
R E V I E W

Personalizing the Care and Treatment of 
Alzheimer’s Disease: An Overview

Dubravka Svob Strac 1,* 
Marcela Konjevod1,* 
Marina Sagud 2,3 

Matea Nikolac Perkovic1 

Gordana Nedic Erjavec1 

Barbara Vuic1 

Goran Simic 4 

Vana Vukic4 

Ninoslav Mimica5 

Nela Pivac 1

1Laboratory for Molecular 
Neuropsychiatry, Division of Molecular 
Medicine, Rudjer Boskovic Institute, 
Zagreb, Croatia; 2Department of 
Psychiatry, Clinical Hospital Centre 
Zagreb, Zagreb, Croatia; 3University of 
Zagreb Medical School, Zagreb, Croatia; 
4Department of Neuroscience, Croatian 
Institute for Brain Research, Zagreb, 
Croatia; 5Clinics for Psychiatry Vrapce, 
Zagreb, Croatia  

*These authors contributed equally to 
this work  

Abstract: Alzheimer’s disease (AD) is a progressive, complex, and multifactorial neurode-
generative disorder, still without effective and stable therapeutic strategies. Currently, avail-
able medications for AD are based on symptomatic therapy, which include 
acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate (NMDA) receptor antago-
nist. Additionally, medications such as antipsychotic drugs, antidepressants, sedative, and 
hypnotic agents, and mood stabilizers are used for the management of behavioral and 
psychological symptoms of dementia (BPSD). Clinical research has been extensively inves-
tigated treatments focusing on the hallmark pathology of AD, including the amyloid deposi-
tion, tau hyperphosphorylation, neuroinflammation, and vascular changes; however, so far 
without success, as all new potential drugs failed to show significant clinical benefit. The 
underlying heterogeneous etiology and diverse symptoms of AD suggest that a precision 
medicine strategy is required, which would take into account the complex genetic, epige-
netic, and environmental landscape of each AD patient. The article provides a comprehensive 
overview of the literature on AD, the current and potential therapy of both cognitive 
symptoms as well as BPSD, with a special focus on gut microbiota and epigenetic modifica-
tions as new emerging drug targets. Their specific patterns could represent the basis for novel 
individually tailored approaches aimed to optimize precision medicine strategies for AD 
prevention and treatment. However, the successful application of precision medicine to AD 
demands a further extensive research of underlying pathological processes, as well as clinical 
and biological complexity of this multifactorial neurodegenerative disorder. 
Keywords: Alzheimer disease, therapy, precision medicine, gut microbiota, epigenetics

Alzheimer Disease
Alzheimer’s disease (AD) is a slow, irreversible, but progressive, complex and 
multifactorial neurodegenerative disorder and the most common form of dementia, 
corresponding from 60% to 80% of all dementia cases.1 Cases occurring before the 
age of 65 are considerably rarer, constituting less than 5% of all AD cases and are 
termed the early-onset AD (EOAD), while the majority of cases occur after age 65, 
representing the late-onset AD (LOAD) or sporadic AD. Estimated 1–2% of AD 
cases have very early age of disease onset, with a more rapid rate of progression 
and sometimes associated with other neurologic symptoms less frequently present 
in sporadic AD, and it is inherited in an autosomal dominant fashion.2

AD is not an age-related disorder; however, older age is a major risk factor 
for AD.3 Specifically, the risk of developing AD significantly increases after 65 
years of age, and it reaches up to 31% for individuals beyond the age of 85.3,4 

According to the age-dependent hypothesis, cognitive functions are slowly reduced 
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during normal aging. However, certain alterations, such as 
neuroinflammation, changes in the cell biology, or injuries, 
might cause a switch from normal aging to AD 
pathophysiology.5 It is assumed that age affects inflamma-
tory processes in the brain, resulting in an imbalance 
between anti- and pro-inflammatory factors and leading 
to chronic low-grade inflammation.6

Furthermore, loss of sex steroid hormones, estrogens 
and androgens with age represents one of the significant 
risk factors for AD development.7 In general, women 
show slower cognitive decline during aging and better 
results in verbal tasks, while men are better in coordination 
and visuospatial tasks.8 On the other hand, women 
with AD show faster decline in cognitive functions and 
lower score in verbal tasks, compared to men. Moreover, it 
has been reported that women over 89 years of age had 
a higher prevalence of AD in comparison to the male 
subjects.9 Such differences might be a result of different 
rate of brain atrophy in men and women. Specifically, it 
has been observed that brain atrophy rate is 1–1.5% faster 
in women than in men. In addition, higher levels of neu-
rofibrillary tangles in certain brain areas were found in 
women, with no observed differences in Aβ burden 
between subjects of different gender.8 The gender differ-
ences are not affecting only disease progression, but 
comorbidity as well.10 Although female patients with AD 
show larger neuroanatomical and cognitive reduction, men 
have higher comorbidity burden than women, which might 
be a reason for higher mortality of male subjects 
with AD.10 Sex differences in behavioral symptoms 
of AD have also been observed. Specifically, while 
women tend to exhibit symptoms like depression, delu-
sions, maniac symptoms and emotional lability, men more 
often express apathy, abusive and inappropriate behavior.8

In addition, AD variability has been associated with 
different ethnicity. For example, according to some 
authors, African Americans had a higher prevalence 
of AD and greater disease progression, compared to 
Caucasians.11 On the other hand, the study by Mehta et al12 

demonstrated that African Americans and Latino popula-
tion with AD might have better survival rates than 
Caucasians and American Indians, whereas the 
lowest AD-related mortality was reported for Asian 
subjects.12

Other risk factors of developing AD are genetic13 and 
acquired factors. While the mutations in genes for amyloid 
precursor protein (APP), presenilin 1 (PSEN1) and prese-
nilin 2 (PSEN2) usually cause early AD, late-form AD is 

mainly associated with a polymorphism in apolipoprotein 
E gene (APOE), especially the presence of ε4 allele.14 

APOE gene encodes apoE, a key lipid transport protein 
in the brain that is produced by astrocytes and plays 
a critical role in the synthesis and delivery of cholesterol 
in the brain. Humans have three apoE isoforms (apoE2, 
apoE3 and apoE4) and the carriers of a ε4 allele have an 
increased risk of developing AD, while ε2 allele acts 
protectively for its carriers.15 Acquired risk factors include 
cerebrovascular diseases as the most commonly reported 
risk factor, type 2 diabetes mellitus, hypertension, obesity, 
dyslipidemia, marital status, stress, depression, inadequate 
sleep and smoking.16 Some of the protective factors that 
can lower the risk for developing AD are physical activity, 
Mediterranean diet and vitamin D.17

Due to the accelerated aging of human population, the 
number of AD patients rises each year.3 This high preva-
lence contributes to the great societal burden, especially 
for the caregivers, and increases medical health expenses, 
which is why it is recognized as a major economic pro-
blem of the modern society and a fatal global epidemic 
worldwide.18 The onset of the disease occurs between 15 
(for the EOAD) and 20–30 (for the LOAD) years before 
the appearance of any clinical symptoms. The silent and 
asymptomatic initial stage of AD, also called 
preclinical AD, is characterized by the development of 
pathophysiological hallmarks, which can be analyzed in 
the cerebrospinal fluid (CSF) or in the brain with amyloid 
positron emission tomography (PET) imaging.17

AD typically manifests through a progressive loss of 
episodic memory and cognitive function, leading to lan-
guage and visuospatial skills deficiencies.19 These defi-
ciencies are often accompanied by behavioral symptoms, 
such as apathy, aggressiveness and depression.16 Mental 
status examination plays a crucial role in the determination 
of clinical manifestations of neurologic and psychiatric 
diseases.20 Subjective cognitive decline (SCD) is a self- 
experienced cognitive decline, not detectable on standar-
dized testing, which often occurs in the late stage of 
preclinical AD. SCD is considered a preclinical manifesta-
tion of AD and one of the earliest noticeable symptoms of 
dementia.21,22 At some critical point, when a level of 
cognitive decline cannot be compensated, it passes into 
mild cognitive impairment (MCI), which can be mani-
fested on standardized tests.23 However, although the risk 
for MCI and dementia is increased in individuals with 
SCD, it is not always prodromal to AD and subjects with 
SCD may not show progressive cognitive decline.24 Mini 
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Mental State Examination (MMSE), Clinical Dementia 
Rating Scale (CDR), Global Deterioration Scale (GDS), 
Neuropsychiatric Inventory (NPI), Barthel Index of 
Activities of Daily Living (ADL), and Seoul 
Neuropsychological Screening Battery (SNSB) are neu-
ropsychological measures used for testing these cognitive 
symptoms.25 The diagnosis of AD is still made post-mor-
tem and post-mortem studies demonstrated wide variabil-
ity in terms of accuracy of clinical diagnosis and 
highlighted the challenges and limitations. Frequently, 
there are only serial assessments and long-term follow-up 
demonstrate the progression typical for AD. In addition to 
the basic assessment of a patient with suspected AD and 
the early neuropsychological profile of the AD amnestic 
presentation, there are also cognitive screening instru-
ments for dementia such as Addenbrooke´s Cognitive 
Examination (ACE-III), Montreal Cognitive Assessment 
(MoCA), Neuropsychiatry Unit Cognitive Assessment 
Tool (NUCOG), Rowland Universal Dementia 
Assessment Scale (RUDAS) and the previously mentioned 
Mini Mental State Examination.26

Several hypotheses try to explain the development 
of AD: the hypotheses based on protein deposits, which 
include the beta-amyloid (Aβ) cascade hypothesis and the 
tau hypothesis, the hypothesis of reactive processes of 
neuroinflammation as the first event in AD and the group 
of hypotheses based on the loss of function, which include 
calcium disbalance hypothesis, vascular hypothesis and 
oxidative stress hypothesis.27 AD pathology is very com-
plex with four core features. The first core feature is 
hyperphosphorylation of tau protein. Tau is an intracellular 
microtubule-associated protein within neurons, important 
for structural support and axonal transport. Its hyperpho-
sphorylation leads to microtubule collapse and aggregation 
into neurofibrillary tangles (NFTs). Further, cleavage of 
APP by β- and γ-secretase enzymes causes the extracellu-
lar accumulation and aggregation of Aβ protein fragments, 
visible as amyloid plaques in the AD brain.28

Although accumulation of Aβ plaques and formation of 
NFTs have been associated with the etiology of AD for 
over a century, neither the exact pathophysiological 
mechanism of the disease nor definite treatment options 
have been found so far. The amyloid cascade hypothesis 
has been challenged with the amyloid β oligomer (AβO) 
hypothesis proposing that AD is instigated by soluble, 
ligand-like AβO, that were shown to be neurotoxic.29 

Besides Aβ, other products are generated following β- 
and γ- secretase cleavage of APP in the amyloidogenic 

processing pathway, including soluble APPβ, C99, and 
AICD.30 These potentially important APP fragments 
have not been studied in detail yet. Moreover, γ-secretase 
has over 90 known substrates that all could interfere with 
Aβ production, making the idea that APP metabolism and 
Aβ production in sporadic AD cases depend on interaction 
and competition among γ-secretase substrates, very 
likely.31 One of the currently most investigated concepts 
proposes that the development of AD is triggered by 
impairment of APP metabolism and then further pro-
gresses through tau pathology, rather than through Aβ 
accumulation.29,32 This concept is supported by the fact 
that tau pathology is also a major age-related event in 
persons with Down syndrome, 88% of whom develop 
dementia before the age of 65, caused by an extra copy 
of the APP gene.33,34 Therefore, it has been hypothesized 
that tau pathology within selected projection neurons with 
susceptible microenvironments may, by itself, initiate 
sporadic AD.35 This is in line with the findings of late 
amyloid accumulation in accelerated-senescence non- 
transgenic OXYS rats,36 used as an animal AD model, 
and with the finding that functional integrity of synapses 
in the central nervous system (CNS) of cognitively intact 
individuals with high AD neuropathology is associated 
with the absence of synaptic tau oligomers.37 Hence, in 
comparison to Braak stage-specific readouts, connectivity- 
based, personalized tau-PET readouts reduced the sample 
size of planned patient-centered simulated tau-targeting 
clinical trial interventions by approximately 40%.38

CNS inflammation starts in the very early stages 
of AD, probably decades before its clinical manifestation, 
and the characteristics and the intensity of the inflamma-
tory process change with the progression of the disease. 
We still know very little about the initial process of 
inflammation compared to the neuroinflammatory pro-
cesses present in the later stages of AD.39 Cuello suggests 
that neurons burdened with Aβ could be the initiators of 
inflammation and activators of disease-aggravating inflam-
matory process mediated by mobilized microglia.39 This 
early process could be manageable by the anti-inflamma-
tory agents, unlike the CNS inflammatory process in the 
late stages of AD. Microglia, the resident macrophages of 
the CNS, which are activated in AD, produce cytokines, 
such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, 
and nitric oxide (NO) that affect neuroinflammation.28 

Several recent findings revealed that the probable major 
links between disordered APP metabolism and tau pathol-
ogy are microglial and inflammasome activation and 
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transmissible exosomes containing tau oligomers.40 

Microglia are the primary innate immune cells of the 
brain, acting nonspecifically against any foreign antigen, 
and are considered to be implicated very early in AD 
pathogenesis. Microglia can acquire two functional states 
depending on environmental cues: pro-inflammatory 
(cytotoxic, M1) and anti-inflammatory (immunosuppres-
sive, M2). However, it has been observed that microglia, 
although abundant in the AD brain, fail to efficiently 
eliminate AD deposits.41 Despite the onset of AD being 
dominated by anti-inflammatory microglial phenotype, 
pro-inflammatory cytokines eventually induce a transition 
to pro-inflammatory microglial type in the course of the 
disease progression.41 M1 microglia release pro-inflamma-
tory cytokines such as IL-1α, TNF-α, and complement 
components that subsequently induce neurotoxic A1 reac-
tive astrocytes. As pro-inflammatory cytokines such as IL- 
1α, IL-1β, IL-6 and TNF-α, promote inflammation and 
neurodegeneration, while anti-inflammatory cytokines, 
such as IL-10, oppose their action,41–43 single nucleotide 
polymorphisms of the genes, coding for those proteins, 
influence the susceptibility to the AD pathology.44

However, the evidence suggests that the link between 
neurodegeneration and microglia could be more complex 
than was initially thought. Different neurodegenerative dis-
eases and aging have been associated with the loss of 
microglial homeostatic functions, resulting in chronic 
neuroinflammation.45 In addition, disease-associated micro-
glia (DAM) were recently identified as a subset of microglia 
that can be found at sites of neurodegeneration.46 This 
subset of microglia is characterized by a specific transcrip-
tional and functional profile,47 which includes the expres-
sion of a gene coding for triggering receptor expressed on 
myeloid cells 2 (TREM2), a receptor which is necessary for 
the activation of DAM.47,48 In addition, TREM2 mutations 
were previously associated with AD development,49,50 

while TREM2 deficiency was shown to potentiate accumu-
lation of Aβ and loss of neurons in the mouse model 
of AD.51,52 Transcriptome profiling additionally identified 
APOE and transforming growth factor beta (TGF-β) as 
important regulators of DAM phenotype.53 Krasemann 
et al identified the TREM2-APOE pathway as a key reg-
ulator of microglia phenotypic change in neurodegenerative 
diseases.53 The activation of this pathway led to the micro-
glial phenotype switch from a homeostatic to neurodegen-
erative phenotype and resulted in the inability of microglia 
to maintain brain homeostasis. Therefore, understanding and 

recognizing the different roles of microglia in the process 
of AD initiation and progression is invaluable for future 
potential therapeutic strategies and application of precision 
medicine approaches.

Moreover, vascular pathology and blood-brain barrier 
(BBB) disruption have been linked to AD too. Damage to 
the blood vessels consequently leading to BBB dysfunction 
and causing impaired brain perfusion is hypothesized to pre-
cede neurodegeneration and exist long before other character-
istic features of the disease appear.41,54 The first affected area 
in AD-related neurodegeneration is the entorhinal cortex, 
spreading to the subiculum, CA1 hippocampal subregion 
and basal forebrain networks. As the disease progresses, 
neurodegeneration expands throughout the temporal lobes, 
affecting the majority of cortical layers,28 where mass neuro-
nal and synaptic loss correlates with cognitive decline in AD.

Despite accumulating data about AD etiology and 
pathophysiology, there is still an incomplete characteriza-
tion of the molecular mechanisms underlying AD due to 
its significant clinical, pathological and biological com-
plexity. Specifically, the risk factors, biomolecular profiles, 
as well as specific underlying pathophysiological pro-
cesses in AD patients demonstrate high variation. In addi-
tion to age, ethnicity and sex, the disease heterogeneity is 
also influenced by the extensive genetic variation 
underlying AD. So far, a variety of enrolled genes has 
been identified, with individual genetic variants having 
a small effect on disease risk.55 However, there are still 
many unknown genetic factors contributing to AD and 
further sequencing studies are necessary in order to iden-
tify genetic risk variants and to determine the specific 
molecular pathways involved. In addition, AD has 
a considerable non-genetic component, with different 
environmental factors, including cerebrovascular disease 
or traumatic brain injury and lifestyle factors, such as 
intellectual activity, affecting the risk for AD development 
and significantly interacting with individual genetic back-
ground. Specific latent pathophysiologic processes in AD 
patients are now more accessible by the application of 
brain imaging technologies and by quantification of 
blood and CSF biomarkers. Therefore, successful applica-
tion of precision medicine to AD is needed, in order to 
specifically target underlying molecular and clinical het-
erogeneity of AD and to administer a preventive or ther-
apeutic intervention that is personalized to the identified 
molecular pattern of risk and disease processes.55
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Pharmacological Treatment of AD
The effective and stable therapeutic strategies for AD still do 
not exist and the failure rate in clinical trials is higher than 
for any other disease (99.5%). Starting of treatments late 
during the course of AD progress, inappropriate drug doses, 
invalid target selection, and predominantly an insufficient 
knowledge of the diverse pathophysiology of AD are the 
reasons for failures of disease-modifying treatments 
for AD.56 It has been proposed that some promising drugs 
that failed to show clinical improvement in subjects with 
MCI or moderate stage of AD were administered too late in 
the disease course.57 In addition, so far most of the clinical 
trials have neglected the underlying clinical and molecular 
heterogeneity of AD and considered AD as a homogeneous 
disease, which could be one of the main reasons for their 
failure to identify an AD effective therapy.

Currently, treatment of AD is targeted toward sympto-
matic therapy, although clinical research is developing 
towards a more definitive treatment of the hallmark pathol-
ogy in AD, with the expectation that these therapeutic 
options will attenuate the progressive decline associated 
with AD. Various trials are underway that aim to reduce 
the production and overall burden of pathology within the 
brain.58 Finally, precision medicine is now beginning to be 
incorporated into AD clinical trials, which are focusing on 
subgroups of subjects with known genetic risk for AD and 
specific biofluid or neuroimaging biomarkers.55

However, the treatment of AD has not been significantly 
changed or improved in the last decade. It includes four 
approved medications:59 acetylcholinesterase (AChE) inhi-
bitors donepezil, galantamine and rivastigmine, and 
N-methyl-D-aspartate (NMDA) receptor antagonist meman-
tine (Figure 1), which were approved by US Food and Drug 
Administration (FDA). Out of three AChE inhibitors, galan-
tamine and donepezil are AChE inhibitors, and rivastigmine 
inhibits both AChE and butyrylcholinesterase (BChE). These 
medications are based on the assumption that, according to 
the cholinergic theory, loss of acetylcholine in the brain is 
responsible for the development of AD symptoms since the 
cholinergic system plays an important role in cognitive 
processes.60 Therefore, inhibition of the enzymes that 
degrade acetylcholine, AChE and BChE (Figure 2), is the 
first line of AD treatment.61

These medications have been shown to improve cog-
nitive functions and some of them may also have positive 
effects on behavioral symptoms.62 However, none of 
these drugs affect the course and the outcome of the 
disease.63 The pharmacological treatment of AD differs 
according to the stage of disease (Figure 1), and AChE 
inhibitors are used for mild to moderate AD, while the 
antagonist of NMDA receptors, memantine, is used to 
treat moderate to severe AD.64 These drugs provide 
symptom relief; however, sometimes they induce side 
effects. Unfortunately, they are not disease-modifying 

Figure 1 FDA-approved treatments across phases of AD.
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and they do not represent a cure.65 They cannot slow 
down the disease progression, but only temporarily 
improve brain function, and slow down the cognitive 
deterioration via reduction of AChE activity, resulting in 
higher acetylcholine levels.66 Other investigated AChE 
inhibitors were characterized with significant side effects: 
physostigmine (diarrhea, stomach cramps, increased sali-
vation, excessive sweating), tacrine (nausea, vomiting, 
loss of appetite, diarrhea, clumsiness, hepatotoxicity, 
impractical dosing schedule (4 times daily) due to the 
short half-life) and metrifonate (neuromuscular and 
respiratory side effects after the long-term use), and there-
fore were not approved for the treatment of AD.61

The results of a Cochrane study for donepezil, which 
included 8257 subjects with mild, moderate, and 
severe AD, showed statistically significant improvement 
in cognitive functions, activities of daily living, and clin-
ician-rated global impression of change scale, with no 
significant effects on behavioral symptoms. Both doses 

(5 mg and 10 mg) of donepezil were effective, with 
more adverse effects (Table 1), mainly gastrointestinal 
effects, reported for the higher dose.67

The other AChE inhibitor, rivastigmine (1.5–6 mg 
twice daily), was approved by the FDA for all stages 
of AD. It was associated with cognitive improvement/ 
stabilization, especially if the treatment started in the 
early phases of AD.68 Rivastigmine has led to statisti-
cally significant improvement in cognitive functions in 
patients with mild to moderate AD when administered in 
high doses (6–12 mg). It had no significant effect on 
behavioral symptoms. Adverse effects (Table 1) were 
quite common with high doses, mostly gastrointestinal 
symptoms, although headaches and syncope were also 
reported. The rivastigmine transdermal patch was also 
tested. A smaller patch with a lower dosage was as 
effective as both the bigger patch (higher dosage) and 
the perioral form of the medicine, which was given in 
the equivalent daily dose but had less adverse effects.68

Figure 2 Cholinergic synapse in AD during treatment with AChE inhibitors.
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The effects of galantamine (4–12 mg twice daily) were 
also analyzed in a meta-analysis, and the results showed 
a statistically significant improvement in cognitive func-
tions in mild to moderate AD. The side effects (Table 1) 
were similar to those of other AChE inhibitors.69 This 
review suggested that, according to the stage of AD, clin-
ical characteristics and tolerability, titration of the dose and 
switching between AChE inhibitors might improve the 
response rate. Switching between AChE inhibitors may 
prevent issues related to the lack of efficacy or safety/ 
tolerability in patients with AD.69

In AD, the amyloid plaques affect glutamatergic neu-
rotransmission, elevate synaptic and extrasynaptic gluta-
mate levels and elicit excitotoxicity. This leads to 
hypoactivity, neuronal loss, progression of AD, and cog-
nitive deficits. The activation of synaptic NMDA gluta-
mate receptor is critical for the survival of neurons,64 but 
excessive glutamatergic stimulation leads to excitotoxicity, 
which causes loss of synaptic function and neuronal death, 
processes believed to be a part of the pathogenesis leading 
to neurodegenerative changes in AD.70 Memantine is 
a non-competitive NMDA receptor antagonist, which 
binds to the receptors when high concentrations of gluta-
mate are present in the synaptic cleft (Figure 3), as is the 
case of AD.71

A 2017 meta-analytic study compared the efficacy and 
safety between monotherapy of donepezil and combined 
therapy with donepezil and memantine in subjects with 

moderate and severe AD. The study analyzed cognition, 
behavioral and psychological symptoms, and global func-
tions. The results showed the combination therapy to be 
superior in all domains, without significant adverse 
effects.72 A 2018 meta-analysis compared the safety and 
effectiveness of AChE and memantine, and according to 
this study,70 the most effective approach to improve cog-
nitive functions in mild to moderate AD was (individually) 
donepezil 10 mg and galantamine 24 mg or 32 mg daily. 
For moderate to severe AD, the most effective therapy was 
a combination of memantine 20 mg and donepezil 10 mg. 
Memantine had the best acceptability profile.70 No effects 
on behavioral symptoms were registered.73

Although many new drugs with novel mechanism of 
action were effective in animal models, only a few of them 
showed efficacy in improving cognitive decline. In addi-
tion, until now, most of the studied drugs (nicotinic recep-
tor agonists, glutamate receptor modulators, γ-secretase 
inhibitors, growth factors, statins, monoclonal antibodies, 
tau inhibitors, serotonin receptor modulators, etc.) are 
either under development or suspended in phases 1–3 of 
clinical trials. As a result, many new potential drugs failed 
to show clinical benefit in double-blind placebo-controlled 
trials and were discontinued due to the serious side effects, 
resulting in no new AD drugs in the last ten years.

In addition to AChE and NMDA receptor inhibitors, 
other neurotransmitters-based therapies have been also 
investigated for AD in preclinical studies and clinical 

Table 1 Adverse Reactions of Acetylcholinesterase Inhibitors

Body System Effects Precaution

Cardiovascular 
system

↑ Vagal effects on the sinoatrial and atrioventricular 
nodes, bradycardia, heart block and/or syncopal 

episodes

Patients with cardiac conduction disturbances, combination with β- 
blockers, calcium channel blockers, digoxin, pilocarpine or drugs 

known to prolong QTc interval, due to potential to induce 

bradycardia and arrhythmia

Muscular system ↑ Succinylcholine-type muscle relaxation During anesthesia with succinylcholine-type muscle relaxants

Gastrointestinal 

system

↑ Gastric acid secretion, ↑ risk for developing peptic 

ulcers

Patients with the history of ulcer disease, and those receiving 

nonsteroidal anti-inflammatory drugs

Nausea, vomiting, diarrhea, possible dehydration, 

weight loss

Undernourished patients

Respiratory 

system

↑ Bronchial secretion Patients with a history of asthma or obstructive pulmonary disease

Central nervous 

system

Worsening of extrapyramidal symptoms Patients with Parkinson’s disease

Note: ↑Increased effects in comparison to the condition without acetylcholinesterase inhibitors.
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trials, including GABAergic modulators, serotonin and 
adenosine receptor modulators, as well as histaminergic 
modulators.74,75

One of the most extensively investigated therapeutic 
strategies for AD is the inhibition of Aβ cascade, either by 
inhibiting β-secretase (verubecestat, lanabecestat, elenbe-
cestat, atabecestat, CNP520) or γ-secretase (tarenflurblil, 
semagacestat, avagacestat), or more recently by increasing 
α-secretase activity.76–78 Passive immunotherapy using the 
anti-Aβ antibodies destabilizing or clearing Aβ oligomers 
(bapineuzumab, gantenerumab, aducanumab) has been 
another developing strategy targeting Aβ pathology. In 
addition, the metal protein attenuating compounds (clio-
quino l- PBT1, PBT2) have emerged as potential anti-Aβ 
aggregates preventing Aβ oligomerization. The potential 
of nilvadipine, Ca2+ channel antagonist, for reducing the 
Aβ levels in the brain is also investigated.76–78 Limitations 
and inadequacies of targeting most popular amyloid cas-
cade and AβO hypotheses may originate from disregarding 
the physiological function of Aβ. Indeed, ancestral APP 
gene arose hundreds of millions of years ago, and would 
not be so highly conserved throughout evolution unless 
being important.41 Firstly, it has been observed that Aβ 
resembles molecules from the group of so-called “antimi-
crobial peptides” and subsequently demonstrated that it 

could inhibit growth of eight human pathogens, thus pro-
viding evidence that Aβ might function as a part of the 
innate immune system.41 Secondly, previously mentioned 
BBB breakdown manifests in the form of cerebral 
microbleeds.54 Amyloid plaques form at sites of these 
microbleeds and seal vascular ruptures thus preventing 
major bleeding and hemorrhagic strokes.41 Additionally, 
Aβ, likewise APP containing Kunitz protease inhibitor 
domain called protease-nexin 2 (PN-2), is able to inhibit 
serine proteases, like trypsin and coagulation factors, act-
ing as an anticoagulant.41 The Aβ is demonstrated to 
exhibit apolipoprotein-like function thereby enhancing 
cholesterol efflux from cells and reducing cellular choles-
terol levels through interaction with ABCA1 transmem-
brane protein. It enhances memory in physiological, 
picomolar concentrations, while it impairs cognition only 
when present in excess amounts.79 Finally, Aβ is asso-
ciated with a reduced risk of cancer. Experimental evi-
dence suggests that Aβ may inhibit tumor cell growth and 
slow tumor growth by retarding neovascularization and 
even by slowing down the proliferation of tumor cells by 
limiting the availability of essential micronutrients due to 
its high binding affinity for iron, copper, and zinc. It is also 
assumed that Aβ may act by intercepting oncogenic 
viruses.80 Hence, still underappreciated physiological 

Figure 3 Overstimulation of NMDA receptors in AD and memantine mechanism of action.
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roles of Aβ range from protection against infections, pre-
vention of strokes, promotion of recovery after brain 
injury, cholesterol transport, to synaptic function, regula-
tion and possible contribution to tumor suppression.

Therefore, Aβ immunization or any other procedure 
aimed at removal, neutralization or suppression of Aβ 
production should be preceded by an assessment of poten-
tial activators of Aβ production and deposition, such as 
infections, brain injuries, type 2 diabetes mellitus, tumors, 
etc. This could be a part of the routine clinical evaluation 
when checking for reversible causes of dementia, such as 
pseudodementia due to depression and B12 hypovitamino-
sis (treated with antidepressants and vitamin B12, respec-
tively). Subsequently, on the basis of such an assessment 
of a patient with suspected or overt dementia, and before 
considering any amyloid removal interventions, we sug-
gest that the next step should be aimed to treat: 1) possible 
infection, 2) other established, but treatable risk factors 
that accelerate amyloid production and deposition, espe-
cially type 2 diabetes mellitus, and 3) imminent neuroin-
flammation due to possible microglial activation. So far, 
a single clinical trial has introduced antibiotic minocycline 
to AD subjects but failed due to the inclusion of the small 
number of patients only with advanced dementia.41 In 
addition, AD proof-of-principle clinical trials with anti-
viral drugs, such as acyclovir, and antifungal drugs, such 
as ketoconazole, together with likely beneficial immune- 
selective anti-inflammatory derivatives, are required in the 
near future.

The inhibition of tau hyper-phosphorylation, aggrega-
tion, or tau expression level and activity, by using tau 
expression inhibitors (antisense oligonucleotides), phos-
phatase modifiers (PPZ, OKA, memantine), tau kinase 
inhibitors (tideglusib, lithium, amino-thiazole, oxindole-
quinazoline, sirenade, R-roscovitine, aloisine), tau acetyla-
tion inhibitors (salsalate), tau deglycosylation inhibitors 
(phosphodiesterase type 4 inhibitor), tau aggregation inhi-
bitors (methylene blue, LMTX), or microtubule stabilizers 
(epothilone D, NAP, TPI 287), could also be potentially 
effective therapeutic approaches preventing AD 
progression.76–78,81

In addition, the inhibition of inflammatory response, 
targeting the innate immunity by inhibiting cascades such 
as JAK2/STAT3, NF-κB/NLRP3, p38 MAPK, calcium/ 
calcineurin/NFAT, TREM2, TLR, or RAGE/CSF1R/ 
P2Y1R pathways (stattic, SB203580, SB202190, 
SP600125, NJK14047, VIVIT peptide, tacrolimus, anti- 
apoE, anti-TREM2, GW2580, MRS2179), as well as 

targeting adaptive immune system, by treatment with Aβ- 
specific Th2 lymphocytes and anti-Aβ IgG, could repre-
sent novel strategies to reduce symptoms in AD associated 
with neuroinflammation. Nonsteroidal anti-inflammatory 
drugs, such as aspirin and ibuprofen, are currently used 
for the treatment of AD patients.76–78,81 In addition, vita-
min E (an antioxidant) supplementation is currently admi-
nistered to AD patients since neuroprotective effects of 
antioxidants represent a promising preventive and thera-
peutic strategy.77

Additional potential therapeutic strategy for AD is 
neuroregeneration by direct supplementation of neurotro-
phins (hNGFp, AAV2-NGF, BDNF) or indirectly via 
increase of neurotrophic effects by peptide mimetics that 
target neurotrophin receptors (7,8-DHF, doxygedunin, 
LM22A-4, bicyclic BDNF loop mimetic). Another strat-
egy to address AD is to promote neuroregeneration. This 
could be achieved by supplementing the functional neuro-
nal cells either by the glia-neuron conversion (using neu-
rogenin 2, Dlx2, the combination of various molecules) or 
by the transplantation of stem cells that are genetically 
modified to encode neurotrophic factor genes or pre-trea-
ted with neurotrophic or growth factors.76–78,81

Complementing traditional drug discovery with drug 
repositioning and repurposing is another approach aiming 
to maximize the efforts for AD drug development.78,82 For 
instance, metformin, type 2 diabetes drug, was repurposed 
for AD treatment, due to its anti-inflammatory and neuro-
protective properties in AD.78 Five classes of compounds 
for repurposing as treatments for AD are suggested; tetra-
cycline antibiotics, calcium channel blockers, angiotensin 
receptor blockers (ARBs), glucagon-like peptide 1 (GLP1) 
analogues and retinoid therapy. However, the three highest 
priority candidates for repurposing in AD, which were 
most recently selected are ROCK2 inhibitor fasudil, the 
cholinesterase inhibitor phenserine, with novel anti- apop-
totic properties, and the antiviral drugs: aciclovir, valaci-
clovir and famciclovir.82

Multi target directed ligand (MTDLs) is a novel 
approach in AD therapeutic strategies targeting several 
molecular targets synergistically. For example, new com-
pound, named RPEL, is a piperazine derivative that con-
tains the pharmacophore fragment of tacrine. It is a dual- 
action compound found effective in preventing cognitive 
impairments, which showed the inhibitory potency against 
cholinesterase, reduced the phosphorylation of tau protein 
and inhibited the release of the Aβ peptide.78,83
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Treatment of Behavioral and 
Psychological Symptoms of 
Dementia
Besides memory and learning impairments, as well as 
other cognitive disturbances,84 AD patients also show 
“non-cognitive” symptoms, known as behavioral and psy-
chological symptoms of dementia (BPSD). BPSD are het-
erogeneous group of behaviors, psychiatric symptoms and 
mood disorders,85 diagnosed in approximately 90% of AD 
patients. BPSD encompass symptoms such as sleep dis-
turbances, anxiety, aggression, depression, wandering, 
delusion, hallucinations, and disinhibition,84–87 which are 
clustered as 1) apathy; 2) affective (anxiety, depression); 3) 
psychosis (paranoia, delusions, hallucinations); and 4) dis-
inhibition (motor hyperactivity, impulsivity, 
aggression).84,86 More than 50% of AD patients show 
more than four neuropsychiatric symptoms at the same 
time. Therefore, the presence of such symptoms affects 
normal functioning, as well as further cognitive decline,88 

and represents one of the main reasons for the institutio-
nalization of AD patients.84 Gender differences have been 
observed between female and male AD patients with 
BPSD. It has been noted that females are more prone to 
develop AD compared to males, whereas female AD 
patients usually develop depressive symptoms, while 
male AD patients more often express aggressive 
behavior.87 Likewise, differences between patients with 
EOAD and LOAD with diagnosed BPSD were noticed. 
LOAD patients had higher BPSD severity compared with 
EOAD patients.89

The development of BPSD in AD patients is a result of 
neuronal loss in various brain areas, including the hippo-
campus, brain stem nuclei, and parahippocampal gyrus, as 
well as glutamate reduction; changes in cholinergic and 
dopaminergic neurotransmission in the frontal and tem-
poral cortex assumed to be associated with motor hyper-
activity and aggression, and altered GABA and serotonin 
concentrations that might lead to the development of 
apathy and depression.90 Management of BPSD is highly 
individualized and requires detailed evaluation of pre-
sented symptoms in order to determine appropriate, effec-
tive treatment strategy.91 However, due to complex 
etiopathogenesis of BPSD and AD, the choice of adequate 
treatment is often challenging.90

Due to the complex etiology and symptoms diversity, 
the treatment of BPSD involves different therapy 
approaches.92 The part of BPSD treatment includes pain 

management, as well as treatment of comorbid somatic 
disorders. Although pharmacotherapy for BPSD is pro-
vided, it might cause certain side effects and it should be 
prescribed only when it is necessary. Hence, non-pharma-
cological approaches for BPSD are suggested before any 
pharmacological treatment.90,91 Behavioral, individual, 
caregiver and environmental interventions92 aim to edu-
cate and provide support to the family members and other 
caregivers. It includes different trainings, development of 
communication skills, dementia care mapping, psychoso-
cial interventions, physical activity, sensory stimulation, 
reality orientation, cognitive stimulation, validation ther-
apy, psychotherapeutic interventions, and reminiscence 
therapy.90,91

Psychoeducational trainings for family members have 
shown benefit in more than 86% of studies, while support 
groups were beneficial for both, caregivers and patients. 
Physical activity has many beneficial effects on the human 
organism, improving cognition, fitness and behavior.90,91 

Therapy that involves sensory stimulation might have ben-
eficial effect in patients with BPSD, especially in the 
reduction of agitation and behavioral disturbances. 
Several studies showed that music sessions help with the 
reduction of agitation, delirium, irritability, depression and 
anxiety, as well as improve the memory and orientation 
in AD patients.93,94 Bright Light Therapy (BLT) has 
a positive outcome in patients with BPSD, by reducing 
agitation, aggression and improving cognitive performance 
and motor behavior.93 Furthermore, problem solving and 
reminiscence therapy for treating depression and anxiety 
have been shown beneficial in patients with dementia.91 

Psychological interventions are mostly effective in later 
stages of dementia, especially when both, the caregivers 
and the patients, are involved in the therapy. Such 
approach helps with dealing with aggression, depression, 
anxiety and agitation.90 However, due to heterogeneity of 
BPSD in AD, these approaches sometimes do not show 
adequate efficacy, leading to strategies based on drug 
treatment.92

Pharmacological treatment is usually administered if 
none of the non-pharmacological interventions lead to 
improvement, in large patients’ distress, or in subjects 
who represent a danger to themselves or others.90,91 For 
BPSD, antidepressants are usually prescribed since they 
show low side effects.90 Some of the prescribed antide-
pressants include citalopram, sertraline, escitalopram, tra-
zodone and mirtazapine.90,92 However, their efficacy is 
questionable. For instance, mirtazapine, which is usually 
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used for the treatment of patients with depression, has not 
demonstrated therapeutic effects in AD patients.91 

Antidementia drugs, AChE inhibitors and memantine, 
might also be useful in BPSD treatment. AChE inhibitors, 
such as donepezil, rivastigmine and galantamine are 
usually prescribed for BPSD treatment in patients with 
dementia. Starting and recommended doses for rivastig-
mine are 4.6 mg/24h patch, 9.5 mg/24h patch and 13.3 mg/ 
24h patch.88 However, treatment with donepezil was not 
effective in BPSD reduction in AD patients, compared 
with placebo.88,90

Another group of medication, which has been pre-
scribed for BPSD, are antipsychotics. They are often admi-
nistered together with anti-dementia drugs or 
antidepressants.95 Atypical antipsychotics showed some 
therapeutic effect in patients with BPSD, while most effec-
tive are risperidone, olanzapine, quetiapine and aripipra-
zole. However, antipsychotic drugs often cause 
extrapyramidal side effects, including parkinsonism.16 

For certain BPSD symptoms, especially aggression, anti-
psychotics might be useful in the alleviation of symptoms; 
however, their use must be limited and controlled.90 

Specifically, evidence suggests that some other serious 
side effects, such as cerebrovascular adverse effects, cog-
nitive decline and even death, also occur when antipsy-
chotics are used among individuals with BPSD.88 

Therefore, antipsychotic treatment should be prescribed 
only in the case of severe or refractory symptoms, where 
non-pharmacological or other pharmacological approaches 
were not effective or possible. After a risk-benefit analysis, 
the lowest effective doses of antipsychotics should be used 
for the shortest possible time, with adequate oversight in 
order to maximize the gain and minimize the harm from 
antipsychotic treatment.96 Special caution should be taken 
when administrating antipsychotic drugs to female patients 
since some serious side effects of these medications are 
more often seen among women than among men.97

Benzodiazepines are commonly used in patients with 
BPSD, although their efficacy is usually blurred with 
caused side effects. However, occasional use of certain 
benzodiazepines might help with aggression, agitation 
and sleep disturbances,91 while mood stabilizers are 
usually not recommended.90 Combination of different 
pharmacotherapeutics might be more beneficial in treat-
ment of AD subjects with BPSD. For example, the com-
bination of memantine and citalopram led to symptom 
reduction in AD subjects. Sleep disturbances, aggression, 
agitation, irritability, caregiver distress, apathy and anxiety 

were lower after the combined treatment.98 

Furthermore, AD patients who were receiving donepezil 
in combination with memantine showed improvement in 
BPSD, global functions, as well as in cognitive functions 
compared to patients that were only receiving donepezil.72 

Patients who were treated with donepezil and choline 
alphoscerate (n=57) showed significant improvement in 
certain BPSD symptoms, including depression, apathy, 
agitation and anxiety, compared with patients treated 
with donepezil and placebo (n=58).99 Therefore, in AD 
patients with BPSD, the combination of several medica-
tions might have a beneficial effect in comparison with 
monotherapeutic approach.

Personalizing the Care and 
Treatment of AD
Personalizing the care and treatment of AD intends to 
change the current treatment and social care of AD 
patients, by implementing precision medicine approach. 
Precision medicine is an approach that takes into account 
individual differences in biology, lifestyle and environ-
ment, aiming to optimize maximally the effectiveness of 
disease prevention and treatment. It has a multidisciplinary 
character and integrates a series of mechanisms to inves-
tigate, prevent, treat and cure complex diseases, such 
as AD. This approach needs accurate diagnosis and aims 
to minimize side effects,55 and is based on the knowledge 
of the specific biological and genetic background, but also 
on the biomarker, phenotypic and psychosocial character-
istics of the individual patient. Improved understanding of 
different factors responsible for development of AD onset 
and progression allows for better disease prevention and 
personalized treatment strategies.55 For application of pre-
cision medicine in AD, it is also necessary to identify and 
validate disease-specific, mechanism-based, or (epi)genet-
ics-dependent biomarkers of AD, which can improve and 
increase the accuracy of AD clinical diagnosis and 
patients’ susceptibility, monitor disease progression and 
therapeutic efficacy, as well as to analyze the benefits 
and adverse effects of particular drugs.

Personalizing the care and treatment should allow inde-
pendence, choice and control over the services for the 
patients with AD. The underlying heterogeneous pathways 
for AD development and diverse AD symptoms require 
precision medicine strategy.100 This strategy includes the 
collection of demographic information for each patient (ie, 
APOE genotype, age, gender, education, environmental 
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exposure, lifestyle, medical history), as a basis for patient 
stratification and incorporation of in-depth information to 
facilitate the design of precision medicine strategies, such 
as physical activity, diet, brain stimulation, social commu-
nication and medication.100 Assessment of the patients 
with AD, but also their family members, caregivers and 
care partners, should be person-centered. According to the 
recent study,101 systematic, comprehensive and temporary 
assessments should be done using a collaborative team 
approach, utilizing files, documentation and communica-
tion systems to ease the delivery of person-centered infor-
mation, with aim to gather information, and build 
relationship, education, and support. These person-cen-
tered assessments should result in better planning to opti-
mize physical, psychosocial and fiscal wellbeing, with 
a main goal to enlarge the knowledge of the possible 
care options, palliative care and hospice.101 Precision med-
icine approach is necessary since neither the exact patho-
physiological mechanism of AD, nor the definite treatment 
options that are suitable for all AD patients, have been 
found so far.

Nevertheless, progress in life sciences and emergence 
of multi-omics studies (such as genomics, transcriptomics, 
epigenomics, proteomics, metabolomics, microbiomics, 
etc.) have shifted focus to precision medicine, promising 
improvements in both diagnostics and treatment of AD, as 
in other still untreatable or undertreated diseases.41 

However, for the development of customized diagnostics 
and therapeutic interventions in precision medicine, big 
omics data should be integrated with clinical information, 
increasing the understanding of heterogeneous pathophy-
siology of AD. Taking into account the complex genetic, 
epigenetic, and environmental landscape of AD,102 in 
order to create the most effective implementation of pre-
cision medicine for patients with AD, patient stratification 
needs to be established based on comprehensive collection 
of both demographic (APOE genotype, age, gender, edu-
cation, environmental exposure, life style, medical history) 
and in-depth information (genomic variations, brain ima-
ging, central and peripheral biomarkers, functional assays 
on patient-derived neurons).100 Regarding environmental 
impact, a study was designed to determine a correlation 
between living near major roads and incidence of neuro-
logical diseases103 in two population-based adult cohorts 
and the results showed that living near major roadways 
was significantly associated with higher incidence of 
dementia. Suspected factors responsible for observed asso-
ciation were traffic-related air pollutants (ultrafine 

particles, nitrogen oxides, etc.) probably leading to neu-
roinflammation and oxidative stress, and noise, possibly 
through effects of sleep fragmentation and impaired 
cognition.103

Simultaneously, emerging technologies, such as induced 
pluripotent stem cells (iPSC), are highly valuable in the 
search for genetic determinants and environmental modula-
tors of the disease, as well as in the screening of potential 
drugs that will, hopefully, revolutionize the treatment of AD 
patients.104 Some interventions have been already recog-
nized as significant in prevention and treatment in early 
stages of AD: physical activity, brain stimulation through 
music and art, social communication, diet, supplements for 
energy supply, and drugs targeting neural transmission. For 
moderate and severe stages of AD, stage-specific interven-
tion strategies in recent years move towards drugs targeting 
neural inflammation and neural regeneration therapy.100

However, in the next chapters, we focus on gut micro-
biota and epigenetic modifications as new emerging targets 
for AD management. Their immense variation and specific 
patterns could represent the basis for novel individually 
tailored approaches aimed to optimize precision medicine 
strategies for AD prevention and treatment.

Gut Microbiota as a Target for AD 
Treatment
The human gut is a habitat for around 1000 species, with 
the bacterial density estimated to cca 1011 per mL.105 Gut 
microbiota are different between individuals, which is 
a phenomenon affecting the differences in biochemical 
and genetic individuality, as well as the resistance to dis-
eases in humans.106,107 In adult individuals, the composi-
tion of gut microbiota is influenced by a variety of 
individual factors such as host genetics, age, the status of 
the host immune system, emotional stress, diet, and 
exercise,108 resulting in immense compositional variation 
of gut microbiota between and within individuals.109 

Considering the great number of metabolic enzymes 
synthesized by the gut microbiota, it is no wonder that 
gut microbiota is regarded as an additional (metabolic) 
organ in the human organism.110

It is bidirectional, constant communication between the 
gastrointestinal tract and the CNS called the brain-gut axis 
or more recently, due to the major role of the gut micro-
biota, the brain-gut-microbiota axis.107 This communica-
tion is conducted through neural, immune, endocrine and 
metabolic signaling.111 A chronic inflammation in the 
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elderly, caused by the hyperstimulation of the immune 
system,112 may also be associated with a persistent inflam-
matory state of the gut mucosa leading to the gut barrier 
breakdown, further increase of proinflammatory cytokines 
in the circulation, the BBB impairment and 
neuroinflammation.113 Besides, there is a direct synthesis 
of various neurotransmitters and neuromodulators, includ-
ing serotonin and dopamine, by the gut microbiota.114

Therefore, a contribution of the brain-gut-microbiota 
axis disturbances to the pathogenesis of neurodegenerative 
disorders, including AD, is more than expected,114 with 
a growing body of experimental and clinical data confirm-
ing it. Since bacterial cells produce amyloids to bind to 
each other, the gut microbiota is a source of a significant 
amount of those proteins.115 Bacterial and human CNS 
amyloids differ in their primary structure, but share simi-
larities in their tertiary structure.116 It is assumed that the 
exposure to gut bacterial amyloids could cause priming of 
the host’s immune system, thus enhancing inflammatory 
responses to endogenous neuronal amyloids.115 

Besides amyloids, gut microbiota produces lipopolysac-
charides which activate toll-like receptor (TLR) 4 promot-
ing inflammatory response through the interactions with 
CD14.116 The same pathway is included in the inflamma-
tory response to Aβ.117 Furthermore, a marker of intestinal 
inflammation, calprotectin, is a heterodimer of S100A8 
and A9, the two proteins that can form amyloid oligomers 
and fibrils similar to Aβ and α-synuclein and even induce 
Aβ fibrilization.118 In the CSF and the brain of AD 
patients, calprotectin levels are significantly higher, pro-
moting amyloid aggregation and co-aggregation with 
Aβ.118 Additionally, calprotectin levels are elevated also 
in feces of AD patients, with the assumption that it can 
enter the circulation and contribute to 
neuroinflammation.119

Obviously, gut-derived inflammatory response in aging 
and poor diet in the elderly may promote the pathogenesis 
of dementia,120 suggesting that the therapy directed to the 
modification of the gut microbiota composition represents 
a new therapeutic option in AD. Manipulation of gut 
microbiota by antibiotics in animal models showed an 
association of consequential dysbiosis with changes in 
behavior and brain chemistry.121 In humans, it was 
shown that the antibiotic treatment of Helicobacter pylori 
is associated with neurological disorders including anxiety, 
panic attacks, major depression, psychosis and delirium.122 

On the other hand, the use of probiotics and prebiotics 
seems to reduce the risk of AD123 and improve cognition 

in AD patients.124 It was already shown that the diet might 
influence the development of AD. For example, antioxi-
dant polyphenols from coffee beans can reduce oxidative 
stress induced by brain injuries and lower the risk 
of AD,125 but the bioavailability and the activity of poly-
phenols depend strongly on healthy gut microbiota.126 

Additionally, there are evidence that high-fat diet induces 
changes in gut microbiota leading to an increase of intest-
inal permeability and lipopolysaccharide absorption, 
which causes endotoxemia and systemic inflammation.127 

Caloric restriction, on the other hand, can optimize the gut 
microbiota composition by increasing the proportion of 
Lactobacillus.128

There are some clinical studies dealing with the new 
potential anti-AD therapeutics directed to gut microbiota. 
For example, a Phase 3 clinical trial in China reported 
sodium oligomannate suppressing gut dysbiosis and the 
associated phenylalanine/isoleucine accumulation, sup-
pressing neuroinflammation and reversing the cognitive 
impairment.129 A recent study, conducted on AD-like 
pathology with amyloid and neurofibrillary tangles 
(ADLPAPT) transgenic mouse model of AD, showed 
that the ADLPAPT mouse differed from the wild-type 
(WT) mouse in the composition of the gut microbiota 
and was characterized by the loss of epithelial barrier 
integrity and chronic intestinal and systemic 
inflammation.130 In this study, a frequent transfer or trans-
plantation of the fecal microbiota from WT mice into 
ADLPAPT mice reduced the formation of amyloid β pla-
ques and neurofibrillary tangles and improved glial reac-
tivity and cognitive impairment.130 There is growing 
evidence suggesting that AD is closely related to the 
imbalance of gut microbiota or may even begin in the 
gut. Considering an immense compositional variation of 
gut microbiota between and within individuals, therapeutic 
interventions targeting microbiota have a great potential to 
become a new tool of precision medicine approach in AD.

Potential Epigenetic Therapy for AD
Various findings suggest that epigenetic editing might 
offer future therapeutic approaches in AD,131 targeting 
DNA methylation, chromatin remodeling, and non-coding 
RNAs.132 Among the common epigenetic mechanisms, 
histone modifications are involved in the regulation of 
gene expression and play an important role in AD 
pathogenesis.133,134 Histone acetylation is the most-studied 
histone posttranslational modification, and the results of 
the studies using cellular and animal models of AD 
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demonstrate a consistent reduction in histone 
acetylation.135,136 Therefore, a variety of histone deacety-
lase inhibitors (HDACi) have been tested for their poten-
tial in reversing pathological hallmarks of AD both in vitro 
and in vivo.133 HDACi have been shown to affect AD 
pathology, including Aβ accumulation and tau phosphor-
ylation, as well as to improve synaptic plasticity, learning 
and memory.137,138 The pan-HDACi such as vorinostat 
(SAHA), trichostatin A (TSA), valproic acid (VPA), 
sodium butyrate (NaB), sodium 4-phenylbutyrate 
(4-PBA) and entinostat (MS-275), which affect class I, II 
and IV HDACs, as well as nicotinamide, a specific inhi-
bitor for sirtuin class III HDACs have been shown to 
reverse the hypoacetylation and have beneficial effects 
in AD animal studies.137,138 The efficacy of HDAC-inhi-
bitor, vorinostat in attenuating the expression of transcrip-
tion factor PU.1 in human microglia has been shown, 
suggesting that it may be useful to reduce microglial- 
mediated immune responses, such as the excess inflamma-
tion observed in AD.139 In addition, treatment with some 
recently developed HDACi, such as hydroxamide-based 
class I and II HDACi (I2) and mercaptoacetamide-based 
class II HDACi (W2) with longer half-life and better 
ability to cross the blood brain barrier, restored learning 
and memory in AD mice.140 These compounds have 
shown some promise in the studies of AD since they 
appear to reduce AD pathology in vitro and memory 
impairments in vivo.141

Some of HDACi, such as VPA, nicotinamide, and 
4-PBA, have been investigated in clinical trials for AD 
treatment.132,142 However, HDACi and especially pan- 
HDACi usually exhibit toxic effects, limiting their clinical 
application,143 and different strategies can be employed to 
overcome these drawbacks. The HDACi are usually non- 
selective and affect not only histones but also other cyto-
plasmic proteins.144 It has been observed that increased 
HDAC2 and HDAC3 activity exerts a negative impact on 
cognition, while reduced HDAC1 activity may be neuro-
toxic; therefore, HDAC-based therapy inhibiting HDAC2 
or HDAC3, but not HDAC1 could represent potential 
therapeutic target for AD.141 For instance, RGFP-966, 
a selective HDAC3 inhibitor has been shown to decrease 
pathological tau phosphorylation and Aβ protein expres-
sion, improve learning and memory and normalize 
a number of AD-related genes in cellular and animal AD 
model.145 Other examples of specific HDACi are tubacin, 
a selective HDAC6 inhibitor, and suramin, a selective 
S1RT1 and S1RT2 inhibitor.137 Improved spatial memory 

and cognitive performance, decreased expression of 
APOEε4, β-amyloid, β-secretase and phosphorylated tau, 
as well as elevated levels of BDNF, ADAM10, SIRT1, 
REST, BIN1, MINT2 have been observed in mice after 
treatment with HDACi M344 with substrate selectivity for 
HDAC6.140,146

An additional strategy, which suits AD very well due to 
its multifactorial origin, is the development of multitarget 
drugs (MTDs).143 The examples of HDACi-based MTDs 
include the concomitant modulation of HDACs with phos-
phodiesterase 5 (PDE5),147,148 antioxidant properties,149 

transglutaminase 2 (TG2)150 and glycogen kinase synthase 
3β (GSK3β).151 In the AD mouse model, chronic treat-
ment with CM-414 that acts as a dual inhibitor of PDE5 
and HDACs, rescued the impaired long-term potentiation 
in hippocampal slices, diminished brain Aβ and tau phos-
phorylation levels, increased the inactive form of GSK3β, 
reverted the decrease in dendritic spine density on hippo-
campal neurons and reversed cognitive deficits.152

Another potential therapeutic approach might be the 
increase in histone acetyltransferases (HATs).153 

Activation of specific HATs may reinstate general acetyla-
tion balance and activate gene expression programs 
involved in neuroprotection. Several HATs, including 
CBP (cAMP-response element binding protein), p300 
and PACAF (p300/CBP-associated factor) showed more 
specific performance than non-selective HDACi. However, 
the poor solubility and membrane permeability of HAT 
activators make them rather unsuitable for AD 
treatment.132 Nevertheless, a recent study demonstrated 
that CSP-TTK21, a small-molecule activator of CBP/ 
p300 HAT efficiently reverses epigenetic, transcriptional, 
synaptic plasticity, and behavioral deficits in a mouse 
model of AD.154 Alternative strategies also consider nat-
ural products, such as curcumin and derivatives, which 
inhibit the formation of Aβ oligomers and tau aggregation, 
and have anti-inflammatory and antioxidative 
properties.155 Curcumin has been considered as 
a selective inhibitor of the p300/CREB binding protein 
HAT activity.156 Several clinical trials investigated the 
combinations of curcumin with other natural compounds 
as potential treatment for AD and mild cognitive 
impairment.132,142 Other phytochemicals such as resvera-
trol and epigallocatechin gallate (EGCG) have been shown 
to regulate histone acetylation. Resveratrol was identified 
as activator of the conserved HDAC class III family of the 
sirtuins. Resveratrol has antioxidant, anti-inflammatory, 
and neuroprotective properties and can decrease the 
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toxicity and aggregation of Aβ peptides in the hippocam-
pus of AD patients, promote neurogenesis, and prevent 
hippocampal damage.157 The key neuroprotective mechan-
ism of resveratrol in AD seems to be linked with SIRT1 
activation.158 Although, clinical trials are evaluating the 
potential of resveratrol in the prevention of cognitive 
impairment and cerebrovascular dysfunction in AD,132,142 

evidence-based clinical studies are still insufficient. 
Citicoline or cytidine-5ʹ-diphosphate-choline is 
a naturally occurring cholinergic compound in human 
cells, with particularly high abundance in the brain tissue 
where it serves as a precursor to the neurotransmitter 
acetylcholine. It was proven to have beneficial effects on 
cognitive functions in AD patients when combined with 
memantine treatment,159 treatment with AChE 
inhibitors,160 or as triple therapy with memantine and 
AChE inhibitors.161 Citicoline is also an important inter-
mediate in the biosynthesis of phospholipids, essential 
components in neuronal membranes, and a potential neu-
roprotective agent due to its positive effect on sirtuin 1 
(SIRT1) expression.162 Hypermethylation of the SIRT1 
gene and decreased expression of SIRT1 is a common 
finding in AD, related to pathogenic mechanisms such as 
abnormal APP processing, neuroinflammation, neurode-
generation, and mitochondrial dysfunction.163 

Neuroprotective effects of citicoline could also be asso-
ciated with its ability to modulate the activity and expres-
sion of certain MAP-kinase family members, which are 
involved in neuronal death.164

Histone methyltransferase inhibitors, such as 
S-adenosyl methionine (SAM), which is one of the main 
methyl donors in the body, as well as DNA and histone 
methylation activator, might also have potential therapeu-
tic effects in AD.132 However, large loss of methyltrans-
ferase function has been associated with learning 
deficiencies in both AD patients and mouse models 
of AD. Therefore, only partial histone methyltransferase 
inhibition could help restore balanced enzyme function.141 

In summary, despite substantial progress, the role of his-
tone epigenetic modifications in AD and their potential 
for AD treatment require further investigation. In the 
future, obtained pharmacoepigenetic data could help to 
optimize the precision medicine approach to AD.

Numerous studies have reported dysregulation of spe-
cific miRNAs associated with AD pathology and sug-
gested that this dysregulated miRNA pattern could be 
used in order to improve AD diagnostics and serve as 
the basis for a novel and more effective therapeutic 

approach.165–167 Parsi et al168 suggested miR-16 as 
a good candidate for future development of AD therapy. 
Using brain delivery of miR-16 mimics in mice, they 
achieved the downregulation of APP, BACE1, and tau in 
a region-dependent manner. They also identified additional 
targets of miR-16, including nicastrin, γ-secretase, α-synu-
clein and transferrin receptor 1 (TfR1). Similar effect on 
tau protein expression was observed in Neuro2a cells for 
miR-132 mimics.169 Treatment with miR-132 mimics had 
a beneficial effect on memory function in mice and sup-
ported the role of miR-132/212 in the regulation of tau 
pathology.169 The importance of miR-132 in AD pathol-
ogy and its therapeutic potential were confirmed by intra-
cerebroventricular injections of miR-132 mimics, which 
resulted in upregulation of inositol 1,4,5-trisphosphate 
3-kinase B (ITPKB), an enzyme involved in Aβ deposition 
and tau phosphorylation.170 Transfection of PC12 and SH- 
SY5Y cells with miR-193a-3p mimics reduced Aβ- 
induced neurotoxicity by targeting the expression of phos-
phatase and tensin homolog (PTEN) gene.171 The miR-107 
was shown to have neuroprotective effects in PC12 cells 
and in mice after the treatment with 6-hydroxydopamine, 
suggesting that miR-107 plays an important role against 
neurotoxicity by inhibiting the expression of programmed 
cell death 10 (PDCD10) protein.172

Administration of miR-326 lentiviral vectors into AD 
mice inhibited c-Jun N-terminal kinase (JNK) signaling 
pathway, downregulated the expression of proto-oncogene 
VAV1, and inhibited tau phosphorylation, leading to 
improvements in cognitive function.173 Based on these 
results, miR-326 might also be a promising target for AD 
treatment. The use of miR-34c antagomir (AM34c) ame-
liorated the cognitive function in SAMP8 mice by nega-
tively regulating the expression of synaptotagmin 1.174 

A similar effect was achieved with miR-188-5p oligonu-
cleotide transfection in 5XFAD mouse model of AD.175 

Zolochevska et al176 used in vivo mouse model and intra-
cerebroventricular injections to demonstrate that miR-149, 
miR-485 and miR-4723 could prevent Aβ oligomer bind-
ing to the synapses. The miR-200b and miR-200c mimics 
were also able to prevent Aβ-derived toxicity in mice.177 

Injection of lentiviral particles encoding miR-31 in 3xTg- 
AD mice resulted in APP and BACE1 downregulation 
improved cognitive functions and decreased anxiety 
levels.178

Recently, the potential of blocking miR-592 in order to 
lower oxidative stress injury in astrocytes was reported 
and it was suggested to be mediated by dyslexia-associated 
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protein KIAA0319 and (Kelch-like ECH-associating pro-
tein 1) nuclear factor erythroid 2 related factor 2-antiox-
idant response element (Keap1/Nrf2/ARE) signaling 
pathway.179 Wang et al180 detected upregulation of miR- 
33 expression in SH-SY5Y cells after treatment with 
Aβ25–35. Downregulation of miR-33 suppressed inflamma-
tion, oxidative stress, and cell apoptosis, while also 
improving synaptic plasticity.180 The protective effect of 
miR-33 downregulation was achieved by suppressing Akt/ 
mammalian target of rapamycin (mTOR) signaling path-
way activation.180 Intra-hippocampal injection of miR- 
342-3p antagomir in 3xTg-AD mice confirmed the asso-
ciation between miR-342-3p and AD, suggesting that miR- 
342-3p inhibition can improve cognitive deficits.181 

Downregulation of miR-342-3p also attenuated the hippo-
campal Aβ-plaque burden revealing the important effect of 
miR-342-3p on Aβ metabolism pathways in AD and sug-
gesting its therapeutical potential.181 The miR-299-5p 
treatment was shown to affect the levels of autophagy 
related 5 (ATG5) protein and attenuate autophagy in dif-
ferent cell lines, while the injection of miR-299-5p into 
cerebral ventricles of AD mice model inhibited autophagy 
and apoptosis, resulting in improved cognitive perfor-
mance and pointing to miR-299-5p as a potential neuro-
protective factor in AD.182

Pereira et al183 made a big step towards the usability of 
miRNA-based therapeutics by successfully encapsulating 
pre-miR-29b into polyplexes and by verifying that chito-
san/pre-miR-29b and polyethylenimine/pre-miR-29b sys-
tems efficiently deliver pre-miR-29b to cell cytoplasm and 
reduce BACE1 expression and Aβ42 levels. Gabr and 
Brogi184 used high-throughput screening in order to iden-
tify multitargeted therapeutics for AD. They focused on 
ligands capable of inhibiting AChE and miR-15b biogen-
esis. The dual screening strategy yielded a multitarget- 
directed ligand, MG-6267, which acts through dual inhibi-
tion of AChE and miR-15b biogenesis.184 Cellular assays 
confirmed effectiveness of MG-6267 in protecting neuro-
blastoma SH-SY5Y cells from Aβ-induced cytotoxicity.184

Berberine, which is most commonly used to help treat 
diabetes, obesity, and inflammation, was shown to increase 
circRNA histone deacetylase 9 (circHDAC9) expression and 
decrease miR-142-5p level in human neuronal cells treated 
with Aβ42.185 Zhang et al185 suggested that berberine has 
neuroprotective effect in AD since it protected human neu-
ronal cells from neuronal damage induced by Aβ42 by reg-
ulating the circHDAC9/miR-142-5p axis. Berberine 
treatment, along with lncRNA β-amyloid cleaving enzyme 

1 antisense RNA (BACE1-AS) interference, protected neu-
ronal cells treated with Aβ25–35 and recovered their 
viability.186 Berberine was suggested to act, at least partly, 
through BACE1-AS/miR-132-3p axis, suggesting the poten-
tial of combined berberine treatment and BACE1-AS deple-
tion in AD therapy.186 Osthole, a naturally active coumarin, 
was shown to upregulate the expression of miR-101a-3p.187 

In APP/PS1 mice, osthole increased learning and memory 
abilities187 and enhanced cell viability, prevented cell death, 
and reversed the downregulation of synapsin-1, synaptophy-
sin, and postsynaptic density-95 (PSD-95) protein in 
a cellular model of AD.188 This effect of osthole was asso-
ciated with the upregulation of miR-9 and consequent 
decrease in calcium/calmodulin dependent protein kinase 
kinase 2 (CAMKK2) and phospho-AMP-activated kinase α 
(p-AMPKα) levels. Jiao et al189 additionally demonstrated an 
effect of osthole treatment on miR-107 expression. 
Administration of osthole to APP/PS1 mice increased miR- 
107 expression, resulting in BACE1 inhibition, significant 
decrease of Aβ in hippocampal and cortex regions, and in the 
improvement of memory and learning abilities.189 These 
results suggested protective effect of osthole and its potential 
to delay the development of AD.

Memantine which is traditionally used to treat patients 
with AD, was demonstrated to ameliorate BBB 
permeability.190 This NMDA receptor antagonist down-
regulated the expression of long non-coding RNA 
LINC00094 and decreased the permeability of BBB by 
upregulating miR-224-4p/miR-497-5p and thus inhibiting 
the expression of endophilin-1, a multifunctional protein 
which, among other things, regulates BBB permeability.190 

Therefore, a combination of LINC00094 silencing and 
memantine treatment could be a novel target in AD ther-
apy research. Donepezil, AChE inhibitor used for AD 
treatment, probably achieves its effect partially through 
its interaction with miR-206. Upregulation of miR-206- 
3p was detected in the hippocampus and cortex of APP/ 
PS1 mice and it was normalized after administration of 
donepezil, suggesting that miR-206-3p could be a novel 
pharmacological target in AD and a mediator of anti- 
dementia effects of donepezil.191

There are studies showing that resveratrol, a natural 
polyphenol found in red wine, can reduce neuroinflamma-
tion and Aβ deposition in patients with mild or 
moderate AD.192 The 52-week phase-II clinical trial gave 
evidence that resveratrol reduced Aβ40 in CSF and plasma 
samples of individuals with mild to moderate AD.193 It is 
interesting that resveratrol might exert its effect by 
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modulating the expression of specific miRNAs, including 
the downregulation of pro-inflammatory miR-155 and the 
upregulation of anti-inflammatory miR-663.194 All the 
above mentioned evidence led Kou and Chen195 to suggest 
resveratrol as a potential target in the prevention and/or 
treatment of AD. Simvastatin, used to lower cholesterol 
levels, was demonstrated to have a positive effect on 
memory deficits in patients with AD and in animal 
model of AD.196 Simvastatin reduced the expression of 
inflammatory cytokines and mediators, suppressed the 
apoptosis and contributed to the survival of neurons in 
the study conducted by Huang et al,196 suggesting that 
simvastatin could be used as an anti-AD treatment, achiev-
ing its effect through modulation of miR-106b expression. 
Therefore, miRNA-based therapy has a great therapeutical 
potential in complex diseases such as AD, in which the 
cause is related to a number of genes and biological 
processes. Future studies will try to implement anti- 
miRNAs or miRNA mimics as precision medicine 
approaches for the treatment of AD patients; however, 
there is still a long way to go before certain miRNAs 
will be available for AD therapy. Nevertheless, epigenetics 
represents a new powerful tool for precision medicine, by 
applying the knowledge of epigenetic mechanisms and 
epigenetic profiles of AD patients to personalized diagnos-
tics and treatments in AD.

Conclusion
Currently available medications for AD are based only on 
symptomatic therapy, and include AChE inhibitors and 
NMDA receptor antagonist. Clinical research has been 
extensively investigating treatments focusing of the hall-
mark pathology of AD, including amyloid deposition, tau 
hyperphosphorylation, neuroinflammation and vascular 
changes; however, so far without success since all new 
potential drugs failed to show significant clinical benefit. 
Due to the large heterogeneity of AD etiology, cognitive, 
behavioral and other symptoms, somatic comorbidities, 
and patient lifestyle, there is no preventive or therapeutic 
intervention suitable for all AD patients. Therefore, preci-
sion medicine strategy is urgently required to guide clin-
ical practice. In addition to factors such as dementia stage, 
medical and psychiatric comorbidity, as well as major 
cognitive symptoms and BPSD, the complex interplay 
between genetic variability and environmental factors 
moderated by epigenetic changes, should be taken into 
account for each individual AD patient. Both gut micro-
biota and epigenetic modifications represent new emerging 

drug targets, whose specific patterns could form the basis 
for novel individually tailored, patient-centered, multidis-
ciplinary approaches aimed to optimize personalized pre-
vention and treatment of AD. However, the successful 
application of precision medicine to AD demands 
a further extensive research of underlying pathological 
processes, as well as clinical and biological complexity 
of this multifactorial neurodegenerative disorder.
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