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Abstract: The properties of cancer stem cells (CSCs) have recently gained attention as an 
avenue of intervention for cancer therapy. In this review, we highlight some of the key roles of 
CSCs in altering the cellular microenvironment in favor of cancer progression. We also report on 
various studies in this field which focus on transformative properties of CSCs and their influence 
on surrounding cells or targets through the release of cellular cargo in the form of extracellular 
vesicles. The findings from these studies encourage the development of novel interventional 
therapies that can target and prevent cancer through efficient, more effective methods. These 
methods include targeting immunosuppressive proteins and biomarkers, promoting immuniza-
tion against tumors, exosome-mediated CSC conversion, and a focus on the quiescent properties 
of CSCs and their role in cancer progression. The resulting therapeutic benefit and transformative 
potential of these novel approaches to stem cell-based cancer therapy provide a new direction in 
cancer treatment, which can focus on nanoscale, molecular properties of the cellular microenvir-
onment and establish a more precision medicine-oriented paradigm of treatment. 
Keywords: stem cell therapy, cancer, exosomes, biomarkers, molecular imaging

Introduction
Conventionally, cancer therapy has relied on various pharmacological and radia-
tion-based interventions, often through means of chemotherapy and radiotherapy.1–3 

Current challenges in the clinical success of cancer therapy result from limitations 
in the interventional mechanisms themselves. Often, this is due to patient incom-
patibility with treatment, a unique disease phenotype or rapid drug resistance.4 This 
results in low rates of patient remission and greater rates of mortality.4 A new and 
developing area of research has opened up the realm of cancer therapy through 
a deeper focus on a novel interventional paradigm for cancer: stem cell therapy. 
Although stem cell therapy has remained an ongoing area of research with many 
new developments in cell-based therapies (CBT) for different diseases including 
autoimmune disorders and regenerative medicine, the molecular relationship 
between cancer stem cells (CSCs) and cancer pathogenesis has now grown into 
a budding realm of interest.5 This is due to various studies that have highlighted the 
critical role of CSCs in promoting a tumorigenic environment.6 A greater focus on 
researching the role of stem cells including CSCs in cancer progression and 
development will permit the creation of novel therapies and technologies that can 
target cancers at earlier stages of pathogenesis. This can also allow for long-term 
resolutions to many cancers because the highly transformative properties of stem 
cells can be repurposed for targeting cancer cells through genetic or phenotypic 
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alteration, a mechanism which is in contrast to short-term 
remedies like chemotherapy.7 The current reliance on 
radiation therapy for cancer and the use of chemo drugs 
which impact healthy, endogenous cellular functions 
results in greater, more lethal side effects.8,9 To circumna-
vigate this issue, a focus on genetic and molecular thera-
pies that do not impact normal, healthy cell function can 
support the development of longitudinal therapies for can-
cer with reduced side effects and morbidity rates. This 
approach is made feasible through studying the interac-
tions amongst components of the tumor microenviron-
ment, particularly with a focus on stem cell interactions 
and cell-conversion in cancer pathogenesis. Hence, due to 
its potential to transform the current narrative in the 
approach to cancer therapy, here we explore the current 
state of the role of stem cells in cancer progression and 
therapy. Particularly, we summarize numerous studies that 
explore potential areas of focus when targeting stem cells 
for cancer therapy, including targeting markers on CSCs, 
stem cells for immunization against tumors, using stem 
cells as carriers of therapeutic cargo, quiescent properties 
of stem cells, and targeting exosomes to prevent 
(Epithelial Mesenchymal Transition) EMT and metastasis.

Targeting Cell-Surface and 
Intracellular Markers of Cancer 
Stem Cells (CSCs) for Cancer 
Therapy
Primary cancer cells have been found to derive from stem 
cells, with a subsection of these cells named “cancer stem 
cells” (CSC’s). CSCs replicate similar characteristics to 
regular stem cells, such as the ability to proliferate in 
their microenvironments.10 CSCs sustain the cancer by 
promoting proliferation, and therefore must be targeted 
when attempting to eliminate cancer for successful and 
long-lasting results.11 As do most healthy cells and hema-
topoietic stem cells, pancreatic, liver, and lung CSCs over-
express CD-47 on their cell surface, which is an 
immunosuppressive defense signal that inhibits attacks 
from macrophages on cancer cells.12 Normally, CD-47 
plays a positive role of defense in protecting healthy 
cells in organs and tissue from harmful attack by 
macrophages.13,14 Similarly, in CSC’s, the CD-47 protein 
acts as an immune checkpoint blockade for any targeted 
attempts to diminish the CSC’s by activated macrophages 
in the tumor microenvironment.15,16 CD-47 elicits its 
effects via interaction with signal regulatory protein 

alpha (SIRPα) to inhibit phagocytosis of normal cells, 
which suppresses the phagocytic activity of immune 
cells, particularly macrophage phagocytosis.17 CD-47 is 
overexpressed in many human malignancies.18 One study 
performed simultaneous silencing of CD-47 and PD-L1 in 
order to enhance immunotherapy against circulating tumor 
cells.19 Inhibiting PD-L1 allowed immune cells to locate 
tumor cells more adequately, and blockade of CD-47 per-
mitted macrophage-mediated destruction of the tumor 
cells. In vitro flow cytometry confirmed overexpression 
of CD-47 and PD-L1 in the tumor cell line.19 Compared 
to the blank controls or single-antibody group, dual inhibi-
tion of these immunosuppressive proteins resulted in 
a more potent reduction of solid tumors in mice.

In order to target CD-47 and silence its downstream 
effects, various forms of pharmacological and nanomedi-
cine-based approaches have been established. An antibody 
named Hu5F9-G4 that targets CD-47, allowing macro-
phages to destroy the cancer cells, has been developed. 
Another similar antibody, Rituximab, which has been 
known to positively amplify destruction signals inhibited 
by CD-47, is highly active and is well tolerated as first-line 
single-agent therapy for indolent non-Hodgkin lymphoma 
(NHL).20 Using the application of both antibodies, Hu5F9- 
G4 and Rituximab, the results of a clinically evaluated 
study on the treatment outcome in patients of NHL con-
cluded that at least 50% of the test subjects had eliminated 
most symptoms of cancer.21 The authors did not report 
directly on tumor size, but clinical evaluation of response 
to treatment indicated that more than 60% of patients had 
complete or partial response to the drug, a metric that 
relates to change in tumor size. PET-CT of patients indi-
cated partial to complete remission of the lymphoma in 
male and female adult subjects.21 This method of targeting 
CD-47 protein on Cancer Stem Cells has been shown to 
result in no detectable side effects in human beings, and 
thus may pave new routes for immunotherapy towards 
many forms of cancer by targeting cancer stem cells.22 

This is because in the past, various CSCs in cancers such 
as pancreatic, lung, and breast cancers have been proven to 
express CD-47.23–25 Hence, targeting this immune block-
ade molecule expressed on CSCs may provide a new 
avenue of cancer treatment.

However, current limitations to therapies targeting 
CD47 result from its presence on an abundance of normal, 
healthy cells. Thus, the attack on host cells as a side effect 
of treatment is a potential roadblock in CD47-based ther-
apy. To circumnavigate this issue, several CSC relevant 
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markers have been elucidated in efforts to target CSCs 
specifically without damaging native cells. CD44 and 
CD133 are widely used and accepted as relevant cell- 
surface markers for CSCs.26–30 CD44 has implications in 
being a CSC marker for breast, pancreatic, and head and 
neck cancers.28 The enrichment of CD44 cells after drug 
treatment indicates higher rates of proliferation and 
a greater resistance to drug-induced death, helping dictate 
CD44 as a negative prognostic factor.31 CD133 holds 
implications in acting as a CSC marker for brain, colon, 
and prostate cancers.32 CD133 has been shown to upregu-
late the FLIP (FLICE-like inhibitory protein) which aids in 
CSC resistance to apoptosis.32 CD133 is also a vastly 
recognized chemo-resistant CSC surface antigen, thus aid-
ing in the prognosis of treatment. By inhibiting CD133, 
the cell’s proliferation pathways are also inhibited. 
A larger presence of CD133 on the tumor may require 
alternative chemotherapeutic agents, or a different 
treatment.32

The benefit of identifying CSC-surface molecules lies 
in their potential to act as targets for new cytotoxic 
therapies,33 often those which are mediated by neutralizing 
antibodies, in combination with CSC-directed therapy. 
Several studies have recently explored this form of com-
bined therapy which prevents the repeated formation of 
tumors and inhibits recurrent population of CSCs. One 
such study evaluated the effect of a combined therapy on 
drug-resistant triple-negative breast cancer (TNBC) cells 
by targeting the TGF-β of the CSC.34 Particularly, the 
group demonstrated that the TNBC CSC population main-
tained a unique ability to upregulate IL-8 in response to 
TGF- β signaling following chemotherapy with Paclitaxel 
(a mechanism which contributes to drug resistance). Using 
a TGF- β type 1 receptor kinase inhibitor, a TGF- β type II 
receptor neutralizing antibody, and SMAD-4 siRNA as 
forms of combined therapy with Paclitaxel, the subsequent 
recruitment of IL-8 following chemotherapy was blocked 
and the expansion of the chemotherapy-resistant CSC 
populations was inhibited. This study shows the ability 
of combined therapy to both inhibit primary mammo-
sphere and further prevent drug resistance in the CSC 
population of the TNBC population. Besides above- 
mentioned markers, Aldehyde dehydrogenase 1 (ALDH1) 
has also been reported as a marker of cancer stem cells 
could be targeted for molecular therapy.35,36 Table 1 pro-
vides a list of common cell-surface and intracellular mar-
kers pertaining more specifically to CSCs.

Stem Cells for Immunization 
Against Tumors
At the beginning of the 20th century, Frederick Schöne noted 
that fetal tissue vaccination could suppress transplanted tumor 
growth in mice.37 However, it took many more years for other 
groups to further investigate the potential of this discovery. In 
the 1960s and 70s, research in this area resumed, and investi-
gators reported mice immunized against embryonic material 
could prevent tumor growth, priming their bodies to recognize 
and fight cancer cells. However, these results tended to be 
weak and hard to reproduce.38–40 Furthermore, ethical con-
cerns and technological limitations during this time period 
made further research in humans impossible. With recent 
progress involving embryonic cell lines, research into this 
area has been revisited. These include studies that found 
very similar RNA transcript profiles and surface antigen 
expression between embryonic cells and different cancer cell 
lines, including pancreatic cancer, prostate cancer, breast can-
cer, myeloid leukemia, and glioblastoma.41,42 Furthermore, ES 
and cancer cells have both been shown to exhibit similar 
markers of stemness, particularly when these cancer cells are 
less differentiated, or more immature.42 In this study by Ben- 
Porath et al, poorly differentiated breast tumors were shown to 
display an ESC-like expression signature, more so than further 
differentiated tumors. As ESCs are known to exhibit stemness, 
this shows the possibility that more immature tumors (less 
differentiated) may exhibit higher tumor stemness than mature 
tumors. On this point of stemness, stemness is usually 
described as the ability for stem cells to balance between 
a few different processes: proliferation, quiescence, regenera-
tion, and differentiation.43 Stem cells rely on interactions with 
and signals within their microenvironment to determine which 

Table 1 A List of Common Cell-Surface and Intracellular 
Markers Pertaining to CSCs

Marker Cancers (Found in) Location

CD44 Melanoma,26 Oral Squamous Cell 

Carcinoma,27 Primary Pancreatic 

Cancer27

Cell 

Surface26

CD133 Colorectal Cancer,29 Breast Cancer30 Cell 

Surface29

ALDH1 Invasive Ductal Carcinoma (Breast 
Cancer),35 Ovary Adenocarcinoma,36 

Liver Hepatocellular Carcinoma36

Intracellular36

TGF-β Glioblastoma,1 Breast Cancer33 Cell 

Surface33
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of these processes to undergo.44 Cancer cells exhibit stemness 
as well, and can use this stemness to survive stress and treat-
ment, and preserve their lineage.43 Discovering the similarity 
in gene and surface antigen expression between embryonic 
stem cells (ESCs) and cancer cells, we now understood why 
these cells could potentially be used to as an anti-tumor 
vaccination. Moreover, since the discovery of induced plur-
ipotent stem cells, groups have shown that the transcriptomes 
and antigens of ESCs and iPSCs are almost identical,45 and 
that induced pluripotent stem cells (iPSCs) also show potential 
as an immunization agent. In fact, iPSC is most likely advan-
tageous compared to ESCs for this purpose, as using iPSCs 
from a specific patient would be more representative of the 
patient’s own immunogens.46 Furthermore, a theoretically 
unlimited number of iPSCs can be generated from each 
patient, given enough time. In 2018, a study used tumor- 
specific antigens and tumor-associated antigens expressing 
iPSCs to prime the immune systems of mice, followed by 
the transplantation of different tumors, including melanoma 
and breast cancer.47 Significant regression of these tumors was 
found when compared to the control group. This result was 
attributed to the upregulation in mature antigen-presenting 
cells in the lymph nodes, which led to an increase in helper 
and cytotoxic T-cells. This group then isolated T-cells and 
tumor-experienced lymphocytes (TELs) from mice with 
tumor and that had received vaccination and transferred 
them to mice with tumor that had not received vaccination. 
Both of these groups experienced tumor regression. However, 
it is important to note that this iPSC vaccination was only able 
to slow or prevent the growth of tumors that were transplanted 
after vaccination; it was not effective in preventing the growth 
of tumors that have already been established in vivo. This 
continues to be the shortcoming of using stem cells as 
a therapeutic treatment; their effect is diminished when 
tumor transplant and growth takes place before the vaccina-
tion. For this reason, they tend to provide better results when 
used as a prophylactic treatment, as opposed to a therapeutic 
treatment after disease onset. The safe application of ESC and 
iPSC–based technologies requires the use of methods of iPSCs 
production and their directed differentiation which minimize 
both the possibility of mutations in cell genomes under in vitro 
culturing and the probability of malignant transformation of 
the injected cells.48 Some have suggested that vaccinations 
including CSC lysates would improve outcomes, such as 
a vaccination that Lin et al formulated.49,50 They combined 
CSC dendritic cells, which present tumor-associated antigens 
to T cells, with melanoma and carcinoma tumor models, which 
showed promise in increasing protective immunity against 

tumor cell challenge. However, as pointed out in a recent 
review by Chu et al, the isolation of enough number of 
CSCs (in this case, CSC-DCs) from tumor tissues is very 
challenging, which poses difficulties in access and quantity 
for possible future study in larger animal models, or in the 
clinic.51 As discussed earlier, iPSCs can be made in large 
quantities and from each individual patient, but they do not 
provide adequate tumor suppression when tumor has been 
established. Combination vaccines with CSCs and tumor 
cells show promise but provide isolation and collection chal-
lenges. A very recent study, published in 2020, provides 
improvement on cancer vaccines for tumor rejection.52 In 
this study, this group enriched a whole-cell melanoma vaccine 
with stem cells (this vaccine also contained a molecular adju-
vant, cytokine Hyper-IL6). One vaccine was enriched with 
melanoma stem-like cells from B16F10 melanospheres, while 
the other vaccine contained mouse-induced pluripotent stem 
cells (miPSCs). While both vaccines showed impressive 
reductions in tumor growth, and in disease-free and overall 
survival of the immunized mice, the most effective vaccine 
was the one containing miPSCs. This study provides exciting 
evidence that vaccines containing iPSCs with tumor cells can 
be just as effective if not more effective than those containing 
the harder to obtain tumor stem cells. However, once again, 
this study was only done with immunization before tumor 
transplant, so no conclusions about treatment after transplant 
and tumor establishment can be made. Currently, we can only 
suggest stem cell vaccine for cancer treatment in addition to 
other treatments such as surgery, radiation, and chemotherapy, 
and not as a standalone therapy option, as it has only been seen 
as effective before tumor formation and progression.47,51,53

Stem Cells as Therapeutic Carriers
Genetic modification enhances the therapeutic potential for 
stem cells in oncology by facilitating precise secretion of 
bioactive mediators. Typically derived from bone marrow, 
endogenous mesenchymal stem cells (MSCs) migrate 
towards sites of damaged tissue. MSC tropism is propa-
gated by a cascade of signaling mechanisms and chemo-
kines which trigger the recruitment of MSCs towards sites 
of damaged tissue.54,55 MSCs are able to mobilize effec-
tively as they express numerous chemokine receptors 
including: CCR1, CCR2, CCR4, CCR7, CCR8, CCR9, 
CCR10, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, 
CXCR6, and CX3CR1.56 Additionally, MSCs possess the 
ability to produce a diverse array of cell adhesion mole-
cules which facilitate the engraftment to specific target 
tissue.57 Upon transplantation, MSCs will migrate away 
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from the initial injection site into a tumor microenviron-
ment (TME) before engrafting to various target cells. 
Therefore, the transduction of MSCs and other multipotent 
stem cells could potentially facilitate the decisive delivery 
of a therapeutic payload within a tumor microenvironment. 
Specifically, virally transduced MSCs and Neural Stem 
Cells (NSCs) have exhibited the expression of chemotactic 
cytokines, interleukins, interferons, growth factors and 
prodrug-converting enzymes.58,59 The latter of which con-
stitutes the technique known as gene-directed enzyme 
prodrug therapy (GDEPT). This treatment method allows 
various non-toxic prodrugs to be converted into their 
active forms via non-endogenous enzymes produced by 
genetically modified stem cells.60 The aggregate of these 
characteristics makes GDEPT uniquely qualified to treat 
gliomas, medulloblastomas, and other brain tumors. 
Another benefit of this therapy stems from the ability of 
MSCs to manipulate tight junctions within the blood brain 
barrier (BBB), temporarily inhibiting its exclusion proper-
ties and allowing for the seamless traversal of MSCs into 
the cortex; MSCs then utilize tumor-tropism mechanisms 
to infiltrate and destroy tumor cells in the brain.59,61

Another means by which stem cells can serve as ther-
apeutic carriers is by the precise delivery of nanoparticles 
(NPs) bearing anti-cancer drugs and various other oncolytic 
mediators. NPs have long been used in the distribution of 
drugs used to treat cancer. However, the applicability of NPs 
is limited due to the lack of accurate targeting, their tendency 
to be internalized by a wide variety of normally function 
cells, and their rapid excretion from the body.62 One study 
analyzing the nanodrug deposits provided by MSCs inter-
nalized within mice found that NPs exhibited more accurate 
delivery of therapeutics in a developed orthotopic lung 
tumor.63 An additional study conducted using rats has 
demonstrated that MSCs infiltrate tumor tissue uniformly 
and that this infiltration leads to a more uniform distribution 
of a therapeutic payload. However, in the same study, they 
found no evidence to suggest MSCs could engage in long- 
distance tropism for a series of gliomas.64 Despite this, NPs 
conjugated to anti-cancer agents can be delivered into 
a tumor microenvironment reliably using stem cell- 
mediated tumor tropic delivery. Furthermore, MSCs retain 
their inherent ability to sense tumors and respond to chemo-
kines following the anchoring of nanoparticles to their sur-
face. In fact, there is no significant difference in tumor 
tropism between traditional MSCs and those bound to 
NPs.65 However, in the latter case, the half-life of the nano-
particle is increased exponentially.66,67

MSCs, with their innate tumor tropism characteristics, 
are ideal agents for this style of theranostic-based therapy. 
This is because the inherent tumor tropism presents var-
ious biomarkers that can be used as targets for nanoparti-
cles which can then be imaged in vivo using clinically 
relevant imaging modalities such as Magnetic Resonance 
Imaging (MRI) and Nuclear imaging.53,68–70 Nouri et al 
demonstrate that theranostic MSCs are a reliable cell- 
based, non-viral or viral vectors for suicide gene therapy 
of cancer using enzyme/prodrug systems.71 MSCs were 
used as a medium to perform the first comparative study 
that illustrated the impact of subtle differences among 
various enzyme/prodrug systems such as thymidine 
kinase/ganciclovir (TK/GCV), yeast cytosine deaminase/ 
5-fluorocytosine (yCD/5-FC) and nitroreductase/CB1954 
(NTR/CB1954) on the therapeutic outcome. MSCs were 
genetically modified to stably express a panel of four 
suicide genes including TK (TK007 and TKSR39 
mutants), yeast cytosine deaminase: uracil phosphoribosyl-
transferase (yCD:UPRT) and nitroreductase (NTR). Then, 
they evaluated the anticancer efficacies of the genetically 
engineered MSCs using SKOV3 cell models in vivo. In 
addition, all MSCs were engineered to stably express 
luciferase gene making them suitable for quantitative ima-
ging and dose–response relationship studies in vivo. The 
study results demonstrated that yCD:UPRT/5-FC was the 
most effective enzyme/prodrug system among the ones 
tested with this theranostic imaging platform.71

It is worth noting that theranostics can be applied to 
nanodrug therapy for cancer. Liu et al reported that a silica- 
based multifunctional NP system encapsulated 
a chemotherapeutic agent and magnetic cores and coated 
with a specific antibody against the lung CSCs was system-
atically studied in vivo. These NPs were systematically 
administered and activated for targeted chemotherapy and 
thermotherapy by using an externally applied alternating 
magnetic field (AMF).72 The application of an AMF causes 
localized induced hyperthermia in the areas in which the 
nanoparticles accumulate.73 This can kill the tumor cells 
either directly or indirectly. The cytotoxic thermal effects 
of the localized hyperthermia from the NPs directly ablate 
the tumor cells. There is also an indirect mechanism which 
supports dendritic cell activation and immune cell migration 
to the tumor microenvironment. This is caused by the 
hyperthermia which induces the production of Heat Shock 
Protein (HSP) and a subsequent increase in presentation of 
these antigens on the cell surface, which induces dendritic 
cells and triggers a greater host immune response towards 
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the cancer cells.74 The antibody-modified NPs targeted to 
lung CSCs with extended accumulation in tumors after 
systemic injection. In in vivo models, this hyperthermia 
and chemotherapeutic combined therapy significantly sup-
pressed tumor growth and metastasis in lung CSC xenograft- 
bearing mice, with minimal side effects and adverse 
effects.72 This work demonstrated the feasibility of develop-
ing multifunctional nanomedicine targeting CSCs for effec-
tive cancer treatment, which can be monitored by magnetic 
particle imaging or MRI.75–77 Figure 1 highlights some of 
the aforementioned mechanisms of using stem cells as car-
riers of therapeutic payload and alternative therapeutic car-
riers such as NPs for tumor treatment.

Quiescent Properties in Treatment
Anti-cancer therapies often utilize a combination of proce-
dures and drugs that target gatherings of tumor cells. CSCs 
have long been understood now as a group of cells that fuel 
the growth of tumors and have properties that allow them to 
persist through the electromagnetic and chemical treatment 
that are common in contemporary practice.78 CSCs separate 
themselves among cancer cells due to their ability to maintain 
a long, slow growing quiescent state. This dormancy allows 
for the cells to be preserved in spite of conventional cancer 
treatments that are used to combat their progeny as well as 
posing long-term tumorigenic potential.78 Previous studies 

have shown that there maintains a population of chemother-
apy-resistant cancer cells that demonstrated unique properties 
of self-renewal and increased potential for tumor formation. 
In these studies, CSC-marker expressing cells have survived 
treatment such as neoadjuvant chemotherapy whereas cells 
without CSC markers were destroyed.79

Their unique properties have only added on to the need 
for the development of new therapeutic strategies that 
exceed the scope of conventional antiproliferative agents 
and treatments. Much research is focused on CSC’s quies-
cent properties as a potential target for treatment. Research 
has shown that this quiescent function is not simply 
a dormant state, but rather it is actively maintained by 
the cell by downregulating known regulators of the cell 
cycle such as cyclin A2 and E2 as well as mitotic regula-
tors such as survivin.80 There are generally three main 
approaches through which research is attempting to eradi-
cate these quiescent stem cells in tumors. The first 
involves driving quiescent cells to reenter a normal cell 
cycle state by stopping cellular mechanisms that drive 
quiescence and then attack them with chemotherapeutic 
agents that only function on proliferating cells.81 This 
theory is primarily supported by the notion that cell quies-
cence is defined as being in a reversible G0 state that 
requires maintenance.81 For example, Fbxw7 has been 
understood to play a crucial role in the maintenance of 

Figure 1 Therapeutic carrier models for cancer treatment. (Left) Cancer stem cells (CSCs) loaded with therapeutic cargo can be transplanted or delivered to site of tumor 
formation (tumor bed). (Right) Nanoparticles (NPs) targeting the CSCs can deliver chemotherapeutic payload and induce hyperthermia with an external applied magnetic 
field (AMF).
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quiescence, but its ablation along with the introduction of 
Imatinib treatment, a tyrosine-kinase inhibitor, is shown to 
interrupt the quiescent state of the studied leukemia- 
initiating cells (LICs) and contribute to their depletion.82 

The second method that has been proposed is one where 
pharmacological intervention is used to maintain CSCs in 
their quiescent state throughout the lifetime of their patient 
so that they will not cause any future tumor growth or 
metastasis. This strategy attempts to lock these quiescent 
cells in the G0 state. One such way to accomplish this is to 
inhibit Src kinase signaling along with inhibiting MEK1/2 
as they are both factors in cell cycle progression. This can 
be achieved through pharmacological means and the pre-
vention of cell cycle progression will induce apoptosis or 
maintenance in this state without growth.83 The final 
school of thought looks to eradicate CSCs while they are 
still in their dormant state.81 However, there are issues 
with these three potential methods which further highlight 
why research in these fields has been unsuccessful. 
Clinical evidence has been inconclusive on whether acti-
vating these quiescent cells in order to target them with 
conventional therapy is even able to be controlled. In 
addition, these quiescent stem cells are known to be extre-
mely heterogeneous which indicates that activating them 
could exacerbate the condition by giving them an 
increased arsenal of mechanisms through which the cancer 
can develop.84 Difficulties in the latter two methods are 
due to the need of a more comprehensive understanding of 
the various pathways and factors associated in CSC quies-
cence. Normal stem cells are a valuable resource in under-
standing CSC signaling as they are known to share several 
pathways such as Notch, Hedgehog, WNT/B-catenin, and 
NFkB.81,85

Multiple myeloma (MM) is a common cancer of the 
blood which has an alarming 5-year survival rate of about 
54% along with high chances of recurrence and need for 
further treatment.86 Its resistance to treatments has been 
attributed to its development of drug resistance. 
A proposed model of MM malignant stem cell progression 
suggests that there are two states that cells are in - 
a quiescent state and a proliferative state. The quiescent 
state has exhibit properties of increased adhesion and 
minimal proliferation. Those in the quiescent state also 
have increased drug-resistant properties. There also exists 
a small population of cells that are in the proliferative 
state. These cells have high capacity for growth and muta-
tion as a result of their increased chromosomal 
instability.87 Impairment of MM cell survival through 

inducing cell cycle arrest was conducted through the use 
of anti-sense oligonucleotides (ASOs) to target human 
interferon regulatory factor 4 (IRF4). IRF4 has been iden-
tified as a critical MM cell factor for survival with an 
important role in disease development and progression. 
This treatment also reduced mRNA levels and levels of 
the MYC gene, which has a known impact in stem cell 
progression and has been studied thoroughly as an onco-
gene. Increased cleavage rates, apoptosis rates, and 
decreased colony formation all suggested success in dis-
rupting cell growth. Furthermore, ASO-mediated IRF4 
treatment led to cell cycle arrest in G1 and decreased 
proportion of cells in G2/M phase which signifies signifi-
cant reduction in cell viability.86 Seeing as though the G1 
phase length plays an important factor in maintaining 
a quiescent state, this ASO treatment could help decrease 
the risk of quiescent MM cells leading to disease relapse. 
Further study is necessary to find an effective solution to 
both quiescent and proliferative states of MM, but studies 
that combat CSC quiescence show promise for a solution 
to decrease relapse rates.

Much of the difficulty in identifying, understanding, 
and treating CSCs originates from their extensive plasti-
city and asymmetry driven by intra-tumoral 
heterogeneity.34 Their plasticity allows them to evade 
therapies by presenting various phenotypes and providing 
the ability to inhabit different tumor microenvironments. 
Normal cancer cells within a tumor mass can convert into 
CSCs in response to chemotherapy and can gain drug 
resistance as a result of a change in gene expression.88 

One such mechanism of drug resistance includes an 
increase in the expression of ATP-Binding cassette 
(ABC) transporters that permit greater drug efflux rates. 
CSCs can also be found in either a quiescent state that is 
difficult to eradicate or a proliferative state that prioritizes 
growth and metastasis. This quiescent state, when met 
with increased drug efflux mechanisms in CSC popula-
tions, often contributes to greater relapsed tumors. In 
hypoxic conditions, cells seeded in the core of the tumor 
are found to transition to the edge of the tumor where they 
become more quiescent.89 This is because cells typically 
found seeded in the tumor core are more proliferative, 
which is why there is greater cell density in that region 
as compared to the edge cells which are more invasive, 
quiescent, and resistant.89 As a result of this core-to-edge 
migration of tumor cells in response to hypoxia, particu-
larly due to the induction of HIF-1α and HIF-2α, a novel 
front for cancer intervention and therapy has been 
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unlocked.89 However, the therapeutic potential and effi-
cacy of a combined therapy targeting HIF-1α and HIF-2α 
in tumor cells, likely to prevent core to edge migration of 
progressive tumoral cells when presented with hypoxia, 
needs to be further studied to gain momentum as an 
effective therapy. The cell division of these quiescent 
cells can also be either symmetric or asymmetric. 
Symmetric division either creates a pair of quiescent 
daughter cells or a pair that is more proliferative and 
differentiates.90 Asymmetric division results in one quies-
cent cell and transient amplifying cell that is very prolif-
erative and contributes to most of the tumor.90 It is widely 
inferred that this asymmetric division is more dangerous 
for cancer growth and it should be targeted for effective 
cancer treatment.

CSC Exosomes, New Targets for 
Cancer Therapy?
Stem cells have been found to play the role of mediators of 
conversion of healthy cells to cancerous cells.91 This is 
done through the synthesis and release of exosomes– 
extracellular vesicles of cellular cargo that are released 
by a cell for various purposes.92 Exosomes have been 
previously found to contain various cargo including 
miRNA, siRNA, transcription factors, and other proteins. 
Through the use of these extracellular vesicles, cells are 
able to communicate and exert transformative influence 
through phenotypic and genotypic alterations of surround-
ing cells.93 Often used to encourage differentiation, pro-
liferation, or inhibition thereof of cells in the surrounding 
environment, exosomes role in mediating the transforma-
tion of regular, healthy cells into cancerous cells is an area 
of great research due to its potential to catalyze interven-
tional mechanisms for cancer therapy through targeting 
exosomes.

Stem cell-derived extracellular vesicles can provide 
powerful alternatives to cell-based therapies since the for-
mer acts as a noninvasive method for in vivo modulation 
of gene expression, inhibition of cell surface receptors and 
intracellular signaling molecules, and initiation of cell 
differentiation or death.92 Instead of transplanting differ-
entiated stem cells or donor cells into the patient, the 
delivery of extracellular vesicles can allow for transforma-
tion of native cells in the subject and transformation of 
cells that have been transplanted prior. This eliminates the 
need for surgery and removes the necessity to probe the 
patient for cell transplantation, which requires some 

invasive protocol. Stem cell-derived extracellular vesicles 
can prove to be a valuable tool in cell-based therapy by 
perhaps altering the nature of the cells that are native to 
the microenvironment of the subject.

There are various mechanisms through which exo-
somes released by CSCs exert influence on neighboring 
cells. One such method is through induction of Epithelial 
to Mesenchymal Transition (EMT). This is induced 
through the release of transcription factors such as 
Snail, Twist, and FOXC2 that are carried by the extra-
cellular vesicle to neighboring cells where these tran-
scription factors exert their effects phenotypically and 
genotypically.94 In mammary epithelial stem cells, the 
influence of these factors on neighboring healthy cells is 
apparent by the CD44 (high)/CD24 (low) antigen pheno-
type which is typical of CSCs.95 This can contribute to 
the development of severe tumorigenicity amongst the 
cells, as noted by the study. Another study observed the 
role of CD-103+exosomes released by CSCs which pro-
moted EMT in clear cell renal cell carcinoma (CCRCC) 
cells.96 Particularly, the group observed the importance of 
one critical factor in promoting EMT in CCRCC: MiR- 
19b-3p.96 This was done through the repression of PTEN, 
a protein which is apparently expressed and has been 
previously studied to play a key role in the promotion 
of EMT.97 The study was able to confirm the role of 
MiR-19b-3p in promoting EMT through suppression of 
PTEN by infecting ACHN and 786-O cells with a miR- 
19b-3p lentivirus.96 Like the exosomes released by the 
CSCs, this encouraged the migration and invasion of the 
CCRCC cells. These findings implicate the role of 
CD103, since it mediates entry of the miRNA into neigh-
boring cells via use of exosomes, in acting as a potential 
biomarker or target for cancer therapy. Further studies 
focusing on CSC-derived exosomes include macrovesi-
cles derived from CD105+ cells which have been found 
to promote angiogenesis and metastasis with a distinct 
miRNA profile inside of the vesicles, resulting from pre-
sence of CD105.98 This unique composition encouraged 
greater tumorigenicity amongst the cells, favoring further 
growth and invasion. Although there are various studies 
investigating the role of CSC-derived exosomes in pro-
moting tumor development, limited information currently 
exists on the CSC-specificity of these exosomes and 
further research must be done in this area to determine 
entirely which exosomes are specific to only CSCs, or 
whether it is the content within that can be used as 
a biomarker. This further emphasizes the importance of 
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researching the role of the CSC-influenced tumor micro-
environment and its various components (eg, exosomes) 
in promoting and accelerating cancer development.

Conclusion and Perspectives
The aforementioned studies permit insight into a previously 
unexplored interface between stem cells and cancer progres-
sion and treatment. Silencing cell surface markers on CSCs 
can promote immune recognition of tumor sites and inhibit 
binding of tumor cargo to healthy cells, thus preventing 
their transformation. Furthermore, iPSCs can be used to 
vaccinate and immunize individuals against tumor cells in 
the future due to surface-antigen similarity between iPSCs 
and cancer cells. In addition to these mechanisms, stem cells 
have been shown to transfer various genetic and molecular 
cargo intercellularly through exosomes, another area for 
drug targeting and disease intervention in cancer. As 
a result of these various interactions between cancer cells, 
stem cells and their individual components, there is now 
a greater need to explore the influence that stem cells have 
on tumorigenesis. This will enable the innovation and trans-
lation of theranostics that are more efficient in nature and do 
not result in an abundance of unwanted side effects as 
a result of treatment.

Current organoid models are limited by their inability 
to mimic mature organ architecture and associated tissue 
microenvironments. Multilayer bladder ‘assembloids’ 
were recently created by reconstituting tissue stem cells 
with stromal components to represent an organized archi-
tecture with an epithelium surrounding stroma and an 
outer muscle layer.99 A urothelial carcinoma assembloids 
platform has been developed by the same group. These 
assembloids exhibit characteristics of mature adult blad-
ders and tumors in cell composition and gene expression, 
and recapitulate in vivo tissue dynamics. This will help 
advance functional studies in the context of the increas-
ingly recognized importance of tissue stroma and 
microenvironments.99–101
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