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Purpose: Skin cutaneous melanoma (SKCM) is the most aggressive skin cancer that results 
in high morbidity and mortality rate worldwide. Immune-related long non-coding RNAs 
(IRlncRs) play an important role in regulating gene expression in tumors. Therefore, in this 
study, we aimed to identify IRlncRs signature that could predict prognosis and therapeutic 
targets for melanoma irrespective of the gene expression levels.
Methods: RNA-sequencing data were obtained from The Cancer Genome Atlas (TCGA). 
IRlncRs were identified using co-expression analysis and recognized using univariate analysis. 
The impact of IRlncRs on survival was analyzed using a modified least absolute shrinkage and 
selection operator (Lasso) regression model. A 1-year survival receiver operating characteristic 
curve was constructed, and the area under the curve was calculated to identify the optimal cut-off 
point to distinguish between high and low-risk groups in patients with SKCM. Furthermore, 
integrative analysis was performed to identify the impact of clinicopathological features, che-
motherapeutic treatment, tumor-infiltrating immune cells, and mutant genes on survival.
Results: A total of 28 IRlncRs significantly associated with survival were identified. 
Seventeen IRlncRs pairs were used to build a survival risk model that could be used to 
distinguish between low and high-risk groups. The high-risk group was negatively associated 
with tumor-infiltrating immune cells and had a higher half inhibitory centration for che-
motherapeutic agents such as cisplatin and vinblastine. Additionally, the high-risk group had 
a positive correlation with the expression of specific mutant genes such as BRAF and KIT.
Conclusion: Our findings demonstrate that some IRlncRs have a significant correlation with 
survival and therapeutic targets for SKCM patients and may provide new insight into the 
clinical diagnosis and treatment strategies for SKCM patients.
Keywords: melanoma, immune-related gene, long non-coding RNA signature, prognosis, 
the cancer genome atlas

Introduction
Malignant melanoma is one of the most aggressive cancers and the fifth most common 
cancer in the United States.1 The incidence of skin cutaneous melanoma (SKCM) 
continues to increase in both males and females.2,3 In contrast, melanoma cancer mortality 
has declined with the emergence of targeted therapy and immunotherapy in recent years.4 

Surgery is the primary treatment option for localized disease with cure rates of 90%.5 

Other therapeutic approaches such as chemotherapy, radiotherapy, targeted therapy, and 
immunotherapy are increasingly being used to improve local control. Although the 
remarkable improvements in targeted therapy and immunotherapy,4 the prognosis of 
metastatic melanoma remains poor due to its intrinsic resistance to chemotherapy or 
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radiotherapy and aggressive clinical behavior.6 Therefore, it is 
crucial to explore new sensitive biomarkers to predict mela-
noma patients’ prognosis and further guide the proper indivi-
dual treatment strategies.

Long non-coding RNA (lncRNA) is a class of RNA 
transcripts more than 200 nucleotides, which take part in 
gene expression through histone modification, transcrip-
tional, translational, and post-transcriptional regulations.7 

Although lncRNAs include most transcripts in the mam-
malian genomes, their biological functions remain largely 
unknown.8 Recent studies indicated that lncRNAs were 
involved in human diseases such as various cancer.9–11 

For instance, lncRNA DLX6-AS1 promoted proliferation, 
migration, and invasion of liver cancer via increasing the 
expression of WEE1.9 Jin et al found that overexpression 
of lncRNA MORT inhibited cell proliferation in oral squa-
mous cell carcinoma through downregulating ROCK1.10 

Various lncRNAs have also been linked with tumor pro-
gression in melanoma. MEG3 was found to promote 
growth, metastasis, and formation of melanoma via regu-
lating the miR-21/E-cadherin axis.11 MALAT1 was found 
to be highly associated with lymph node metastasis, and 
UCA1 was related to advanced melanoma.12 Moreover, 
lncRNAs regulate genes related to the activation of 
immune cells, thus leading to tumor immune-cell infiltra-
tion while altering the immune microenvironment.13,14 

These findings suggest that lncRNAs could be used as 
predictive biomarkers for metastatic melanoma.

Therefore, the construction of a model to accurately 
predict the prognosis may play an important role in 
improving survival in SKCM patients. The signatures 
related to tumor immune infiltration reveal promising 
predictive and prognostic effectiveness in the evaluation, 
diagnosis, and treatment of cancer.15–17 The immune- 
related long non-coding RNAs (IRlncRs) signatures 
further improve the accuracy of prediction and 
diagnosis.18–21 Moreover, the use of dual biomarkers 
was found to increase the prediction accuracy of diagnos-
tic models for cancers when compared with single 
genes.22 However, there are few similar models available 
for SKCM. In this study, a novel modeling algorithm, 
paring, and iteration were utilized to establish an 
IRlncRs signature that could be used to improve the 
diagnosis of SKCM irrespective of the specific expression 
levels. Then, we validated its predictive value among 
patients with SKCM, as well as its diagnostic effective-
ness, tumor immune infiltration, and chemotherapeutic 
efficacy.

Materials and Methods
Data Download and Pretreatment
The workflow used throughout this study is illustrated in 
Figure 1. The RNA-sequencing (RNA-Seq) data of 470 
SKCM samples were downloaded from The Cancer Genome 
Atlas (TCGA) data portal (https://portal.gdc.cancer.gov/). The 
corresponding patients’ clinical data, such as age, survival 
information, and clinical stage, were also derived from 
TCGA. The clinicopathological characteristics of these 
patients are listed in Table 1. Gene transfer annotation files 
were downloaded from Ensembl (http://asia.ensembl.org) to 
differentiate the messenger RNAs (mRNAs) from lncRNAs 
for further analysis. The RNA-Seq data files were merged into 
a matrix file using the merge language script Perl 5.32.1 (http:// 
www.perl.org/). Similarly, we used a symbol script in the Perl 
language to convert the Ensembl IDs of genes into a matrix of 
gene symbols.

Furthermore, the immune-related genes (ir-genes) list was 
downloaded from the ImmPort database (http://www.immport. 
org). It was used to identify IRlncRs through the co-expression 
analysis. Ir-genes with correlation coefficients higher than 0.6 
and a p-value less than 0.001 were classified as IRlncRs.

Pairing IRlncRs
The IRlncRs were cyclically paired individually, and a 0 or 1 
matrix was constructed using the assumption that D is equal to 
IRlncR B plus IRlncR C; D is defined as 1 if the expression of 
IRlncR B is higher than IRlncR C, otherwise, D is defined as 0. 
Then, we further screened the constructed 0 or 1 matrix. If the 
expression quantity of the IRlncR pairs was 0 or 1, the relation-
ship between pairs and prognosis was disregarded, as the 
absence of a specific grade could not correctly predict the 
patient’s survival outcome. The IRlncRs-pairs were considered 
valid when the expression quantity of the IRlncRs-pairs was 
either 0 or 1 and accounted for 20% to 80% of the total pairs.

Acquisition of Survival-Related IRlncRs 
(sIRlncRs)
To get the sIRlncRs, we took the intersection of the survi-
val information and the IRlncRs-pairs using the limma 
package. The survival time of SKCM patients ranges 
from 0 to 11,252. Then, univariate Cox regression analysis 
was performed to identify sIRlncRs from the IRlncRs- 
pairs. The analysis was carried out through the 
R packages “survival”, and IRlncRs-pairs with p < 0.01 
for survival comparison were considered as sIRlncRs. 
These sIRlncRs were used for subsequent analysis.
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Construction of a Risk Model to Evaluate 
the Risk Score
The prognosis-related sIRlncRs were identified using the least 
absolute shrinkage and selection operator (Lasso) Cox analysis 
with 10,000-rounds cross-validation to prevent overfitting. 
Then, multivariate Cox regression analysis was performed on 
these prognosis-related sIRlncRs to establish a prognostic 
sIRlncRs signature and calculate the coefficients.23 The forest 
map was used to visualize the result of multivariate Cox 
regression analysis. The risk score of the prognostic sIRlncRs 
signature for each patient was calculated using the following 
formula:

Risk score = (ExpressionsIRlncRs1×CoefficientsI 
RlncRs1) + (ExpressionsIRlncRs2×CoefficientsIRlncRs2) 
+ … + (ExpressionsIRlncRs28 × CoefficientsIRlncRs28).

We calculated the prognostic sIRlncRs signature risk score 
according to a linear combination of the expression level of 
sIRlncRs weighted by the regression coefficient (β). The β was 
calculated from the univariate Cox regression hazard analysis 
using log-transformed hazard ratios (HR).23–25

Validation of the Constructed Risk Model
We assessed the predictive value of the model using the time- 
dependent receiver operating characteristic (ROC) curve and 

Figure 1 The process flow of this study.
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calculated the area under the curve (AUC) using the 
“survivalROC” package.25 The 1-, 2-, and 3-year ROC curves 
of the model were also plotted. The patients were divided into 
high-risk and low-risk groups for subsequent analysis accord-
ing to the optimal cut-off value calculated by the “survminer” 
package. The Kaplan-Meier survival analysis was used to 
analyze the survival difference between the two groups. 
Furthermore, to confirm whether the model was an indepen-
dent factor for SKCM patients’ survival, we performed uni-
variate and multivariate Cox regression analyses. To confirm 

the model’s clinical application value, we analyzed the rela-
tionship between the model and clinicopathological character-
istics with a chi-square test. A band diagram was plotted and 
labeled according to the p-value as follows: <0.001 = ***<0.01 
= * *and <0.05 = *. The Wilcoxon signed-rank test was used to 
compare the differences in the risk score among groups with 
different clinicopathological characteristics. The box diagram 
showed the analysis results. The R packages utilized in these 
operations were survival, pHeatmap, and ggupbr.

Impact of Tumor-Infiltrating Immune Cells 
on Risk Scores
To evaluate the relationship between the risk score and 
immune-cell characteristics, we utilized the widely acknowl-
edged methods to calculate the immune infiltration statuses 
among the samples from the TCGA project of the SKCM 
dataset, including TIMER, CIBERSORT, XCELL, 
QUANTISEQ, MCPcounter, EPIC, and CIBERSORT-ABS. 
The Wilcoxon signed-rank test was performed to analyze the 
differences in tumor immune infiltrating cell content between 
high-risk and low-risk groups of the model. Spearman correla-
tion analysis was used to evaluate the relationship between the 
risk score and the immune infiltrated cells. The results of both 
tests were further illustrated through the use of a boxplot dia-
gram. The data were analyzed using the R ggplot2 packages, 
and a p-value below 0.05 was considered statistically 
significant.

Clinical Performance of the Model for 
Identification of Gene Mutations and 
Treatment
According to the national comprehensive cancer network 
(NCCN), paclitaxel, vinblastine, and cisplatin are commonly 
used cytotoxic drugs for the management of SKCM. The 
clinical performance of the model was estimated by calculating 
the half-maximal inhibitory concentration (IC50) of these drugs 
using the SKCM dataset of the TCGA. Wilcoxon signed-rank 
test analyzed the difference in the IC50 between the high-risk 
and low-risk groups, using R language loaded with packages 
pRRophetic and ggplot2. To further explore the clinical per-
formance of the model, we investigated the relationship 
between this model and immune checkpoint inhibitors includ-
ing, CTLA4 and PD1. Furthermore, according to the NCCN 
guidelines, we evaluated the correlation between the risk and 
specific mutant genes (BRAF, KIT, and NRAS) using 
R packages limma and ggupbr.

Table 1 Clinicopathological Characteristics of SKCM Patients 
from TCGA Database

Clinicopathological 
Characteristics

Number of SKCM Patients 
(N=470)

Age (years)

≤60 250 (53.2%)

>60 212 (45.1%)

Unknown 8 (1.7%)

Gender

Male 290 (61.7%)

Female 180 (38.3%)

Stage

Stage 0 7 (1.5%)

Stage I 77 (16.4%)

Stage II 140 (29.8%)

Stage III 171 (36.4%)

Stage IV 23 (4.9%)

Unknown 52 (11.1%)

T classification

Tis 8 (1.7%)

T0 23 (4.9%)

T1 42 (8.9%)

T2 78 (16.6%)

T3 90 (19.1%)

T4 153 (32.6%)

Unknown 76 (16.2%)

N classification

N0 235 (50.0%)

N1 74 (15.7%)

N2 49 (10.4%)

N3 55 (11.7%)

Unknown 57 (12.1%)

M classification

M0 418 (88.9%)

M1 24 (5.1%)

Unknown 28 (6.0%)

Survival status

Alive 248 (52.8%)

Dead 222 (47.2%)

Abbreviation: SKCM, skin cutaneous melanoma.
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Results
Establishment of IRlncR Pairs and a Risk 
Assessment Model
A total of 753 IRlncRs were identified following co-expression 
analysis between known ir-genes and lncRNAs. These are 
summarized in Table S1. The iteration loop and the 0 or 1 
matrix screening identified 9107 valid IRlncR pairs, following 
the removal of clinical data with non-complete survival 

information. The IRlncR pairs were added with survival infor-
mation by intersecting complete tumor survival information 
and IRlncR pairs. After univariate Cox regression analysis, 
a total of 2345 sIRlncRs pairs were identified, as illustrated 
in Table S2. Using modified Lasso regression analysis (Figure 
2A and B, and Table S3), 28 sIRlncRs were extracted, 17 of 
which were included in a Cox proportional hazards model 
using the stepwise method (Figure 2C). The AUC of the 

Figure 2 Identification of survival-related IRlncRs using LASSO regression analysis and multivariate Cox regression analysis. (A) LASSO coefficient profiles of the 28 sIRlncRs of SKCM. 
(B) Plots of the cross-validation error rates. Each dot represents a lambda value along with error bars that represent the confidence interval for the cross-validated error rate. The top of 
the plot gives the size of each model. The vertical dotted line indicates the value with the minimum error and the largest lambda value where the deviance is within one SE of the minimum. 
(C) Forest plots of HR of sIRlncRs pairs obtained by multivariate Cox regression analysis. A total of 6 DEGs were found to be prognostic factors. The genes with HR < 1 are protective 
factors, while the ones with HR > 1 are risk factors in SKCM. 
Abbreviations: IRlncRs, immune-related long non-coding RNAs; LASSO, least absolute shrinkage and selection operator; SKCM, skin cutaneous melanoma; HR, hazard 
radio; DEGs, differentially expressed genes.
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one-year ROC of the 17 pairs resulted in an optimal cut-off 
point of 1.613 (Figure 3A). The two- and three-year ROCs 
further validated the optimal cut-off point with an AUC above 
0.784 for both curves (Figure 3B). ROC curves were also used 
to validate the impact of clinical characteristics on the risk 
score (Figure 3C). A total of 454 cases of patients with 
SKCM were identified from TCGA. The risk scores were 
calculated for all cases.

Clinical Evaluation by Risk Assessment 
Model
According to the optimal cut-off point validated previously, we 
divided the SKCM samples into the high-risk group and the 
low-risk group. The risk curve and scatterplot were drawn to 
the risk score and survival status of each SKCM sample 
(Figure 4A). These results suggested that patients in the low- 
risk group had better clinical outcomes than those in the 

Figure 3 Primary evaluation of the risk model by sIRlncRs pairs. (A) Plot a curve of AUC value generated by ROCs of 1-year and to identify the optimal cut-off value of the AUC. (B) The 
1-, 2-, and 3-year survival receiver operating characteristic curves. (C) A comparison of 1-year ROC curves with other common clinical characteristics showed the superiority of the risk 
score. 
Abbreviations: sIRlncRs, survival-related IRlncRs; AUC, area under the curve; ROC, receiver operating characteristic.
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high-risk group. Kaplan-Meier curve showed that patients in 
the low-risk group had better overall survival (OS) than those 
in the high-risk group (p<0.001) (Figure 4B). The result of 
univariate analysis exhibited that age (P < 0.001), clinical stage 
(P < 0.001), T stage (P < 0.001), N stage (P < 0.001) and risk 
score (P < 0.001) were significantly correlated with OS (Figure 
5A). Multivariate analysis further suggested that risk score (P < 
0.001) was an independent prognostic predictor for SKCM 
patients (Figure 5B). Furthermore, chi-square tests found the 
relationship between the prognosis of SKCM and clinico-
pathological characteristics, including age, gender, clinical 
stage, T stage, N stage, M stage. The strip chart (Figure 6A) 
and scatter diagrams showed that T stage (Figure 6B), N stage 
(Figure 6C), M stage (Figure 6D), and age (Figure 6E) were 
significantly related to the risk score.

Association of Tumor-Infiltrating Immune 
Cells with the Risk Assessment Model
Because the lncRNAs and infiltrating immune cells played 
essential roles in the tumor microenvironment, we investigated 
the relationship between the model and the tumor immune 
microenvironment. We found that the immune score and 
microenvironment score was significantly higher in the low- 
risk group than in the high-risk group by the Wilcoxon signed- 

rank test (Figure 7A and B p<0.001). Furthermore, we showed 
the differences in infiltrating immune cells between high-risk 
and low-risk groups in Figure S1–7. A detailed Spearman 
correlation analysis was conducted, and the bubble chart exhib-
ited that the high-risk group was more negatively associated 
with tumor-infiltrating immune cells such as B cell, CD4+ 

T cells, monocytes, and CD8+ T cells, whereas they were 
positively associated with M0 macrophages, and resting NK 
cell (Figure 7C, and Table S4).

Verification of the Correlation Between 
the Risk Model and the IC50 of Common 
Chemotherapeutic Drugs
Because cisplatin, vinblastine, and paclitaxel are recom-
mended for cutaneous melanoma treatment by NCCN guide-
lines, we assessed the correlation between the model and the 
efficacy of common chemotherapeutics in treating cutaneous 
melanoma in the TCGA project of the SKCM dataset. The 
high-risk score was significantly associated with a higher IC50 

of chemotherapeutics such as cisplatin (Figure 8A, p<0.001), 
vinblastine (Figure 8B, p<0.001), and paclitaxel (Figure 8C, 
p=0.097). Furthermore, we evaluated whether the model could 
predict patients’ response to immune checkpoint inhibitors 
including, CTLA4 and PD1. The results showed that patients 

Figure 4 Risk model for prognosis prediction. (A) From top to bottom are the risk score, survival status distribution of each patient. (B) Overall survival curves of the 
prognostic signature, in which the blue line represents the low-risk subgroup and the red line represents the high-risk subgroup.
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with low risk-score have better therapeutic effects than those 
with high risk-score (Figure 9A–D, p<0.01). These data sug-
gested that the model might predict the treatment response to 
specific chemotherapy agents and immunotherapies.

Correlation Between the Risk Model and 
Specific Mutant Genes in SKCM
Specific gene mutations (BRAF, NRAS, KIT), which are the 
most common mutant genes in melanoma, had important 

diagnostic and prognostic implications according to the 
NCCN guideline. We also assessed the correlation between 
the risk and specific mutant genes in the TCGA project of 
the SKCM dataset. The high-risk group had a positive cor-
relation with the presence of particular mutant genes, includ-
ing BRAF (Figure 10A, p<0.001), KIT (Figure 10B, 
p<0.001), and NRAS (Figure 10C, ns). The model con-
firmed that the presence of these mutant genes has important 
diagnostic and prognostic implications in SKCM.

Figure 5 Univariate and multivariate Cox regression analysis of the risk model and clinicopathologic parameters (A-B).
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Figure 6 Clinical evaluation by the risk model. A strip chart (A) along with the scatter diagram showed that T stage (B), N stage (C), M stage (D), and age (E) were 
associated with the risk score. 
Notes: *P < 0.05 and **P < 0.01.
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Figure 7 Estimation of tumor-infiltrating cells by the risk model. Patients in the high-risk group were more negatively associated with tumor-infiltrating immune cells (A) and 
microenvironment (B). The bubble chart (C) exhibited the detailed correlation between different tumor-infiltrating immune cells.
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Discussion
Despite the recent development of immunotherapy and tar-
geted therapy in the management of SKCM, the treatment 
outcomes for patients with advanced disease are still poor.26 

Tumor molecular features impact treatment response and 
survival in patients with SKCM, even if these patients have 
similar clinical risk factors.27 Thus, apart from traditional 
clinical risk factors, it is imperative to identify additional 
molecular prognostic markers. Previous studies have con-
cluded that the immune system plays both positive and 
negative roles in regulating tumorigenesis, cancer progres-
sion, and metastasis.26 Correspondingly, lncRNAs are 
involved in regulating the gene expression of the immune 
system.14 Therefore, we constructed a model focusing on 

IRlncRs and tumor-infiltrating immune cells to guide the 
diagnosis, treatment, and prognosis of SKCM. This study 
established an excellent model with two-lncRNA combina-
tions, which was inspired by the strategy of ir-gene pairing. 
The advantage of this technique is that it is not dependent on 
the expression levels of the gene signature.28

In this study, we downloaded raw datasets of lncRNAs 
from TCGA and adopted a differential co-expression ana-
lysis to pair IRlncRs. Then, IRlncRs-pairs were identified 
using an improved method of cyclically single pairing 
along with a 0 or 1 matrix. We further screened for 
sIRlncRs-pairs using univariate, Lasso, and multivariate 
Cox regression analysis. The AUC value of the 1-year 
ROC curve was calculated to estimate the optimal cut-off 

Figure 8 Assessment of the IC50 of common chemotherapeutic drugs by the risk model. Box plots revealed that the high-risk score was significantly associated with a higher 
IC50 of chemotherapeutics such as cisplatin (A, p<0.001), vinblastine (B, p<0.001), and paclitaxel (C, p=0.097). 
Abbreviation: IC50, half-maximal inhibitory concentration.
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point to differentiate between the high-risk and low-risk 
patients.In addition, we assessed the impact of various 
clinical variables, including clinical-pathological charac-
teristics, tumor-infiltrating immune cells, chemotherapy, 
and gene mutation, on the prediction model’s accuracy.

A 6-lncRNA signature was set up for predicting prog-
nosis in melanoma patients.29 Generally, lncRNAs possess 
significant biological functions and characteristics. Our 
algorithm could initially identify IRlncRs and pair the 
most significant IRlncRs. Thus, the higher or lower 
expressed pairs could be detected instead of calculating 
each lncRNA’s specific expression value. This novel 
model has a clinical advantage as it facilitates the distinc-
tion between high- and low-risk groups. As lncRNAs are 
correlated with ir-genes, these lncRNAs may be involved 

in regulating the tumor immune microenvironment or the 
immune cells. The models of IRlncRs were applied to 
predict the prognosis of breast cancer,30 hepatocellular 
carcinoma,31 clear cell renal cell carcinoma,20 and pan-
creatic cancer,32 except for melanoma. In this study, we 
first established a novel model with lncRNAs signature to 
predict melanoma prognosis. In this model, several 
sIRlncRs had been found to play an important role in the 
malignant phenotypes of various cancer types, such as 
AC022509.2,30 LINC02544,33 AC091057.1,34 HLA- 
DQB1-AS1,34 SEMA6A-AS1,35 AL365361.1,36,37 and 
UBA6-AS1.38 For example, UBA6-AS1 promoted 
GBM’s malignant progression by targeting the miR-760/ 
HOXA2 axis. Therefore, this model could be used to 
identify novel biomarkers.

Figure 9 The association between the risk model and the efficacy of immunotherapies (A–D).
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To increase the efficacy and accuracy of the risk predic-
tion model, we calculated every AUC value to determine the 
maximum value for the optimal model and then compared it 
with other clinical parameters. We also calculated an optimal 
cut-off point with the highest specificity and sensitivity to 
distinguish between the high- and low-risk groups instead of 
just using the median value.Then, we reevaluated the survi-
val outcome by performing the chi-square test and Wilcoxon 
signed-rank test to identify the impact of clinicopathological 
characteristics, chemotherapy efficacy treatment, tumor 
immune infiltration, and mutant gene. These findings sug-
gested that the upgraded algorithm worked well irrespective 
of the patients’ clinicopathological characteristics.

To investigate the relationship between tumor-infiltrating 
immune cells and risk scores, we used seven standard 
acknowledged methods to estimate the immune-infiltrating 

cell, including XCELL,39 TIMER,40 QUANTISEQ,41,42 

MCPcounter,43 EPIC,44 CIBERSORTABS,45 and 
CIBERSORT.46,47 Through the above-integrated bioinfor-
matics analysis, we found that sIRlncRNA pairs were more 
positively correlated with tumor-infiltrating immune cells 
such as CD4+T cells, natural killer cells, neutrophils, and 
myeloid dendritic cells. These immune cells were an impor-
tant part of the tumor microenvironment and involved in 
tumorigenesis, invasion, and metastasis.48 Our model sug-
gested that the risk scores were associated with sensitivity to 
chemotherapeutics (vinblastine, cisplatin), immunotherapies 
and gene mutations (BRAF, KIT), which further validated 
the model’s prediction accuracy.

However, this study has some shortcomings and limita-
tions. For example, the raw data downloaded from TCGA was 
relatively insufficient. We did not manage to retrieve datasets 

Figure 10 Verification of the correlation between the risk model and the most frequently mutated genes in SKCM. Violin plots showed that the high-risk group had 
a positive correlation with the presence of particular mutant genes, including BRAF ((A), p<0.001), KIT ((B), p<0.001), and NRAS ((C), ns). 
Abbreviation: SKCM, skin cutaneous melanoma.
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simultaneously, including information on lncRNA expression 
levels, survival outcomes, and clinicopathological characteris-
tics in patients with SKCM. The constructed model required 
external validation as each sample had a different expression 
level, which may lead to an unreliable model. To overcome this 
problem, a 0 or 1 matrix was created to screen all IRlncRs-pairs 
and hence minimize sample errors due to differences in expres-
sion. Moreover, various methods were used to validate and 
optimize this novel modeling algorithm. Our model was accep-
table based on these results despite the lack of external data and 
experimental validation. However, external validation by other 
clinical datasets and experiments is recommended.

Conclusion
A novel prognosis model for SKCM was constructed 
based on 17 pairs of IRlncRs. These IRlncRs might parti-
cipant in the development and prognosis of SKCM and 
could be a powerful indicator of the clinical outcome of 
SKCM patients. However, further research is required to 
verify the efficacy of this model clinically.
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