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Abstract: Globally, about 400 million people reside at terrestrial altitudes above 1500 m, 
and more than 100 million lowlanders visit mountainous areas above 2500 m annually. The 
interactions between the low barometric pressure and partial pressure of O2, climate, 
individual genetic, lifestyle and socio-economic factors, as well as adaptation and acclima-
tization processes at high elevations are extremely complex. It is challenging to decipher the 
effects of these myriad factors on the cardiovascular health in high altitude residents, and 
even more so in those ascending to high altitudes with or without preexisting diseases. This 
review aims to interpret epidemiological observations in high-altitude populations; present 
and discuss cardiovascular responses to acute and subacute high-altitude exposure in general 
and more specifically in people with preexisting cardiovascular diseases; the relations 
between cardiovascular pathologies and neurodegenerative diseases at altitude; the effects 
of high-altitude exercise; and the putative cardioprotective mechanisms of hypobaric 
hypoxia. 
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Introduction
Worldwide, about 400 million people reside at altitudes above 1500 m (~5000 ft)1 

and more than 100 million lowlanders visit areas above 2500 m (~8000 ft) 
annually.2 Altitude ranges are commonly defined as high altitude (1500–3500 m; 
~5000–11,500 ft), very high altitude (3500–5500 m; ~11,500–18,000 ft), and 
extreme altitude (>5500 m; >18,000 ft).3 Figure 1 shows the altitude ranges of 
some of the world’s major mountainous regions.

At 5052 m (16,575 ft) above sea level, the world’s highest city is La Rinconada, 
Peru (population c. 50,000 in 2020). The highest major city, El Alto, Bolivia 
(population c. 940,000 in 2020) lies at 4150 m (13,615 ft). These and other sizeable 
cities are in very high-altitude regions (Figure 1).

Whereas highlanders are chronically exposed to altitude and its associated 
climatic conditions, high-altitude travelers with or without pre-existing diseases, 
including tourists, climbers and trekkers, mine and road workers, porters and 
pilgrims, experience less protracted high-altitude exposures of hours to weeks. 
Climate changes progressively with increasing altitude, characterized by decreasing 
barometric pressure and partial pressure of inspired O2, declining ambient tempera-
ture and more intense ultraviolet solar radiation.4 Although all these conditions may 
contribute to the development and progression of chronic and acute high-altitude 
illnesses, the reduced partial pressure of oxygen (hypobaric hypoxia) is considered 
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the primary cause.5–8 Genetic adaptations enable people to 
permanently live at altitudes up to 5000 m (~16,400 ft).9,10 

The highest altitude tolerable for prolonged sojourns is 
approximately 6000 m (~19,700 ft), which mine workers 
on Volcán Aucanquilcha, Chile endured for up to two 
years (West 1986). Appropriate acclimatization strategies 
allow short-term stays at altitudes higher than 
7000 m (~23,000 ft) even for lowlanders, as demonstrated 
by many mountaineers.11

Besides genetic and lifestyle factors, chronic exposure 
to high-altitude environments may impact cardiovascular 
health, disease development and life-expectancy.12–18 

While acute ascent to high altitudes may adversely affect 
cardiovascular health in lowlanders, particularly in those 
with pre-existing diseases,19,20 acclimatization diminishes 
this risk and hypoxia conditioning can even benefit and 
protect the cardiovascular system.21,22 Not surprisingly, 
the interactions between the high-altitude climate, indivi-
dual genetic, life-style and socio-economic factors, adapta-
tion and acclimatization processes to various altitudes are 
extremely complex, restricting straightforward predictions 
of high-altitude sojourns on health-related outcomes 

concerning the cardiovascular system. Therefore, this 
review aims to interpret available epidemiological obser-
vations in high-altitude populations, present and discuss 
cardiovascular responses to acute and subacute high- 
altitude exposure in general and particularly in people 
with preexisting cardiovascular diseases, the relations 
between cardiovascular pathologies and neurodegenerative 
diseases at altitude, the effects of exercise at altitude and 
the putative cardioprotective mechanisms of adaptations to 
acute and chronic hypoxia.

Living at High Altitude: 
Epidemiological Considerations
Epidemiological data from populations permanently resid-
ing at high-altitude strongly indicate that environmental 
factors differently impact the development of cardiovascu-
lar diseases, depending on the altitude.17,18,23,24 While, for 
instance, lower mortality from cardiovascular diseases, 
stroke, cancer, and Alzheimer’s disease was reported in 
high altitude regions in the Swiss18 and Austrian24 Alps 
and the western United States17,18,24,25 mortality from 

Figure 1 Partial pressure of inspired O2 (PIO2) is decreased in mountainous regions. Representative cities in major mountain ranges are shown.  
Notes: The map is courtesy of NASA/JPL-Caltech and adapted from NASA/JPL-Caltech. Aster Global Digital Elevation Map (GDEM) . Available at: https://asterweb.jpl.nasa. 
gov/images/GDEM-10km-colorized.png. Accessed February 28, 2021.210

https://doi.org/10.2147/VHRM.S294121                                                                                                                                                                                                                               

DovePress                                                                                                                                         

Vascular Health and Risk Management 2021:17 318

Mallet et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://asterweb.jpl.nasa.gov/images/GDEM-10km-colorized.png
https://asterweb.jpl.nasa.gov/images/GDEM-10km-colorized.png
https://www.dovepress.com
https://www.dovepress.com


pulmonary morbidities (eg, emphysema, COPD) seemed 
to increase in high altitude residents.17,26 Thus, consider-
ing (patho) physiological responses to hypobaric altitude/ 
hypoxia, here we distinguish moderate altitude (1500 to 
2500 m)27 and high altitude from 2500 m to about 5000 m, 
the highest permanent human residence.28 Data on the 
altitude-dependent prevalence of risk factors for cardio-
vascular diseases, eg, systemic hypertension, dyslipidemia 
and diabetes mellitus, and cardiovascular disease mortality 
may provide insights regarding the benefits vs detriments 
of living at moderate and high altitude, and the underlying 
mechanisms.

Systemic Hypertension
Reports of the effects of altitude on the prevalence of 
systemic hypertension, usually defined as systolic blood 
pressure ≥140 mmHg and/or diastolic blood pressure ≥90 
mmHg, are conflicting. A survey of 1631 Tibet inhabitants 
living at three different altitude ranges between 2700 and 
4505 m revealed a decrease in hypertension prevalence 
from 40.6% to 20.4% from the lowest to the highest range, 
associated with decreasing body mass index (BMI).29 In 
contrast, systematic review of 8 cross-sectional studies 
totaling 16,913 individuals identified a close direct corre-
lation between altitude and the prevalence of systemic 
hypertension in Tibet inhabitants, with a 2% increase in 
hypertension incidence per 100 m gain in altitude above 
3000 m.30 Concordant with these findings, another meta- 
analysis of 40,854 Tibetans living at ≥2400 m reported 
increases in systolic and diastolic blood pressures of 17 
and 9.5 mmHg, respectively, per 1000 m gain in 
elevation.31 However, in non-Tibetan, primarily Andean 
highlanders, blood pressure trended downward, albeit not 
significantly, with increasing altitude.31

The observed differences between Andean and Tibetan 
highlanders may represent the vascular consequences of 
divergent adaptation patterns.32 In Andean highlanders, 
chronic mountain sickness and pulmonary artery hyperten-
sion are more prevalent, while systemic blood pressure 
and cerebral blood flow are lower than in Tibetan 
highlanders.33 The mechanisms underlying these differ-
ences may primarily relate to regulation of gene expres-
sion, eg, activation of hypoxia-responsive gene 
transcription by hypoxia-inducible factors. Notably, 
a recent study suggested that conventional blood pressure 
measurement may underestimate hypertension prevalence 
in Andean highlanders, while ambulatory blood pressure 
monitoring unmasks hypertension.34 Collectively these 

studies identify genetic adaptations, lifestyle and climatic 
factors as pivotal determinants of blood pressure responses 
to living at high altitude. Decreased appetite and caloric 
intake, and increased energy expenditure due to low ambi-
ent temperature, likely contribute to lower BMI and 
reduced risk of hypertension at high altitude.4,29

Dyslipidemia
Studies of residents of Lhasa, Tibet (3660 m) demon-
strated high prevalence of hypertriglyceridemia in males 
and hypercholesterolemia in both sexes, and lower circu-
lating high-density lipoprotein (HDL) cholesterol contents 
in females.35 Similar findings were reported from the 
moderate-altitude (1500–2500 m) Yunnan-Kweichow 
Plateau in Southwestern China, with a higher prevalence 
of hyperlipidemia, hypercholesterolemia, and hypertrigly-
ceridemia in males, and slightly lower HDL cholesterol 
and higher LDL cholesterol values in females.36 These 
authors attributed the prevalence of hyperlipidemia mainly 
to unhealthy living habits associated with obesity. By 
contrast, highly educated adults living in Riobamba, 
Ecuador (2754 m) had a lower prevalence of metabolic 
syndrome, hypercholesterolemia and hyperglycemia than 
lowlanders living on the Ecuadorian coast,37 which may 
have been attributable to reduced appetite and self- 
reported lower energy intake at altitude. Socio-cultural 
and socio-economic factors explained inter-individual var-
iation of hypercholesterolemia in the Swiss alpine popula-
tion, while no specific altitude effects were detected.38 

Again, genetic, life-style, and socio-economic factors are 
probably more important than altitude-related low tem-
perature and increased energy expenditure.

Diabetes
A cross-sectional study of 284,945 US residents revealed 
an inverse association (adjusted for multiple confounders) 
between altitude and diabetes prevalence.39 Compared to 
low-altitude (0–499 m) residents, the odds ratio for dia-
betes was 0.95 (95% CI: 0.90–1.01) between 500 and 
1499 m, and 0.88 (0.81–0.96) between 1500 and 
3500 m. Notably, the inverse association was only true 
for men (0.84; 0.76–0.94), not women (1.09; 0.97–1.22).39 

Data from Tibetans living between 2900 and 
4800 m suggested that altitude-related hypoxemia and 
polycythemia were closely associated with glucose intol-
erance and diabetes mellitus after adjusting for lifestyle.40 

As mentioned above, hyperglycemia was less prevalent in 
Ecuadorian Altiplano residents (~2770 m) than in 
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lowlanders.37 As diabetes type 2 is closely associated with 
obesity, lower obesity prevalence (adjusted for multiple 
covariates including physical activity) with increasing alti-
tude may largely explain the reduced diabetes risk in 
highlanders,41 underscoring the importance of altitude 
and cold on caloric intake-expenditure balance and BMI.

Chronic Mountain Sickness (CMS)
Chronic mountain sickness (CMS), also known as 
Monge’s disease, is a syndrome affecting about 5% to 
10% of the 140 million people permanently living at 
high altitude.42 It seems to be a consequence of progres-
sive loss of ventilatory rate, increasingly observed with 
aging and resulting in excessive hypoxemia and poly-
cythemia (Hb ≥19 g/dL for women and Hb ≥21 g/dL for 
men).43 This syndrome is frequently associated with pul-
monary hypertension, and in advanced cases, it may pro-
gress to cor pulmonale and congestive heart failure.43 

Periodic travel to lower altitudes is recommended for 
those with rather mild symptoms, but severe cases should 
move permanently to lower altitudes.44

Mortality from Cardiovascular Diseases
In contrast to the inconsistent findings regarding the alti-
tude-dependent prevalence of risk factors for cardiovascu-
lar diseases, data on the cardiovascular mortality risk are 
more consistent, at least for the moderate altitude regions 
of the Alps. Increasing altitude was associated with lower 
coronary heart disease and stroke mortality rates for both 
sexes in Switzerland18 and lower mortality from coronary 
artery disease, male colorectal cancer and female breast 
cancer in Austria.24 Faeh and colleagues reported respec-
tive 22% and 12% reductions in mortality from coronary 
heart disease and stroke per 1000 m gain in elevation.18 

Adjusted analysis revealed that the decreased mortality 
probably was not due to reductions in classic cardiovas-
cular risk factors but instead might be explained by geo-
graphic factors like altitude/hypoxia and/or the effects of 
solar radiation on Vitamin D. Accordingly, the Austrian 
study revealed reductions of coronary artery disease mor-
tality at 1000–2000 m vs <250 m of 28% in men and 31% 
in women.24 These findings are concordant with life 
expectancy increases of 1.2–3.6 years in men and 
0.5–2.5 years in women residing in US counties with 
mean altitudes >1500 m vs residents of counties within 
100 m of sea level.17

Detrimental effects of altitude residence on the risk of 
heart disease and mortality only rarely have been reported. 

Virues-Ortega and colleagues demonstrated increased 
overall mortality at higher altitudes, most pronounced 
over 3000 m, possibly due to more extreme climate con-
ditions at those altitudes.5 While risk factors for cardio-
vascular diseases are not uniformly affected by high 
altitude conditions, there is agreement on the beneficial 
effects of moderate if not extreme altitudes on the mortal-
ity risk from cardiovascular diseases. It thus seems likely 
that mild environmental stimuli (eg, hypoxia, cold, ultra-
violet radiation) at moderate altitude will promote condi-
tioning associated with favorable outcomes, vs the likely 
detrimental effects of more intense stimuli at extreme 
altitudes.16 However, it is important to mention that alti-
tude-related lifestyle behaviors very likely contribute to 
the observed beneficial effects of living at “moderate alti-
tudes”, ie, below 2000 m, on the cardiovascular and cere-
brovascular systems.

Acute and Subacute Effects of 
High-Altitude Exposure
Individuals rapidly ascending from low to high altitudes 
(>2000 m) are at risk to develop acute mountain sickness 
(AMS), which is characterized by headache as the predomi-
nant symptom, commonly accompanied by nausea, lack of 
appetite, vomiting, insomnia, dizziness, and/or fatigue.45 

The AMS prevalence was shown to increase from 7% at 
2200 m to 38% at 3500 m, and to 52% when rapidly 
ascending to 4559 m in the alpine regions,45,46 and 
a similar risk has been derived from Chinese highland mili-
tary medical records.47 Usually, AMS symptoms resolve 
during the first days at altitude, but may in rare cases pro-
gress to life-threatening diseases such as high-altitude cere-
bral edema (HACE) and/or high-altitude pulmonary edema 
(HAPE). A HACE prevalence of 0.98% has been reported in 
a cohort of 1326 European individuals sojourning to 
4000 m,48 while Wu and colleagues found a prevalence of 
0.28% among 14,000 Asian railroad workers who travelled 
from lowland China to Tibet (3500–5000 m).49 In 
a population of unknown HAPE history, the HAPE inci-
dence was 0.2% when climbing to 4500 m within 4 days, but 
increased to 6% when ascending to this altitude in only 1 to 
2 days.20 Besides hypoxia at high altitude, other risk factors 
like extreme temperatures must be considered. For instance, 
while military troops have developed appropriate acclimati-
zation schedules for hypobaric hypoxia, the very low tem-
perature, eg, down to – 55°C during the winter time in the 
Western Himalayas, still remains an important health 
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challenge, even in young, fit and healthy soldiers.50 Adverse 
effects of acute high altitude exposure are largely avoidable 
by proper acclimatization, ie, low ascent rates, or the use of 
appropriate pre-acclimatization strategies.45 A precise 
understanding of physiological responses to acute high alti-
tude is required to optimize the individual acclimatization 
process and to avoid potentially associated risks to the 
cardiovascular system.

Declining partial pressure of oxygen, PO2, parallels 
decreasing barometric pressure (PB) with increasing altitude. 
For instance, at 2360 m, the altitude of Addis Ababa, Ethiopia, 
PB and PO2 are 75% of those at sea level, and at 5052 m, the 
altitude of La Rinconada, Peru they are only about 53% of the 
respective sea level pressures (Figure 1). As PO2 in the 
inspired air (PiO2) declines, so does PO2 in the alveoli 
(PAO2) and systemic arterial blood (PaO2), as does arterial 
oxygen saturation (SaO2). Hypoxemia activates peripheral 
chemoreceptor afferents of the carotid bodies 
increasing minute ventilation and, via sympathetic activation, 
heart rate51 and, thus, cardiac output. Collectively, these ven-
tilatory and cardiac responses partially counteract the dimin-
ished oxygen supply at high altitude.21,51–55 Generally, the 
rising sensitivity of the peripheral chemoreceptors over days 
at altitude increases ventilation, but ventilatory acclimatiza-
tion differs among individuals.56 Hyperventilation improves 

oxygenation but lowers PaCO2 producing alkalemia. The 
resulting decrease of renal tubular H+ secretion compensates 
for the respiratory alkalosis by enhancing urinary excretion of 
bicarbonate.57,58 Elevated diuresis also causes hemoconcen-
tration, on the one hand reducing plasma volume and low-
ering stroke volume and, on the other hand, increasing arterial 
oxygen content and oxygen delivery to tissues at a given 
cardiac output.55,59 As acclimatization progresses, cardiac 
output returns to baseline but heart rate remains elevated 
because of the lower stroke volume (Figure 2).55

Hypoxic pulmonary vasoconstriction, another physiologic 
hallmark of acute high-altitude ascent, elevates pulmonary 
artery pressure, and this response reportedly is particularly 
profound in the elderly.53,62 Systemic blood pressure also 
increases upon initial ascent to altitude, primarily due to 
pronounced sympathetic activation, at least in men.59,61 

While ventilation and heart rate, pulmonary and systemic 
blood pressures, and sympathetic activity remain elevated 
with acclimatization, stroke volume decreases, cardiac output 
returns to baseline, and arterial oxygen saturation improves 
(Figure 2).55,59,62 Notably, all these responses vary consider-
ably between individuals and do not completely compensate 
for the reduced PiO2, especially at extreme altitudes.

Despite all these changes, in healthy individuals, myo-
cardial oxygen supply and left ventricular function are 

Figure 2 Changes of resting cardiovascular parameters when acutely exposed to high altitude and during acclimatization. Notes: Bbased on data reported in references 55 

and 62–65. From left to right. 
Abbreviations: HR, heart rate; SV, stroke volume; CO, cardiac output; VE, minute ventilation; SaO2, arterial oxygen saturation; Hb, hemoglobin concentration; CaO2, 
arterial oxygen content; SBP, DBP, systolic and diastolic blood pressure; RPP, rate pressure product; PAP, pulmonary artery pressure.
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maintained at rest and even during maximal exercise at 
high altitude.55,66 Moreover, moderate and high altitude 
are also well tolerated by healthy elderly subjects,21,67 but 
may become detrimental in those suffering from cardio-
vascular diseases.19,60

Cardiovascular Changes in Patients 
with Preexisting Cardiovascular 
Diseases
In cardiac patients, hypoxemia might be detrimental even 
at sea level, although there is very little evidence of 
aggravated cardiovascular diseases at least at low or mod-
erate altitude. A list of recommendations from the 
European Society of Cardiology can serve as a basis for 
clinical practice.68 However, as yet the biomedical litera-
ture provides no clinical evidence regarding the risk of all 
types of cardiovascular diseases at moderate or high 
altitude.19,69,70 Nevertheless, the basic knowledge of the 
physiology of hypoxia and of the pathophysiology of 
cardiac or vascular diseases allows us to propose four 
simple guidelines to help practitioners make decisions 
and give appropriate advice to their cardiac patients with 
regard to altitude sojourns.

● Patients suffering from any diseases that may be aggra-
vated by an overactivation of the adrenergic system 
(tachyarrhythmias) might be at risk at high altitude.

● Patients suffering from any diseases associated with 
pulmonary hypertension will be at high risk even at 
moderate altitude.

● Patients suffering from any diseases presenting, even 
at sea level, a certain degree of arterial hypoxemia 
(eg, increased right-to-left shunt) will be at risk at 
high altitude.

● For a given absolute power output during exercise, 
the heart rate (and therefore myocardial energy 
demand) increases with altitude, lowering the 
ischemic threshold in coronary patients.

The following advice can be given as a function of the 
preexisting disease.

Arrhythmias
Although rapid ascent to high altitude may increase the 
frequency of supraventricular and ventricular arrhythmias in 
patients with underlying heart disease,60,71,72 no demonstrable 
clinical impact has been found.73 However, it is reasonable to 

limit the access to altitude above 2500 m for patients with 
severe arrhythmias associated with underlying heart disease.

Pulmonary Hypertension
Preexisting pulmonary hypertension at sea level may dete-
riorate at even moderate altitude, regardless of the origin 
of the hypertension. Patients with congenital or acquired 
anomalies of the pulmonary circulation are also at high 
risk.74,75 A transient hypoxic insult to the pulmonary cir-
culation during the first postnatal week leaves a persistent 
imprint which, when activated by hypobaric hypoxia, pre-
disposes to pulmonary hypertensive responses in 
adulthood.76 Nevertheless, a recent pilot study showed 
that patients with pulmonary hypertension can safely 
adapt to a moderate altitude of 2048 m.77

Right-to-Left Shunt
Right-to-left atrium shunting through a patent foramen 
ovale (PFO) might be aggravated in hypoxic conditions 
due to increased pressures in the pulmonary artery and the 
right heart. PFO was found to be present in 56% of 
patients susceptible to HAPE vs 11% of non-susceptible 
subjects.78,79 Patients with cyanotic congenital heart dis-
eases may be at heightened risk at even moderate 
altitude.80

Coronary Artery Disease
It is reasonable to assume that in patients with a reduced 
coronary reserve, the decrease in oxygen availability due 
to altitude exposure will increase the risk of myocardial 
ischemia. However, the literature shows no evidence of 
increased incidence of acute myocardial ischemic events at 
low and moderate altitude.60,72,81,82 In nine men with 
coronary artery disease, clinical or electrocardiographic 
signs of ischemia occurred at lower workloads at 
3100 m than at 1600 m, although heart rate and heart 
rate x systolic blood pressure (rate pressure product, 
RPP) at the onset of angina were similar at the two 
altitudes.72 These findings suggest that patients should 
limit their activity at high altitude by controlling their 
heart rate (70–85% of the ischemic threshold rate at 
lower altitude) rather than their workload. A rapid ascent 
and submaximal exercise proved to be safe at an altitude 
of 3454 m for low-risk patients with normal low-altitude 
exercise stress tests 6 months after revascularization for an 
acute coronary event.83 Mortality from coronary heart 
disease, from 1990 to 2000, in men and women living at 
259–1960 m decreased by 22% per 1000 m ascent. The 
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consistently protective effect of living at higher altitude on 
coronary heart disease and stroke mortality increased after 
adjustment for potential confounders.18

Congestive Heart Failure
Very few studies are available about heart failure at high 
altitude.69,73,84 However, in 38 patients with a mean left 
ventricle ejection fraction of 35%, acute exposure to 
3000 m in a hypobaric chamber induced no signs of 
myocardial ischemia, arrhythmias, or acute heart 
failure.84 Altogether, it seems that up to 3000 m, there is 
no substantial increase in cardiovascular risk for patients 
with stable, compensated heart failure.73,84,85 

Corroborating this conclusion, a short-term high-altitude 
exposure at 3454 m was well tolerated in patients with 
stable heart failure.83

Systemic Hypertension
The systemic circulation at high altitude is affected by two 
opposing phenomena: local hypoxia-induced vasodilation 
and general sympathetic-induced vasoconstriction. The 
relative impact of these two factors on local perfusion 
and systemic arterial pressures varies considerably 
among subjects.73,83,86,87

In well-controlled hypertensive patients, no significant 
increase in systemic blood pressure is usually observed 
and no complications of systemic hypertension at high 
altitude have been reported.87 Moreover, in 37 young 
adult men with stage 1 hypertension, completing a 20- 
day program of intermittent, normobaric hypoxia (inspired 
O2 fraction 0.1; 4–10 daily cycles of 3 min hypoxia and 3 
min room air breathing) lowered systolic and diastolic 
arterial pressures by 22 and 17 mm Hg, respectively.88 

Moreover, the decrease in systemic arterial pressure per-
sisted at least 3 months after the hypoxia program in 85% 
of the subjects. Concordant with these results, no sympto-
matic episodes of hypertension were recorded in a cohort 
of 672 trekkers (60 of them with systemic hypertension), 
using conventional blood pressure measurements.89 

Therefore, no adverse effects are anticipated when patients 
with well-controlled hypertension are exposed to high 
altitude.

In summary, the literature is still sparse concerning 
cardiac diseases and tolerance to high altitude. However, 
it seems that patients with cardiac arrhythmias, pulmonary 
hypertension and right-to-left shunts should avoid an 
exposure to altitudes above 2500 m. In the case of cor-
onary disease and congestive heart failure, the advice 

should depend on the functional state of the patient. 
Patients with well-controlled systemic hypertension are 
not at higher risk at high altitude.

Relation Between Cardiovascular 
Pathologies and Neurodegenerative 
Diseases at Altitude
Cardiovascular risk factors, such as total serum cholesterol 
or high systolic blood pressure,90 are major risk factors for 
cognitive decline, the development of dementia and other 
age-related neurological diseases.91–94 The brain’s particu-
lar vulnerability to perfusion deficits and its specific blood 
supply requirements, including increased on-demand per-
fusion with neuronal activation, highly selective perme-
ability across the blood brain barrier, and vulnerability of 
the cerebral microvasculature, necessitate a particularly 
delicate regulation of cerebral blood flow.95

Diminished oxygen supply to the brain – for example as 
a consequence of hypoxic conditions in high altitude – jeo-
pardizes brain function and can acutely cause cognitive 
impairments,96–101 mood alterations102,103 and altitude- 
related conditions impacting the brain, such as acute mountain 
sickness or high altitude cerebral edema.104 Severe hypoxia 
may even trigger parkinsonism-like symptoms105–107 or glo-
bal amnesia.108 Brain deoxygenation at altitude reportedly is 
more pronounced during physical exercise109 and more per-
sistent than peripheral deoxygenation.110

Several systemic, brain-specific and cellular physiolo-
gical adaptations are implemented to mitigate the detri-
mental consequences of hypoxia on the brain.111–119 As 
described above, peripheral chemoreceptor-induced 
hyperventilation120 and cardiac output121,122 enhance sys-
temic and brain oxygenation. Metabolic autoregulation 
and neurovascular coupling95,123 acutely modulate the cer-
ebral blood flow in response to hypoxia. This modulation 
can vary across different cerebral arteries; thus, Feddersen 
et al124 reported increased blood flow velocity in anterior 
and middle cerebral arteries of ascending mountaineers, 
while blood flow velocity in the posterior cerebral artery 
declined. In rats, acute hypoxia exposure only transiently 
increases cerebral blood flow,125 while chronic hypoxia 
triggers erythropoiesis125 as well as angiogenesis125 that 
increases brain capillary densities.126,127 At the cellular 
level, responses to hypoxia are mediated by numerous 
biochemical adaptations111 including downregulation of 
O2-dependent reactions, promotion of glycolysis,114 
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protection of mitochondria,115 boosting of antioxidant 
defense mechanisms113,116 and attenuation of cell death.117

These effects of hypoxia exposure suggest its potential 
application to counteract age-related and pathological altera-
tions of cerebral blood flow and cerebrovascular alterations. 
The role of aging-related cerebrovascular deterioration and 
cerebral blood flow dysregulation on cognitive dysfunction 
has been reviewed by Toth et al95 and pathological altera-
tions in neurovascular function are proposed to be key 
mechanisms in the pathogenesis of Alzheimer’s disease.128

The cardiovascular adaptations to hypoxia, and in parti-
cular intermittent application of hypoxia (ie, hypoxia con-
ditioning), improve cerebral blood flow and cerebrovascular 
function (Figure 3),90,129 in a manner that enhances cerebral 
oxygenation.130,131 Intermittent hypoxia also increases brain 
capillary densities, although to a smaller extent than chronic 
hypoxia.132 Hypoxia-induced angiogenesis may particularly 
improve neurovascular coupling.126,133

In support of the application of hypoxia to improve 
brain function, several recent clinical trials have 
reported improved cognitive function following intermit-
tent hypoxia therapies, for example, in generally healthy 
older adults134–136 or those with mild cognitive 
impairment,137,138 a risk factor for the subsequent devel-
opment of dementia. Although experimental data on 

hypoxia conditioning in patients with age-related neuro-
logical diseases is limited, the potential of such thera-
peutic strategies in these diseases is becoming 
increasingly acknowledged.119,139,140 Preclinical studies 
in rodents further emphasize this potential, for example, 
in models of Alzheimer’s disease141,142 and Parkinson’s 
disease.143

Epidemiological studies on the effect of altitude of 
residence on brain function are conflicting, due in part to 
socioeconomic confounders. While reduced memory 
capacities were reported in young Tibetans living at 
3650 m vs low altitude residents144 and subtle impair-
ments in speed of neurocognitive functions were reported 
in Andean high vs low altitude residents of different age 
groups,145 no adverse cognitive effects were found in 
adolescent Bolivian high altitude (3700 m) residents.146 

Thielke et al25 even report reduced Alzheimer’s disease 
mortality at higher altitudes of residence (up to 1800 m) 
in California.

More research is required to define the effects of alti-
tude of residence on cognitive functions, particularly in 
association with neurodegenerative diseases. Nevertheless, 
controlled hypoxia interventions are promising therapeutic 
approaches to mitigate age- or disease-related cognitive 
decline.

Figure 3 Hypoxia-evoked adaptations improve cardiovascular determinants of brain oxygenation.
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Effects of Hypoxia on Aerobic 
Exercise, and Vice Versa
This section presents a brief description of the effects of 
hypobaric and normobaric hypoxia on responses to max-
imal and submaximal exercise, and then discusses some 
potential benefits and limitations of exercising in hypoxia.

Maximal Responses to Exercise in 
Altitude
At altitude, the decreased PO2 and resultant hypoxemia147 

lower maximal oxygen uptake (VO2max) by approximately 
6–7% per 1000 m increase at altitude.148 This altered O2 

intake is the main factor limiting aerobic performance at 
altitude vs sea level. Of interest, the decrement in endurance 
exercise performance is less severe in normobaric hypoxia 
imposed by reductions in the inspired fraction of oxygen 
(FIO2) than equivalent reductions in PO2 due to decreased 
barometric pressure, ie, hypobaric hypoxia149 since the 
intensity of the normobaric hypoxia stimulus may be 
lower, although this point is debated.150,151 In either case, 
maximal cardiac output declines since both maximal stroke 
volume and heart rate are lower during hypoxia, whether due 
to decreased barometric pressure or FIO2.

Maximal heart rate (HRmax) declines at altitude.152,153 It 
was argued that this decrease in HRmax is only observable 
above a threshold of 2000–3500m147,154 corresponding to the 
altitude used in training and/or rehabilitation. However, this 
decrease was reported already at low altitude (<1000 m).155 

Of clinical interest, the decrease in HRmax is lower in normo-
baric than in hypobaric hypoxia.156

Submaximal Responses to Exercise at 
Altitude/in Hypoxia
During submaximal exercise, HR is greater and stroke 
volume lower at a given exercise intensity in hypoxia vs 
normoxia. Since resting HR increases while HRmax declines 
with altitude, HR reserve is attenuated, which the HR-based 
calculations of exercise intensity described below must take 
into account. The relationships between cardiac output, 
workload and VO2 are preserved at all submaximal inten-
sities, but reach their maxima at lower VO2 and cardiac 
output55 implying that altitude does not affect O2 utilization 
efficiency. The mechanisms for the increased HR are still 
debated but sympathetic vasoconstrictor activity and the 
resultant higher vascular resistance likely predominate.

Therapeutic Exercising in Hypoxia for 
Cardiovascular Pathologies
Heart rate monitoring is very common and clinically safe 
for patients.157 An important aspect when prescribing 
exercise in cardiovascular patients is the determination of 
exercise intensity. Generally, the recommended intensity is 
based on the percentage of HRmax

158,159 and is estimated 
as 60–70% of HRmax in patients. The hypoxic decrease in 
HRmax described above has clinical implications and 
requires adjustment of the exercise intensity at altitude 
since a given percentage of HRmax measured in normoxia 
would overestimate the target exercise intensity at altitude, 
with the risks of excessive fatigue or decreased adherence 
to training sessions.

Exercising in hypoxia, even at submaximal intensity, 
leads to a ‘compensatory’ vasodilatation, relative to the 
same exercise intensity in normoxia,160 that, by aug-
menting blood flow, limits the decrement of oxygen 
delivery to the active muscles. Nitric oxide (NO) 
appears as the main vasodilator generated by the 
endothelium161 even if several other vasoactive sub-
stances are also involved in this compensatory vasodi-
latation during hypoxic exercise. Of interest, this 
enhanced exercise hyperemia is greater at high altitude 
and augmented by increased exercise intensity.160,162 By 
this mechanism, hypoxia may potentiate exercise- 
induced vascular adaptations such as vasodilation,163 

potentially benefiting patients with vascular dysfunction 
as in peripheral artery diseases.

Vasoconstriction in vascular beds of contracting mus-
cles is blunted when exercise is performed in hypoxia, to 
the extent that vasodilation may prevail.160 This functional 
sympatholysis may have additional effect with benefits for 
hypertensive subjects: the post-exercise hypotensive effect 
due to a reduction in total peripheral resistance is 
enhanced in hypoxia suggesting a larger hypotensive effect 
of exercise in hypoxia than in normoxia,164 as suggested 
above.

Altogether, the health benefits of hypoxic exercise in 
cardiovascular patients are mediated by improved 
responsiveness of the vascular system, representing the 
balance of two opposing mechanisms: peripheral vaso-
dilation and sympathetically mediated vasoconstriction. 
The effects of exercising at altitude in specific patients 
depend upon several factors, including the patient’s pre-
disposition to exercise, the intensity of the hypoxic dose 
(altitude, exposure duration, rate of ascent, intermittent 
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pattern) and attainment of adequate exercise intensity 
(but not limited to moderate intensity). Optimizing the 
benefits vs risks requires a patient-specific regimen and 
monitoring.

Cardioprotective Mechanisms of 
Hypobaric Hypoxia
By generating reactive oxygen species (ROS), intensifying 
sympathetic stimulation of the heart and lowering intracel-
lular PO2, systemic hypoxia mobilizes diverse gene pro-
grams expressing myriad cytoprotectants including 
antioxidant, anti-inflammatory and glycolytic enzymes, anti- 
apoptotic factors and Ca2+ transporters, which collectively 
defend cardiomyocytes from ischemic injury (Figure 4).

Defining hypobaric hypoxia’s cardioprotective mechan-
isms at the cellular level requires invasive analyses of gene 
expression, proteins, metabolites and organelles, which are 
not ethically feasible in humans under most circumstances. 

Consequently, information on the molecular underpinnings 
of hypoxia-induced cardioprotection is gleaned from studies 
in animals, primarily rodents. Many such studies utilize 
intermittent, not sustained, hypoxia involving brief hypoba-
ric exposures or cyclic exposures to normobaric, hypoxic 
gas. Although intermittent hypoxia’s cardinal features differ 
from those of chronic hypoxia, information on intermittent 
hypoxia’s cytoprotective mechanisms likely applies at least 
qualitatively to sustained hypoxia, too.

Reactive Oxygen Species Induction of 
Antioxidant Genes
Hypobaric hypoxia elicits ROS formation in humans. 
After 48 h at 4300 m altitude, lowlanders showed 
increased serum and urinary concentrations of the lipid 
peroxidation products F2- and 8-isoprostanes.165 In men 
exposed to 5500 m simulated altitude for 4 h, arterial O2 

saturation fell by 45%, serum concentrations of the ROS 

Figure 4 Hypobaric hypoxia induces cardioprotective gene expression. Hypoxia elicits cardioprotective adaptations by activating three gene programs: (A) β-adrenergic 
activation of cyclic nucleotide response element (CRE) binding protein (CREB) promotes transcription of genes encoding sarcoplasmic reticular Ca2+ ATPase (SERCA) and 
sarcolemmal Na+/Ca2+ exchanger (NCX), thereby improving Ca2+ homeostasis in the face of ischemia-reperfusion. (B) Intracellular hypoxia attenuates O2-dependent, prolyl 
hydroxylase (PHD) mediated degradation of the α subunit of hypoxia-inducible factor-1 (HIF-1), which translocates to the nucleus, binds HIF’s β subunit, and activates 
hypoxia-response elements (HRE) promoting expression of genes encoding hypoxia-adaptive proteins including erythropoietin, vascular endothelial growth factor (VEGF), 
nitric oxide (NO) synthase (NOS), endothelin-1, glucose transporters (GLUT) and glycolytic enzymes. Erythropoietin and NO suppress inflammation, VEGF promotes 
coronary collateral formation, endothelin-1 suppresses apoptosis, and GLUT and glycolytic enzymes support anaerobic ATP and phosphocreatine (PCr) production during 
ischemia. (C) Cellular hypoxia causes electron (e−) accumulation in the mitochondrial respiratory complexes. These electrons combine with residual O2 forming reactive 
oxygen species (ROS) which oxidize sulfhydryl moieties in Keap1, allowing Nrf2 to activate antioxidant response elements (ARE) in genes encoding antioxidant enzymes, 
thereby bolstering cellular defenses against ROS overproduction. ROS also augment HIF-1-activated gene expression by blunting HIF-1α degradation. Collectively, these 
mechanisms increase cardiomyocyte resistance to ischemia-reperfusion induced Ca2+ overload, inflammation, mitochondrial permeability transition (MPT), ATP depletion 
and oxidative stress. 
Abbreviations: AC, adenylyl cyclase; β-AR, β-adrenergic receptor; cAMP, cyclic AMP; Pi, inorganic phosphate.
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products malondialdehyde and oxidized protein sulfhy-
dryls increased,166 and serum [glutathione]/[glutathione 
disulfide] concentration ratio, a measure of antioxidant 
capacity, fell. In a recent study in lowlanders spending 
two weeks at c 3300 m, serum concentrations of total 
ROS, protein carbonyls and lipid peroxides rose by 38%, 
140% and 44%, respectively, while antioxidant capacity 
fell by 17% and serum pro-inflammatory cytokines 
tripled.167

Although intense ROS formation injures cardiomyocytes, 
moderate ROS formation during controlled hypoxia in 
rodents activates expression of antioxidant and anti- 
inflammatory genes, increasing cardiomyocyte resistance to 
ischemia. Research in hypoxia-conditioned rodents revealed 
robust antioxidant adaptations that paralleled ischemic toler-
ance. Jain et al exposed rats to extreme hypobaric hypoxia 
(9750 m simulated altitude; PIO2 c 57 mmHg) then grouped 
the animals according to their hypoxia endurance.168 The 
myocardium of the most hypoxia-tolerant rats had greater 
activities of EPO, GLUT-1 and the antioxidant enzymes 
catalase, superoxide dismutase and heme oxygenase-1 vs 
myocardium of the least tolerant animals. Also in rats, two 
days hypobaric hypoxia (7620 m simulated altitude; PIO2 

c 78 mmHg) induced myocardial lipid peroxidation and 
protein oxidation and depleted glutathione, but by 5 days, 
myocardial activities of antioxidant enzymes superoxide dis-
mutase, glutathione S-transferase, glutathione peroxidase, 
heme oxygenase-1 and metallothionein all increased vs con-
trol myocardium.169 Similarly, a program of 4 cycles of 
4-days hypobaric hypoxia (4600 m simulated altitude; PIO2 

c 90 mmHg) and 4-days normoxia elicited mitochondrial 
ROS formation and increased myocardial catalase, glu-
tathione peroxidase and superoxide dismutase 
activities.170,171 Hearts isolated from the hypoxia- 
conditioned rats demonstrated increased left ventricular 
function and decreased lipid peroxidation following ische-
mia-reperfusion, vs hearts from normoxic rats.170 Similarly, 
hearts isolated from guinea-pigs completing a 28-day inter-
mittent, hypoxia regimen (5000 m simulated altitude for 6 h/ 
d; PIO2 c 112 mmHg) and subjected to ischemia-reperfusion 
or H2O2 exposure showed increased superoxide dismutase 
and catalase activities and improved contractile function 
which was abolished by the catalase inhibitor 
aminotriazole.172

Exposure of mice to 10 h hypobaric (4572 m) hypoxia 
(PIO2 = 118 mmHg) activated myocardial expression of 
genes encoding antioxidant enzymes catalase, glutathione 
peroxidase, metallothionein and microsomal glutathione 

S-transferase.173 The 50% decrease in myocardial glu-
tathione content following hypoxia indicated significant 
oxidative stress, which likely activated antioxidant gene 
expression. In dogs completing a 20-day program of cyc-
lic, normobaric hypoxia-reoxygenation 24 h before occlu-
sion-reperfusion of the left anterior descending coronary 
artery, infarct size was decreased by over 95% and post- 
ischemic ventricular tachyarrhythmias were sharply atte-
nuated vs sham-conditioned dogs.174 Oral intake of anti-
oxidant N-acetylcysteine 2 h before each hypoxia session 
abrogated the cardioprotection, implicating ROS in the 
cardioprotective mechanism. Although the dogs were con-
ditioned by intermittent, not chronic, hypoxia, these results 
are concordant with cardioprotection by ROS signaling in 
chronic hypoxia, too.

Although the molecular mediators of ROS-induced 
gene expression are not yet established, the ROS- 
responsive transcription factor nuclear factor erythroid 
2-related factor 2 (Nrf2) is the most likely candidate. 
ROS disrupt the disulfide bonds linking Nrf2 to its repres-
sor, Keap-1, thereby allowing Nrf2 migration from cytosol 
to nucleus, where its interactions with antioxidant response 
elements in the promoter regions activate genes encoding 
a host of antioxidant and anti-inflammatory proteins175 

including catalase, metallothionein, heme oxygenase-1, 
glutathione peroxidase, glutathione S-transferase and 
other elements of the cardiomyocyte’s antioxidant 
armamentarium.176 The effects of chronic, hypobaric 
hypoxia on Nrf2 are as yet unknown, and merit 
investigation.

Hypoxia-Inducible Gene Products
When exposed to chronic hypoxia, cardiomyocytes 
synthesize proteins that increase their tolerance to reduced 
O2 availability. These proteins are products of an extensive 
gene expression program regulated by hypoxia-inducible 
factors (HIFs), the best-studied of which is HIF-1, 
a heterodimer of O2-regulated α and constitutive β sub-
units. During normoxia, prolyl and arginyl hydroxylases 
hydroxylate HIF-1α, targeting it for proteasomal degrada-
tion which limits HIF-1-activated gene expression.177 HIF- 
1α hydroxylation declines as cellular O2 concentration 
falls, whereupon the subunit translocates to the nucleus 
and combines with the β subunit forming the transcription-
ally active HIF-1 heterodimer. By inactivating prolyl 
hydroxylase, ROS stabilize HIF-1α and, thereby, augment 
hypoxia-activation of HIF-1’s gene program.178–180 HIF-1 
activates hypoxia response elements in the promoters of 
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over 100 genes.181 HIF-1 activates expression of [1] glu-
cose transporters (GLUT) and the entire glycolytic enzyme 
sequence beyond hexokinase, thereby augmenting glucose 
catabolism and anaerobic ATP production; [2] vascular 
endothelial growth factor (VEGF) which, by activating 
angiogenesis, increases collateral O2 delivery to ischemic 
myocardium; [3] nitric oxide synthase (NOS), which gen-
erates the anti-inflammatory metabolite nitric oxide, [4] 
endothelin-1 (ET-1), which activates anti-apoptotic signal-
ing cascades182 and gene expression;183 and [5] erythro-
poietin (EPO), which activates red cell production in 
erythropoietic tissues, and also exerts anti-inflammatory 
actions in heart and brain, both of which are capable of 
synthesizing EPO.184,185 Hypoxia-induction of this diverse 
gene program181 increases survival and functional recov-
ery of cardiomyocytes threatened by ischemia-reperfusion.

Chen et al evaluated coronary collateral density in 
patients with >70% occlusion of one or more conduit 
coronary arteries.186 The patients with more extensive 
coronary collaterals had higher HIF-1α contents in circu-
lating monocytes and leukocytes. The association of 
greater collateral density and, therefore, myocardial oxy-
genation with increased HIF-1α content argues that HIF- 
1α and its gene product VEGF were likely responsible for 
the increased collaterals.

Sojourns at high altitude elicit EPO production which 
initiates erythropoiesis to augment the blood’s O2-carrying 
capacity. Accordingly, circulating EPO concentrations 
increased within one day of ascent in healthy adults 
ascending from sea level to >3000 m.187 Analysis of 
glycosylated EPO glycoforms pinpointed the kidneys as 
the major source of circulating EPO in human subjects at 
3454 m (PIO2 c 137 mmHg).188 Whether circulating EPO 
of renal origin contributes to hypoxia-induced cardiopro-
tection, or if hypobaric hypoxia elicits myocardial EPO 
formation184 in humans is unknown.

Sasaki et al studied rats acutely conditioned by 4 
h normobaric hypoxia (FIO2 0.10) and 24 
h reoxygenation, followed by permanent coronary artery 
occlusion.189 Three weeks later, the hearts of the hypoxia- 
conditioned rats were found to have greater dobutamine- 
recruitable contractile reserve, which paralleled increased 
myocardial capillary and arteriolar density, blood flow and 
VEGF content vs hearts of non-hypoxic controls. In Jain 
et al’s study, the myocardium of the most hypoxia-tolerant 
rats had greater activities of EPO and GLUT-1, as well as 
the aforementioned antioxidant enzymes, than myocar-
dium of the least tolerant rats.168 In Singh et al’s study 

of hypobaric hypoxia conditioned rats,169 the increased 
myocardial antioxidant enzymes at 5 d hypoxia were 
accompanied by increased HIF-1α content and expression 
of HIF-1’s gene program products EPO, VEGF, GLUT-1 
and nitric oxide synthase (NOS). A recent study in mice 
conditioned by 14 d continuous, normobaric hypoxia (FIO2 

0.07) demonstrated increased myocardial expression of 
genes encoding VEGF, its receptor VEGF-R2, and 
RABEP2, a regulator of VEGF-R2 endosomal trafficking, 
vs normoxic mice. Myocardium of the hypoxic mice also 
demonstrated increased coronary collateral development 
and capillary density, and decreased myocardial infarct 
size following coronary artery occlusion.190

Hypobaric hypoxia is associated with increased circu-
lating ET-1, as documented in healthy human subjects 
ascending to 3700–5000 m altitude.191,192 Although 
a well-recognized vasoconstrictor, ET-1 at moderate con-
centrations suppresses cardiomyocyte apoptosis182,183 by 
mobilizing signaling cascades that activate cytoprotective 
genes.193,194 Human195 and rat196 cardiomyocytes synthe-
size and secrete ET-1 in response to hypoxia. HIF-1 acti-
vates cardiac ET-1 gene expression both directly197,198 and 
via EPO.199 Unlike moderate hypoxia, severe, deleterious 
hypoxia provokes ET-1 overproduction which activates 
cardiomyocyte apoptosis in a manner blunted by endothe-
lin receptor antagonists200 and likely contributes to the 
hypertensive response to severe hypoxia.121

Sympathetic Activity and Myocardial Ca2+ 

Management
Ascent to altitude elicits sympathetic activation of the 
heart.60 Power spectral analysis of heart rate revealed 
increased sympathetic and decreased parasympathetic 
activities in lowlanders during 6-month sojourns at 
4500–4800 m altitude.201 Acute exposure of male low-
landers to 4000 m simulated altitude in a barochamber 
increased serum catecholamine concentrations.202 Male 
lowlanders ascending to >3500 m showed persistently 
elevated sympathetic tone and serum catecholamines.203

During hypoxia, β-adrenergic activation increases heart 
rate and stroke volume to increase cardiac output, thereby 
maintaining blood pressure and O2 delivery to the periphery. 
Cardiomyocytes isolated from rats completing an intermit-
tent, hypobaric hypoxia program showed increased sarco-
plasmic reticular Ca2+ ATPase activity and anti-apoptotic 
Bcl-2 content, and preserved sarcoplasmic reticular Ca2+ 

turnover following in vitro ischemia-reperfusion.204 In 
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dogs, administration of the β1-adrenoceptor antagonist meto-
prolol during a 20-day intermittent hypoxia regimen pre-
vented the robust reductions of coronary occlusion- 
reperfusion-induced myocardial infarction and ventricular 
tachyarrhythmias.205

Increased cardiomyocyte Ca2+ turnover mediates the 
inotropic and lusitropic effects of β-adrenergic activity. 
Acutely, phosphorylation of molecular targets by cyclic 
AMP- and Ca2+-calmodulin dependent protein kinases 
increases systolic sarcoplasmic reticular Ca2+ release to 
augment Ca2+ activation of the contractile machinery, 
and Ca2+ sequestration to effect diastolic relaxation. β- 
adrenergic activity induces genes encoding Ca2+- 
transporting proteins (Figure 4) via interaction of cyclic 
nucleotide response element (CRE) binding protein 
(CREB) with CRE motifs in gene promoters.206 Thus, 
hypoxia-reoxygenation of cardiomyocytes provoked 
CREB DNA-binding and expression of its target 
genes.207 β-Adrenergically activated CREB promotes 
synthesis of the mitochondrial anti-apoptotic factor, Bcl- 
2,208 sarcoplasmic reticular Ca2+ ATPase,206 and sarcolem-
mal Na+/Ca2+ exchanger.209 Thus, β-adrenergic activation 
by hypoxia may elicit gene expression that preserves 
mitochondrial integrity and Ca2+ homeostasis under patho-
logical conditions.

Summary
Preclinical studies have disclosed complex signaling cascades 
whereby hypoxia bolsters myocardial resistance to ischemia 
and reperfusion. β-Adrenergic activity, moderate ROS forma-
tion and intracellular hypoxia mobilize CREB, Nrf2 and HIF- 
1 to activate their respective gene programs. The myriad 
products of these genes augment anaerobic ATP production 
and membrane Ca2+ transport, suppress apoptosis, preserve 
mitochondrial integrity and confer powerful antioxidant and 
anti-inflammatory protection to blunt ischemia-reperfusion 
induced myocardial injury (Figure 4). Defining the extent to 
which these diverse mechanisms effect cardioprotection in 
humans is crucial to develop interventions harnessing these 
mechanisms to treat and prevent ischemic heart disease.
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