDI) for 
MDD patients (Kovacs, 1992) and the Children’s Yale- 
Brown Obsessive Compulsive Scale (CYBOCS) for OCD 
patients.19,20 The same scales, as well as the CGI- 
Improvement scale (CGI-I), were administered after 8 
weeks of fluoxetine treatment. The clinical response after 
8 weeks of fluoxetine treatment was evaluated using the 
percentage of improvement: ((CDI8weeks-CDIbasal) 
/CDIbasal)*100 or ((CYBOCS8weeks- CYBOCSbasal)/ 
CYBOCS basal)*100. Patients were classified as 
Responders or Non-Responders according to CGI-I score 
after 8 weeks of fluoxetine treatment. The CGI-I scale 
assesses the adequacy of clinical response since the start 
of treatment and is rated on a 7-point scale, as follows: 
1=very much improved, 2=much improved, 3=minimally 
improved, 4=no change from baseline, 5=minimally 
worse, 6=much worse and 7=very much worse. 
According to this rating, and according to the literature: 
Responders were patients with CGI-I<2 (Very much 
improved or much improved) and Non-Responders were 
patients with CGI-I>3 (from minimally improved to very 
much worse).

DNA Isolation
A blood sample from each participant was collected in 
EDTA (BD Vacutainer K2EDTA tubes; Becton 
Dickinson, Franklin Lakes, New Jersey, USA) before 
the start of fluoxetine treatment. Genomic DNA was 
extracted using the MagNA Pure LC DNA Isolation 
Kit III and a MagNA Pure LC system (Roche 
Diagnostics GmbH, Mannheim, Germany). DNA con-
centration and quality were measured using 
a NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific, Surrey, UK).

Preprocessing DNA Methylation
Genome-wide DNA methylation was profiled using the 
Illumina Infinium MethylationEPIC BeadChip Kit car-
ried out at CEGEN-PRB3-ISCIII. Raw.IDAT files were 
received and bioinformatics processes were conducted in 
house using the Chip Analysis Methylation Pipeline 
(ChAMP) Bioconductor package.21 Raw intensity data 
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files were used to load the data into the R environment 
with the champ.load function, which also allows for 
probe QC and removal steps to occur simultaneously. 
Probes with low detected signals (p<0.01) (n=3302), 
cross reactive probes (n= 11), non-CpG probes 
(n=2954), probes with <3 beads in at least 5% of sam-
ples per probe (n=6891), probes that bound to SNP sites 
(n=96,621), and sex chromosome probes (n=61,734) are 
all considered problematic for accurate downstream 
methylation detection. After removing these probes, 
739,405 probes remained for downstream analysis. 
Beta values were then normalized using the champ. 
norm function, specifically with the beta mixture quar-
tile method (BMIQ function). Cell counts were mea-
sured using the champ.refbase function. The following 
cells were counted: CD8+ T cells, CD4+ T cells, natural 
killer (NK) cells, B cells, monocytes, and granulocytes. 
Next, the singular value decomposition (SVD) method 
was performed by champ.SVD in order to assess the 
amount and significance of technical batch components, 
along with any potential confounding variables (sex, 
age, diagnosis, cell count, fluoxetine dosage), in our 
dataset. Using the champ.runCombat function, Combat 
algorithms were applied in order to correct for slide and 
array as significant components detected by SVD. No 
effect of sex, age, diagnosis, cell count, or fluoxetine 
dosage was detected.

Differentially Methylated Positions 
(DMPs)
After filtering, normalization, and detection of batches and 
covariates, differentially methylated positions (DMPs) 
were identified using the function champ.DMP, which 
implements the limma package to calculate the p-value 
for differential methylation using a linear model. The 
absolute value of the difference between β-value medians 
(Δβ) of Responders and Non-Responders higher than 0.2 
was set as a cut-off value to decrease the number of 
significant CpGs and identify sites with more biologically 
relevant methylation differences. Hierarchical cluster ana-
lysis of significant DMP was plotted as a heatmap and 
a dendrogram using the gplot and d3heatmap R packages.

Results
Table 1 shows the sociodemographic and clinical data of 
the 22 participants of this study classified as Responders or 
Non-Responders according to the CGI-I scale after 8 
weeks of fluoxetine treatment. No significant differences 
in age, sex, BMI, fluoxetine dose or basal clinical scores 
were observed between the two groups.

We classified 47,690 probes as significant DMPs 
(adjusted p-values FDR<0.05): however, this included 
DMPs with very small differences in methylation between 
Responders and Non-Responders. Therefore, a Δβ> ±0.2 

Table 1 Sociodemographic, Clinical and Pharmacological Data of the 22 Study Participants

All Responders Non-Responders Statistic

N 22 11 11

Age (years, mean±SD) 15.1±1.3 15.2±1.2 14.9±1.4 t20=−0.47, p=0.641

Age at onset (years, mean±SD) 14.9±1.2 15.0±1.2 14.7±1.3 t20=−0.50, p=0.620

Gender (Female, %) 19 (86.3) 9(81.8) 10 (90.9) X2=0.38, p=0.534

BMI (mean±SD) 21.9±4.6 21.6±5.7 22.25±3.4 t20=−0.30, p=0.765

Diagnosis X2=1.88, p=0.171

Major Depression (N, %) 15 (68.1) 6 (54.5) 9 (81.8)

OCD(N, %) 7 (31.8) 5 (45.5) 2 (18.2)

Clinical scales, baseline
CDI (mean±SD) 30.1±12.2 26.5±7.9 32.4±12.2 t13=1.0, p=0.314

CYBOCS (mean±SD) 24.1±13.9 24.0±2.9 24.0±2.9 t5=0.87, p=0.422

Clinical scales, 8 weeks

CDI (mean±SD) 24.1±13.9 15.5±7.8 29.8±14.4 t13=2.21, p=0.04

CYBOCS (mean±SD) 14.0±6.6 12.2±6.4 18.5±6.4 t5=1.18, p=0.291

Fluoxetine dose (mean±SD) 23.3±6.2 21.6±4.1 24.4±7.3 t20=−0.84, p=0.413

Pharmacogenomics and Personalized Medicine 2021:14                                                                       http://doi.org/10.2147/PGPM.S289480                                                                                                                                                                                                                       

DovePress                                                                                                                         

461

Dovepress                                                                                                                                              Martinez-Pinteño et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


cutoff was applied to identify 21 DMPs with methylation 
changes that are more likely to be biologically relevant 
(Table 2).

We assessed the distribution of these 21 DMPs and the 
other probes in the array in relation to genomic regulatory 
elements and CpG islands. The genomic regulatory ele-
ments considered were the first exon, 3ʹUTR, 5ʹUTR, the 
gene body, and promoter-proximal regions (TSS1500 and 
TSS200). Hypermethylated probes in Responders were 
enriched in the first exon (27% vs 0.025% of all probes) 
and hypomethylated probes were enriched in the 5ʹUTR 
(30% vs 0.08% of all probes) (Figure 1A). Regarding the 
CpG islands, we differentiated between CpG islands, 
shores (2 kbp from a CpG site), shelves (2 to 4 kbp from 
a CpG site) and open sea CpGs (isolated CpG in the 
genome). Hypermethylated probes in Responders were 

enriched in CpG islands (45% vs 18%) and hypomethy-
lated probes were enriched in open sea CPGs (90% vs 
58%) (Figure 1B).

The 21 significant CpGs mapped to 11 genes (RHOJ, 
RPTOR, ADAP1, SPAG1, GPR1-AS, SLC15A5, OR2L13, 
NDUFAF1, PPP5D1, LOX2 and ZNF697) and five inter-
genic regions. Two genes showed more than two sig-
nificant DMPs (FDR<0.05, Δβ> ±0.2) (Figure 2A). 
RHOJ (Ras Homolog Family Member J) presented four 
CpGs that were significantly hypermethylated in Non- 
Responders. These CpGs were in the 5ʹ-UTR and first 
exon of the gene, a region that, according to the UCSF 
browser, includes a promoter region enriched with 
H3K27AC marks in all cell lines considered by 
ENCODE (Figure 2B). Two of these CpGs 
(cg18771300 and cg07157030) were included in The 

Table 2 21 Significant (FDR<0.05, Δβ> ±0.2) Differentially Methylated Probes (DMPs) Between Responders and Non-Responders

Probe ID Chr Position Gene Responder (β) Non-Responder (β) Δβ FDR

cg16322792 1 120,165,303 ZNF697 0.43 0.21 −0.23 0.0330

cg03748376 1 248,100,585 OR2L13 0.34 0.13 −0.22 0.0156

cg20507276 1 248,100,600 OR2L13 0.40 0.15 −0.25 0.0227

cg08944170 1 248,100,614 OR2L13 0.39 0.14 −0.25 0.0228

cg19522960 2 42,287,377 0.62 0.33 −0.29 0.0021

cg22444562 2 207,090,465 GPR1-AS 0.24 0.63 0.40 0.0174

cg00086247 5 29,568,333 0.29 0.49 0.20 0.0109

cg25181997 6 44,788,336 0.87 0.63 −0.24 0.0091

cg19665696 7 949,154 ADAP1 0.32 0.11 −0.20 0.0015

cg03126799 8 23,178,986 LOXL2 0.79 0.57 −0.22 0.0284

cg00191853 8 101,177,733 SPAG1 0.36 0.59 0.23 0.0032

cg03447554 11 43,094,025 0.47 0.67 0.20 0.0153

cg10618621 12 16,342,991 SLC15A5 0.49 0.72 0.23 0.0177

cg11079896 14 63,671,314 RHOJ 0.08 0.33 0.25 7.4x10−7

cg07157030 14 63,671,356 RHOJ 0.46 0.73 0.27 0.0002

cg07189587 14 63,671,517 RHOJ 0.36 0.66 0.30 0.0002

cg18771300 14 63,671,737 RHOJ 0.38 0.64 0.26 0.0002

cg18705301 15 41,695,430 NDUFAF1 0.59 0.37 −0.22 0.0268

cg11949518 17 78,912,765 RPTOR 0.65 0.29 −0.35 0.0006

cg06675417 18 77,292,443 0.39 0.69 0.30 0.0465

cg06489993 19 47,082,996 PPP5D1 0.60 0.39 −0.21 0.0276
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Blood-Brain Epigenetic Concordance database (BECon; 
https://redgar598.shinyapps.io/BECon/)22 and showed 
significant correlation between methylation levels in 
blood and Brodmann Area 10 (BA10) and Brodmann 

Area 20 (BA20) (r>0.66). Both CpGs were highly vari-
able in the blood (reference range>0.1) and fitted with 
the definition of a blood–brain informative CpG in the 
BECon.

Figure 1 (A) Distribution of 21 significant (FDR<0.05, Δβ> ±0.2) DMPs and the rest of the probes of the array relative to regulatory elements including transcription start 
sites (TSS1500, and TSS200), gene body, untranscribed regions (3ʹUTR and 5ʹUTR) and first exon. (B) Distribution of DMPs and the rest of the probes of the array relative 
to CpG islands, shores, shelves, and sea.

Figure 2 (A) Genes most enriched by the 21 significant DMPs (FDR<0.05, Δβ> ±0.2). (B) Distribution of significant DMPs (FDR<0.05, Δβ> ±0.2) in the RHOJ (Ras Homolog 
Family Member J) gene, and methylation β values in Responders (RES) and Non-Responders (NORES). (C) Distribution of significant DMPs (FDR<0.05, Δβ> ±0.2) in the 
OR2L13 (Olfactory Receptor family 2 subfamily L member 13) gene and methylation β values in Responders and Non-Responders. (D) Hierarchical cluster analysis of the seven 
CpG sites in the RHOJ (Ras Homolog Family Member J) and OR2L13 (Olfactory Receptor family 2 subfamily L member 13) genes.

Pharmacogenomics and Personalized Medicine 2021:14                                                                       http://doi.org/10.2147/PGPM.S289480                                                                                                                                                                                                                       

DovePress                                                                                                                         

463

Dovepress                                                                                                                                              Martinez-Pinteño et al

Powered by TCPDF (www.tcpdf.org)

https://redgar598.shinyapps.io/BECon/
http://www.dovepress.com
http://www.dovepress.com


OR2L13 (Olfactory Receptor family 2 subfamily 
L member 13) presented three CpGs that were significantly 
hypomethylated in Non-Responders, located on a large 
CpG island in the first exon of the gene (Figure 2C). 
According to the BECon database, the three CpGs showed 
significant correlations between methylation levels in 
blood and the BA10, BA20 and BA7 areas (r>0.5) and 
were also highly variable in blood and could be considered 
blood–brain informative CpGs.

As a sensitivity analysis, we tested the correlations 
between the methylation level of the seven CpG sites in the 
RHOJ (Ras Homolog Family Member J) and OR2L13 
(Olfactory Receptor family 2 subfamily L member 13) genes 
and the percentage of improvement scored using the CDI or 
the CYBOCS. Significant correlations were obtained in all 
cases: cg03748376 (r=0.55, p=0.008), cg20507276 (r=0.54, 
p=0.010), cg08944170 (r=0.54, p=0.010), cg11079896 (r= 
−0.44, p=0.038), cg07157030 (r=−0.49, p=0.021), 
cg07189587 (r=−0.48, p=0.024) and cg18771300 (r=−0.43, 
p=0.045).

We conducted a hierarchical cluster analysis of the 
seven sites in these two genes RHOJ (Ras Homolog 
Family Member J) and OR2L13 (Olfactory Receptor 
family 2 subfamily L member 13). The results were 
expressed as a heat map indicating the methylation level 
at each CpG, and as a dendrogram (Figure 2D). The 
dendrogram clearly indicated that Responders and Non- 
Responders differed from each other.

Discussion
To our knowledge, the present study is the first to analyze 
differences in DNA methylation in association with 
response to fluoxetine in the peripheral blood of children 
and adolescents using a genome-wide approach. We identi-
fied 21 CpG sites significantly (FDR<0.05) associated with 
fluoxetine response that showed meaningful differences 
(Δβ> ±0.2) in methylation level between Responders and 
Non-Responders. Two genes, RHOJ and OR2L13, were 
enriched in significant CpG sites that showed a strong cor-
relation in DNA methylation between the blood and brain 
(The Blood-Brain Epigenetic Concordance database 
BECon; https://redgar598.shinyapps.io/BECon/).

RHOJ (Ras Homolog Family Member J) is a member of 
the Cdc42 subfamily of the Rho family of GTPases, a group 
of small signaling molecules that are major regulators of 
cytoskeleton properties.23 Rho GTPases are involved in 
various cellular processes, including adhesion, cell 

polarization, motility and transformation, gene activation 
and vesicular trafficking, and have been associated with 
cytoskeletal organization and the regulation of axon 
outgrowth.24 Early studies suggested that RhoJ plays 
a role in modulating the formation of distinct cytoskeletal 
structures and lamellipodia as well as in actin filaments.25 

Also, RhoJ has been shown to regulate the early endocytic 
pathway, being necessary for the transport of endocytosed 
receptors.26 Recently, the crp–1 gene in Caenorhabditis 
elegans that encodes a protein that resembles human RhoJ 
has been linked to axon guidance and neuronal migration.27

OR2L13 (Olfactory Receptor family 2 subfamily 
L member 13) is responsible for the initialization of the 
neuronal response to odorants.28 Differential DNA methy-
lation in a CpG site of this gene has been identified in 
multiple independent studies examining epigenetic modi-
fication in neurodevelopmental disorders.29 The CpG of 
interest in these studies (cg20507276) was also identified 
in the current study.

Our hierarchical cluster analysis indicated that methy-
lation sites in RHOJ (Ras Homolog Family Member J) and 
OR2L13 (Olfactory Receptor family 2 subfamily L member 
13) could be important for explaining interindividual dif-
ferences in fluoxetine response. However, experimental 
research is needed to confirm that the methylation of 
these genes plays an important role in the pharmacological 
effect of fluoxetine and to elucidate their involvement in 
the mechanism of action of antidepressant drugs.

The significant CpGs identified in relation to fluoxetine 
in our analysis also mapped to other genes. There is some 
connection with neuronal physiology or pathological 
mechanisms of neuropsychiatric disorders for some of 
these genes, including ADAP1 (Stricker and Reiser, 
2014), SPAG1, SLC15A5 and RPTOR.30–33 For the other 
genes (GPR1-AS, NDUFAF1, PPP5D1, LOX2 and 
ZNF697) or intergenic regions identified we have little or 
no information about their physiological connection with 
the pharmacological effect of fluoxetine or their role in the 
pathophysiology of neuropsychiatric disorders.

To our knowledge, this study is the first genome-wide 
DNA methylation study of fluoxetine response in children 
and adolescents. The major strength of our study was that 
several potential confounders were controlled for, such as 
age, smoking status, pharmacological treatment and the 
course of the disease. Our sample contained children and 
adolescents of similar ages who had not previously been 
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treated with antidepressants or other psychotropic drugs and 
who were at the initial stages of the illness. We also con-
trolled for blood cell composition, as DNA methylation is 
cell-type specific and different cell compositions between 
samples could affect the methylation data obtained.

However, the findings of this study should be interpreted 
by bearing in mind several important limitations. The sam-
ple size limited the statistical power of the study and made 
it difficult to detect small or modest effects on DNA methy-
lation. Given that the study was hypothesis-driven and due 
to the small sample size, our results should be seen as 
preliminary and should be considered as exploratory find-
ings that require further confirmation. Our study had several 
limitations. We used peripheral blood even though DNA 
methylation is known to be tissue-specific. However, blood 
is considered to be a useful proxy for detecting changes 
across tissues and is the most appropriate tissue in which to 
look for biomarkers. Moreover, there is a moderate correla-
tion between blood and the brain for non-specific regulatory 
regions across the methylome.22 Third, the observation 
period was eight weeks, which could not be enough to 
detect long-term epigenetic changes. Finally, our study 
included patients with different diagnoses, MDD and 
OCD. For this reason, in the primary analysis, Responders 
and Non-Responders were defined according to the CGI-I 
scale. However, the sensitivity analysis, replacing the 
dichotomous classification of patients according to the 
CGI by the symptom’s improvement scored using the CDI 
and the CYBOCS, confirms our significant findings.

In conclusion, our findings provide new insights into 
the molecular mechanisms underlying the complex pheno-
type of antidepressant response and suggest that methyla-
tion at specific genes, such as (RHOJ and OR2L13) could 
become potential biomarkers for predicting antidepressant 
response. However, the replication of our results in large 
samples is necessary in order to include the methylation 
level of these specific genes as biomarkers to develop 
predictors for clinical applications.
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