
R E V I E W

Current Perspectives and Novel Strategies of 
NRAS-Mutant Melanoma

Alejandro Garcia-Alvarez 
Carolina Ortiz 
Eva Muñoz-Couselo

Vall d’Hebron University Hospital, 
Medical Oncology Department, 
Melanoma and Other Skin Tumors Unit, 
Vall Hebron Institute of Oncology 
(VHIO), Barcelona, 08035, Spain 

Abstract: Melanoma is the deadliest cutaneous cancer. Activating mutations in NRAS are 
found in 20% of melanomas. NRAS-mutant melanoma is more aggressive and, therefore, has 
poorer outcomes, compared to non-NRAS-mutant melanoma. Despite promising preclinical 
data, to date immune checkpoint inhibitors remain the standard of care for locally advanced 
unresectable or metastatic NRAS melanoma. Data for efficacy of immunotherapy for NRAS 
melanoma mainly come from retrospective cohorts with divergent conclusions. MEK inhi-
bitors have been the most developed targeted therapy approach. Although associated with an 
increase in progression-free survival, MEK inhibitors do not provide any benefit in terms of 
overall survival. Combination strategies with PI3K-AKT-mTOR pathway and CDK4/6 
inhibitors seem to increase MEK inhibitors’ benefit. Nevertheless, results from clinical trials 
are still prelaminar. A greater comprehension of the biology and intracellular interactions of 
NRAS-mutant melanoma will outline novel impactful strategies which could improve prog-
nosis of these subgroup of patients. 
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Introduction
With 324,635 new diagnoses and 57,043 deaths worldwide during 2020, cutaneous 
melanoma constitutes the 17th most incident and the 22nd most deadly malignancy. 
These data vary around the continents due to heterogenous frequency of skin 
phototype, with higher rates of both incidence and mortality in Oceania, Western 
Europe and Northern America.1 Although mortality tends to stabilize, melanoma 
incidence has been rising over the last 40 years.2

An integrative analysis of cutaneous melanomas performed by the TCGA (The 
Cancer Genome Atlas) network validated four genomic subtypes characterized by 
BRAF, NRAS, NF1 mutations and a “triple wild-type” subgroup (which includes 
KIT mutated melanoma).3 Improvement in the understanding of cutaneous mela-
noma’s biology together with clinical benefit of BRAF-targeted therapy4–6 and 
immunotherapy7–10 over the last decade have changed the therapeutic management 
of advanced melanoma. However, not many progresses have been made in devel-
oping novel therapeutic options for BRAF wild-type melanomas.

NRAS mutant melanoma comprises 20% of all melanoma,3 which appears to 
confer an aggressive course compared with BRAF-mutant or RAF and NRAS wild- 
type melanomas.11 In this setting, effective treatment options for this population are 
required, especially after disease progression on immunotherapy with anti-CTLA4 
and/or anti-PD-1 antibodies. MEK inhibitors have been the most exploited treat-
ment option in clinical trials with limited efficacy compared to chemotherapy.12
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A greater comprehension of the biology and intracel-
lular interactions of NRAS-mutant melanoma will outline 
novel impactful strategies which could improve prognosis 
of these subgroup of patients.

Ras as an Oncogene in Melanoma
Activating mutations in the Ras GTPase proteins have 
been found in one-third of human cancers.13 Ras is 
a superfamily of proteins implicated in cell growth, survi-
val and differentiation, sending intracellular signals from 
receptor tyrosine kinases (RTK) to the MAPK (mitogen- 
activated protein kinase) and PI3K (phosphoinositide 
3-kinase)-AKT pathways mainly.14

Three RAS isoforms (NRAS, neuroblastoma ras viral 
oncogene homolog; KRAS, Kirsten rat sarcoma viral onco-
gene homolog; and HRAS, Harvey rat sarcoma viral onco-
gene homolog) have been described and frequently harbor 
oncogenic mutations in cancer.15 Regarding cutaneous mel-
anoma, aside from NRAS, we find mutations in KRAS and 
HRAS accounting for 2% and 1% of the cases, respectively.3

NRAS Melanoma
NRAS was the first oncogene recognized in melanoma16 and 
mutations in NRAS account for 20% of all melanomas.3 

NRAS and BRAF mutations are usually mutually exclusive.3

NRAS mutations primarily occur at position 61 and involve 
amino acid change from glutamine (Q) to arginine (R), lysine 
(K) or leucine (L).17 These mutations block NRAS into 
a GTP-bound state impairing its GTPase activity.18

Mutations at codons 12 or 13 mutations comprise 20% of 
all NRAS and result in amino acid change from glycine (G) to 
aspartic acid (D).17 These mutations prevent the association 
of GAPase activating proteins (GAP) to NRAS and are more 
frequent in mucosal melanoma than cutaneous melanoma.18

NRAS mutations results in an endless activation of the 
MAPK signaling and hardly ever concur with mutations in 
the PI3K–AKT pathways, indicating that NRAS could 
modulate this pathway too.19 These pathways cause dys-
regulation of cell-cycle and cellular proliferation signals.14

NRAS-mutant melanoma differs from BRAF-mutant 
melanoma from a clinical point of view. Patients are 
usually older (>55 years) with previous UV exposure.20 

Lesions have predisposition to the upper extremities and 
are thicker with higher Breslow depth.11,20

Regarding prognosis, similar to BRAF-mutant mela-
noma, NRAS mutation has been related to aggressive dis-
ease traits and with an increased risk of visceral and brain 
involvement.21,22

Immunotherapy for NRAS 
Melanoma
Despite all the translational and clinical data gathered 
since discovery of NRAS mutation as a driver in mela-
noma, ESMO guidelines recommend treatment with 
immune checkpoint inhibitors (anti-CTLA4 and/or anti- 
PD1 inhibitors) as standard of care for the locally 
advanced unresectable and metastatic staging.23

However, data from pivotal trials which led to approval of 
immune checkpoint inhibitors in melanoma did not report 
outcomes for NRAS subgroup. Data for efficacy of immu-
notherapy for NRAS melanoma mainly comes from retrospec-
tive cohorts. Tables 1 and 2 summarize all reported results.

In a first cohort of 236 NRAS-mutant patients from five 
skin cancer centers in Germany and Switzerland have been 
treated with Ipilimumab, anti-PD1 or anti-PD1+Ipilimumab 
combination. Efficacy outcomes for each treatment group 
are depicted in Table 1. Comparison to NRAS wild-type 
subgroup (n=128) evidenced comparable overall response 
rate (ORR) and disease control rate (DCR) and significantly 
lower overall survival (OS) (Table 2).24

An independent cohort of 162 patients with NRAS- 
mutant melanoma from 11 referral centers in Italy treated 
in first line with immunotherapy reported different results. 
Cumulative results irrespective of treatment option showed 
a PFS (progression free survival) of 12 months, OS of 32 
months and ORR of 42%. No differences in all efficacy 
outcomes were seen compared with 169 patients with 
BRAF/NRAS wild type melanoma (Table 2).25

Finally, a cohort of 60 patients treated with anti-PD1 
/PD-L1 or Ipilimumab in first or second line also reported 
cumulative efficacy outcomes. Median PFS was 4.1 
months, median OS was 19.5 months and ORR were 
64% and 19% for anti-PD1/PD-L1 and Ipilimumab, 
respectively. Compared to a cohort of 169 patients (53 
with BRAF V600 mutation and 116 BRAF/NRAS wild 
type), immunotherapy for NRAS mutant patients increased 
DCR, which did not translate into longer PFS and OS.26

Regarding efficacy of anti-PD1+anti-CTLA4 combina-
tion compared with anti-PD1 monotherapy in NRAS mel-
anoma, in a cohort of 69 patients treated in first line for 
unresectable and/or metastatic disease, combination sig-
nificantly longer PFS (not reached vs 7 months) and a non- 
significant trend towards prolonged OS (not reached vs 
21.9 months).27

Given the different outcomes regarding NRAS-mutant 
melanoma response to immunotherapy, prospective series 
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are needed to clarify if immune checkpoint inhibitors 
improve outcomes in this population.

Strategies in Clinical Trials for NRAS 
Melanoma
Farnesyl-Transferase Inhibitors
NRAS needs to undergo post-translational modifications in 
order to be active. Farnesylation of a cysteine allows the 
insertion of NRAS into the cellular membrane and its ulterior 
activation.28

Farnesyl transferase inhibitors have shown promising pre-
clinical activity.29,30 Regrettably, these results did not translate 
into a clinical benefit from lonafarnib31 and tipifarnib32 in solid 
tumors with NRAS and KRAS mutations.

In melanoma, R115777 was tested in a Phase II trial 
enrolling 14 patients. No data about their NRAS status was 
reported. Unfortunately, no response was evidenced to the 
farnesyl transferase inhibitor.33

The lack of success observed appears to be related to 
alternative prenylation by geranylgeranyltransferase 
I (GGTase I) in the alternative prenylation.34 Farnesyl 
transferase and GGTase I inhibitors combinations have 
been evaluated in clinical trials with concerns regarding 
toxicity.35

MEK Inhibitors
Due to the absence of direct NRAS inhibitors, focus 
moved towards targeting downstream effectors of the 
MAPK pathway, with MEK 1/2 inhibitors (MEKi).36 The 

Table 1 Summary of Efficacy Outcomes of Immunotherapy (Monotherapy and Combinations) in Patients with NRAS-Mutant 
Melanoma from Retrospectives Cohorts

Cohort NRAS-Mutant Melanoma Patients ORR DCR PFS OS

1. Kirchberger et al24 - IPI: 125 pts. 

- PD1: 34 pts. 

-Combo: 77 pts.

- IPI: 15% 

- PD1: 21% 

- Combo: 40%

- IPI: 27% 

- PD1: 35% 

- Combo: 61%

NR - IPI: 12 mo 

- PD1: 18 mo 

- Combo: 32mo

2. Guida et al25 - IPI: 45 pts. 

- PD1: 114 pts. 
-Combo: 3 pts.

- IPI: 36% 

- PD1: 43% 
- Combo: NR

- IPI: 36% 

- PD1: 68% 
- Combo: NR

- IPI: 4 mo. 

- PD1: 15 mo. 
- Combo: NR

- IPI: 26 mo. 

- PD1: 32 mo. 
- Combo: NR

3. Johnson et al26 - IPI: 38 pts. 

- PD1/L1: 8 pts.

32% 50% 4.1 months 19.5 months

Abbreviations: ORR, overall response rate; DCR, disease control rate; PFS, progression free survival; OS, overall survival; IPI, Ipilimumab; PD1/L1, anti-PD1 or anti-PD-L1 
antibody; Combo, combination of anti-PD1 with Ipilimumab; Mo, months; NR, not reported.

Table 2 Summary of Efficacy Outcomes of Immunotherapy (Monotherapy and Combination) in Patients with NRAS-Mutant Melanoma 
Compared to Other Non-NRAS Mutant Melanoma Patients

Cohort Patients ORR DCR PFS OS

1. Kirchberger et al24 - NRASmt: 236 

- NRASwt: 128

- IPI: 15% vs 

13% 

- PD1: 21% vs 
13% 

- Combo: 40% 

vs 39% (p=ns)

- IPI: 27% vs 

40% 

- PD1: 35% vs 
25% 

- Combo: 61% 

vs 73% (p=ns)

NR 21 vs 33 mo (p=0.034)

2. Guida et al25 - NRASmt: 162 

- NRAS/BRAFwt: 169

42% vs 37% 

(p=0.38)

60% vs 59% 

(p=0.90)

12 vs 9 months (p=0.51) 32 vs 27 mo (p=ns)

3. Johnson et al26 - NRASmt: 60 
- BRAFmt: 53 

- NRAS/BRAFwt: 116

32% vs 23% vs 
19% (p=0.06)

50% vs 30%vs 
29% (p=0.004)

4.1 vs 2.9 mo (NRASmt vs 
non-NRAS; p=0.08)

19.5 vs 15.2 mo (NRASmt 
vs non-NRAS; p=0.51)

Abbreviations: ORR, overall response rate; DCR, disease control rate; PFS, progression free survival; OS, overall survival; IPI, Ipilimumab; PD1/L1, anti-PD1 or anti-PD-L1 
antibody; Combo, combination of anti-PD1 with Ipilimumab; Mo, months; NR, not reported; Mt, mutant; Wt, wild type.
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use of MEKi is to date the most investigated approach. 
These drugs are oral, competitive or non-competitive, 
allosteric inhibitors of MEK.36

Third-generation MEKi development have led to eva-
luation of drugs such as trametinib (GSK1120212)37 and 
binimetinib (MEK 162)38,39 in NRAS-mutant melanoma 
patients.

The Phase I study of trametinib included seven patients 
with NRAS-mutant melanoma. Stable disease in two 
patients (29%) was the best response achieved.37 No 
further development was done for trametinib in NRAS- 
mutant melanoma. Combination strategies of trametinib 
with novel agents could play a role in future clinical trials 
for NRAS-mutant patients.

On the other hand, the phase II trial of binimetinib 
showed encouraging activity in 30 NRAS-mutant mela-
noma patients with an ORR of 20% and a median PFS 
of 3.7 months.38 Taking into account these results, 
a randomized Phase III trial (NEMO trial) was undergone 
in 402 NRAS mutated melanoma patients. Binimetinib 
significantly increased ORR (7% vs 15%) and PFS (1.5 
vs 2.8 months; Hazard Ratio 0.62) compared to dacarba-
zine. However, no differences in terms of OS were 
observed.39 Based on these results, binimetinib monother-
apy did not received approval for the treatment of NRAS- 
mutant melanoma.

Other MEKi such as pimasertib (AS703026)40 or 
RO498765541 have also been tested for efficacy. 
Pimasertib was evaluated in a randomized phase II trial 
with 194 NRAS-mutant patients versus Dacarbazine. 
A significant benefit for pimasertib was observed, with 
a mPFS of 13.0 weeks (vs 6.9 weeks) and a DCR of 
37.7% (vs 26.6%). Once more, no differences in OS 
were observed (8.9 vs 10.6 months).40 RO4987655 
(CH4987655) has also been tested in a phase I trial enrol-
ling 8 patients with NRAS-mutant melanoma. ORR was 
13% with partial response (PR) as best responses.41

RAF Inhibitors
RAF isoforms (ARAF, BRAF and CRAF) are the down-
stream effector after RAS proteins in the MAPK pathway. 
NRAS-mutant melanoma is refractory to BRAF inhibitors. 
BRAF inhibitors induce paradoxical activation of the MAPK 
pathway due to CRAF-mediated ERK phosphorylation.42,43

Pan-RAF inhibitors have emerged as an option for 
RAS or RAF mutant tumors. LY3009120, a pan-RAS 
inhibitor, has been assessed in the setting of a phase 
I clinical trial which enrolled a total of 51 patients. 

Regarding molecular subgroups, only 5 patients with 
NRAS-mutant tumors (4 melanoma and 1 breast cancer 
patients) were included, with only 1 SD as best response. 
Given the lack of efficacy and the unfavorable toxicity 
profile, LY3009120 further development has been 
discontinued.44 Belvarafenib, a novel pan-RAF inhibitor, 
is under phase I evaluation and its results are awaited.45

In order to increase pan-RAF efficacy, preclinical combi-
nation with MEK inhibitors has been investigated. Pan-RAF 
inhibitor (Amgen Compd A) and Trametinib combination 
was found to significantly enhance cell growth inhibition 
and suppress MAPK activation (evaluated by p-ERK 
Western blotting) compared to monotherapy in NRAS- 
mutant melanoma cell lines. Efficacy seem to be associated 
with MAPK dependency and the presence of MAPK- 
independent pro-survival and anti-apoptotic signals.46

PI3K-AKT-mTOR Pathway Inhibitors
PI3K-AKT-mTOR pathway activation is commonly found 
in both BRAF and NRAS mutant melanoma. AKT3 ampli-
fication and mRNA overexpression are frequent in RAS 
mutant melanomas (around 40% of the cases), whereas 
PTEN mutations and deletions are enriched in BRAF 
mutant melanomas (around 20% of the cases). PIK3CA 
mutations have been observed in 3% of all melanomas.3 

Combination PI3K or AKT inhibitors with MEK inhibitors 
has shown synergic growth inhibition in melanoma cell 
lines with activating NRAS mutations.47

Dual inhibition with alpelisib (a selective PI3Kα inhi-
bitor) and binimetinib has been assessed in a phase Ib trial 
enrolling 58 patients with BRAF or RAS mutated 
advanced solid tumors. Five patients with NRAS-mutant 
melanoma were enrolled achieving an ORR of 20%.48

The combination of pimasertib and voxtalisib (a dual 
PI3K/mTOR inhibitor) was tested in a phase Ib trial 
including 146 patients. Twenty patients with BRAF V600- 
mutant melanoma (progressing on BRAF inhibitors) were 
included (3 patients in escalation cohorts and 17 patients 
in disease specific expansion cohort). Response rate was 
14% in the melanoma cohort (1 complete response and 1 
PR). Absence of clinical efficacy and tolerability concerns 
led to premature trial termination.49

Trametinib combination with an AKT inhibitor 
(GSK2141795) has also been evaluated in a phase II 
clinical trial including 10 NRAS mutant patients with mel-
anoma. No objective responses were observed and the PFS 
was 2.3 months.50 Even though preclinical evidence sup-
ported dual MAPK-PI3K/AKT/mTOR inhibition, clinical 
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trials show absence of efficacy and poor drug combination 
tolerability.

CDK4/6 Inhibitors – Cell Cycle
Cell cycle is deregulated in BRAF and NRAS-mutant mel-
anomas. NRAS mutant melanomas harbor CDKN2A altera-
tions (including mutation, deletion or promoter 
hypermethylation) and CCND1 amplifications in 70% 
and 10% of cases, respectively.3

Moreover, NRAS activation causes an increase on 
cyclin D1 expression which regulates cyclin-dependent 
kinase 4/6 (CDK 4/6) involved in G1/S cell-cycle 
checkpoint.51

Based on these observations, combination of ribociclib 
(a CDK 4/6 inhibitor) and binimetinib has been evaluated 
in 63 NRAS mutant advanced or metastatic melanoma 
patients under a phase Ib/II trial. Results from the phase 
II dose expansion showed an ORR 19.5% (n=41) with 
a PFS of 3.7 months.52

Ongoing trial in NRAS mutant melanoma patients 
involving the combination of LXH254 (an RAF inhibitor) 
with LTT462 (an ERK 1/2 inhibitor), Trametinib or 
Ribociclib is still recruiting.53

Epigenetics
NRAS-mutant melanoma is more associated with CpG 
Island methylation pattern (CIMP) than BRAF-mutant 
melanoma. Mutations in the chromatin remodeler ARID2 
gene and the epigenetic regulator IDH1 were also found in 
16% and 9% of NRAS-mutant samples, respectively.3 

Combination strategies with epigenetic modulators could 
increase efficacy of MEK inhibitors.

Data from de TCGA revealed that high BRD4 mRNA 
expression was associated with poor outcomes. 
Bromodomain and Extraterminal Domain (BET) proteins, 
such as BRD4, read acetylated lysine residues in histones 
and non-histone proteins promoting gene expression. In vitro 
(spheroids) and in vivo (xenografts) treatment combining 
JQ-1 (a BET inhibitor) and Mirdametinib (MEKi) decreased 
tumor growth rate and induced apoptosis in NRAS-mutant 
melanoma models. Efficacy was associated with downregu-
lation of the TCF19 transcription factor and E2F1/3-depen-
dent targets, involved in cell cycle G1 to S transition.54

Tyrosine Kinase Inhibitors
NRAS melanoma cell lines, unlike BRAF-mutant melanoma, 
harbor constitutive phosphorylation of receptors with tyro-
sine kinase activity, such as Axl, ERBB2, c-MET or EGFR.55 

However, activity of tyrosine kinase inhibitors have been 
examined in melanoma patients with limited benefit as 
monotherapy.

As an example, lenvatinib achieved an ORR of 9% and 
a mPFS 3.7 months in patients with BRAF wild type 
advanced melanomas.56 Axitinib yielded an ORR 18.8% 
and a 6-months PFS 33.9% in molecular unselected 
population.52 Patients were less pre-treated (maximum of 1 
previous line) and only 25% of patients received immu-
notherapy in the axitinib trial compared to lenvatinib trial.56,57

Sorafenib and tivantinib (a MET inhibitor) combina-
tion have been evaluated in eight patients with NRAS- 
mutant melanoma. PR was objectified in two patients and 
another two stable disease (SD) as best response.58

Axitinib has been also combined with chemotherapy. 
Combination with Carboplatin/Paclitaxel (n=38 patients) 
increased ORR to 22% and PFS to 8.7 months in unselected 
population, with better outcomes for non-BRAF V600E/K 
population. Regarding NRAS-mutant patients (n=8), 2 
patients achieved PR and 6 patients SD as best response.59

Combination of TKI with MAPK or PI3K-AKT-mTOR 
inhibitors might decrease acquired resistance to targeted ther-
apy and compensatory feedback of the intracellular pathway.60 

Combination of pazopanib and trametinib has been performed 
under a phase I trial. Four patients with melanoma were 
enrolled, with SD as best response in 3 patients. 
Unfortunately, no information about RAF/RAS status was 
given.61

ERK Inhibitors
ERK is the final kinase in the MAPK signaling pathway. 
Therefore, ERK inhibitors (ERKis) could be an interesting 
treatment target for NRAS-mutant melanoma patients.13,14 

Preclinical data supports this concept.
SCH772984 has proved efficacy in NRAS, KRAS, and 

BRAF-mutant cell lines as in melanoma animal resistant to 
BRAF inhibitors.62 In NRAS-Q61H mutant cell line, ERK 
inhibition with VX-11e displayed greater proliferative arrest 
than MEKi. Treatment with MEKi did not suppressed ERK- 
dependent phosphorylation of downstream targets. RTK 
activation and cross-talk of other signaling pathways with 
ERK pathway were the explanation.63

Ulixertinib is a reversible, ATP-competitive ERK1/2 
inhibitor. Safety and preliminary efficacy have been 
assessed in a phase-I clinical trial enrolling patients with 
NRAS-mutant and BRAF-mutant melanomas. Preliminary 
results from one of the expansion cohorts for NRAS- 
mutant melanoma patients (n=19), not previously treated 
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with BRAF and/or MEK inhibitors, showed PR in 13.5% 
and DCR in 52.6% of the patients.64,65

Further development of novel ERKi in phase I clinical 
trials as single agents or in combination with MEKis, 
chemotherapy or targeted agents are awaited.

Table 3 summarizes the efficacy outcomes of targeted 
therapies (monotherapy and combinations) in patients with 
NRAS-mutant melanoma.

Future Strategies for NRAS-Mutant 
Melanoma
The KRAS Situation
To date, targeting directly on GTP binding pocket in RAS 
protein has been difficult due to the strong affinity between 
GTP and RAS.18 Nevertheless, recently, a small molecule 

that specifically and irreversibly inhibits KRAS G12C 
(AMG 510 or Sotorasib) has shown antitumor activity in 
patients with KRAS G12C-mutant advanced solid tumors.66

Sotorasib forms an irreversible covalent bond to the 
sulfur atom in the cysteine residue that is present in the 
mutated form of KRAS G12C, but not in the normal form. 
The inhibitor traps KRAS G12C in the inactive GDP- 
bound state, inhibiting its phosphorylation activity.67

New RAS targeting strategies still need further 
development. For example, instead of targeting RAS 
protein activity we could block protein translation by 
RNA interference. Challenges regarding RNA delivery, 
intravascular degradation, intracellular trafficking, and 
potential off target effects are delaying its clinical 
implementation.68

Table 3 Summary of Efficacy Outcomes of Targeted Therapies (Monotherapy and Combinations) in Patients with NRAS-Mutant 
Melanoma. “Sample Size” Refers to Number of Patients Included with NRAS-Mutant Melanoma in the Clinical Trial

Drug/s Trial Target Population Sample 
Size

Efficacy Outcomes Reference

Trametinib Phase II Melanoma n=7 ORR= 0% with 29% of SD (2/7 patients) [37]

Binimetinib Phase III vs 

Dacarbazine

NRASmt melanoma n=402 Binimetinib increased ORR (15% vs 7%) and PFS (2.8 

vs 1.5 months; HR 0.62). 
No OS differences (11 vs 10.1 months; HR 1.00).

[39]

Pimasertib Phase II vs 
Dacarbazine

NRASmt melanoma n=194 Pimasertib increased DCR (37.7% vs 26.6%) and PFS 
(13 vs 6.9 weeks). No OS differences (8.9 vs 10.6 

months).

[40]

RO4987655 

(MEKi)

Phase I KRASmt NSCLC and 

CRC, BRAFmt and wt 

melanoma

n=8 ORR=13% with DCR=39% [41]

Alpelisib + 

Binimetinib

Phase Ib BRAFmt or RASmt solid 

tumors

n=5 ORR=20% [48]

GSK2141795 

(AKT inhibitor) + 
Trametinib

Phase II NRASmt and BRAF/ 
NRASwt melanoma

n=10 ORR 0% and PFS 2.3 months. [50]

Ribociclib + 
Binimetinib

Phase Ib/II NRASmt melanoma n=41 ORR 19.5% and PFS 3.7 months. [52]

Sorafenib + 
Tivatinib

Phase I NRASmt or wt 
melanoma

n=8 ORR=25% with DCR=50% [58]

Axitinib + 
Carboplatin/ 

Paclitaxel

Phase II Melanoma n=8 ORR=25% with DCR=100% [59]

Ulixertinib Phase I NRASmt or BRAFmt 

melanoma

n=19 ORR=13.5% with DCR=52.6% [65]

Abbreviations: ORR, overall response rate; DCR, disease control rate; PFS, progression free survival; OS, overall survival; Mt, mutant; Wt, wild type.
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NF1
NF1 (neurofibromin 1) acts as a tumor suppressor through 
GAP activity which turns the active RAS-GTP to RAS- 
GDP.69 Calpain 1 (CAPN1) is a calcium-dependent neutral 
cysteine protease that regulates NF1 degradation in melanoma 
cell lines.70

Combination of Calpain 1 inhibitor with Trametinib 
added antiproliferative activity in terms of cell growth 
reduction compared to Trametinib alone in melanoma 
cell lines.70 This combination may increase MEK inhi-
bitors’ efficacy in NRAS-mutant melanoma in the 
future.

PPP6C
PPP6C (Protein Phosphatase 6 Catalytic Subunit) 
encodes a Serine/Threonine phosphatase involved in 
cell cycle regulation and progression.71 Among the 
different substrates of PPP6C we find MEK72 and 
Aurora-A.73

Loss of PPP6C promotes MEK hyperphosphoryla-
tion (at activating and crosstalk phosphorylation sites) 
inducing ERK pathway signaling and resistance to 
MEK inhibitors in vitro.72

Loss of its activity is also linked to elevated 
Aurora-A kinase activity, leading to mis-segregation 
of chromosomes during mitosis leading to chromosome 
instability. Aurora-A inhibitors may be a treatment 
strategy to treat melanomas harboring PPP6C 
inactivation.73

STK19
STK19 (serine threonine kinase 19) is a serine/threonine 
kinase which regulates NRAS signaling.74 It phosphory-
lates NRAS S89 residue, activating its signaling via the 
MAPK and PI3K pathways in human melanocyte cell 
lines.74,75 STK19 activating mutations are mutually exclu-
sive with BRAF in melanoma.75

In NRAS Q61R transgenic mice, the STK19 D89N 
mutant promoted oncogenic NRAS driven melanomagen-
esis. ZT-12-037-01 (an STK19 inhibitor) reduced cell divi-
sion and induced apoptosis in NRAS-STK19 mutant mice 
xenografts.75 Consistent with these observations, STK19 
inhibition could be a potential therapeutic strategy for 
NRAS-mutant melanoma.

PTPN11
PTPN11 (protein tyrosine phosphatase non-receptor 
type 11) gene encodes SH2, a phosphatase which con-
tains two tandem Src homology-2 domains which inter-
act with phospho-tyrosines in transmembrane cellular 
receptors. SHP2 activity is involved in RAS signaling 
activation.76

Activating mutations of PTPN11 appear to be onco-
genic in melanoma. Conversely, SHP2 inhibitor SHP099 
promotes antitumoral response of NRAS Q61K-mutant 
melanomas in mice models.77

OTHER
Other targets not directly related to RAS signaling which 
have shown early preclinical evidence in combination with 
MEKi involve inhibition of the ROCK 1/2 (GTPase- 
activated serine/threonine kinases),78 ER (estrogen 
receptor)79 or HSP90 (Heat shock protein-90).80

Clinical Trials Ongoing
Table 4 summarizes ongoing clinical trials with poten-
tial beneficial treatment strategies recruiting patients 
with NRAS-mutant melanoma either as the main target 
population or included in unselected solid tumor 
cohort.

Conclusion
NRAS-mutant melanoma constitutes around 15–20% of 
patients with melanoma and is known to be associated with 
poorer prognosis.

Clinical trial experience over the last years with differ-
ent MEK inhibitors have shown limited efficacy in mono-
therapy. Treatment strategies in the near future will include 
combination of MEK inhibitors with inhibitors of the main 
intracellular pathways (either involved in RAS signaling 
or not) or other drugs disrupting cell-cycle checkpoints or 
epigenetics. Currently, little effort has been done towards 
mutant NRAS specific treatment, either with direct inhibi-
tors or post-traductional interactions.

To date, checkpoint inhibitors seem to be as effective 
or even more effective in patients with NRAS-mutant 
melanoma compared to distinct melanoma subtypes.
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Table 4 Ongoing Clinical Trials Recruiting Patients with NRAS-Mutant Melanoma

Clinicaltrials. 
gov 
Identifier

Title Phase N Population Treatment 
Arms

Primary Endpoint

NCT01941927 Phase II Clinical Trial of the 

MEK Inhibitor Trametinib 
With the AKT Inhibitor 

GSK2141795 in BRAF Wild- 

type Melanoma.

II 20 Unresectable Stage III or Stage 

IV disease. Evidence of tumor 
DNA showing either NRAS 
mutation or NRAS Wild-Type 

(WT)/BRAF WT.

Arm A: Trametinib 

(GSK1120212) 
2mg daily oral + 

GSK2141795 

25mg daily oral.

ORR

NCT02974725 A Phase Ib, Open-label, 

Multicenter Study of Oral 
LXH254-centric 

Combinations in Adult 

Patients With Advanced or 
Metastatic KRAS or BRAF 
Mutant Non-Small Cell Lung 

Cancer or NRAS Mutant 
Melanoma

Ib 315 Patients with advanced or 

metastatic NSCLC or 
cutaneous melanoma. 

Presence of KRAS or BRAF 
mutation (NSCLC) or NRAS 
mutation (cutaneous 

melanoma) in tumor tissue.

Arm A: LXH254 + 

LTT462. 
Arm B: LXH254 + 

Trametinib. 

Arm C: LXH254 + 
Ribociclib.

Number of 

participants with AEs 
and experiencing 

DLTs. 

Tolerability measured 
by the number of 

subjects who have 

interruptions/ 
reductions of study 

treatment and 
by the dose intensity 

of study drug.

NCT03634982 A Phase 1, Open-Label, 

Multicenter, Dose-Escalation 

Study of RMC-4630 
Monotherapy in Adult 

Participants With Relapsed/ 

Refractory Solid Tumors

I 210 Advanced solid tumors that 

have failed, are intolerant to, 

or are considered ineligible 
for standard of care anticancer 

treatments.

RMC-4630 (SHP2 

inhibitor)

Number of 

participants with AEs 

and experiencing 
DLTs.

NCT03979651 MEK and Autophagy Inhibition 

in Metastatic/Locally 
Advanced, Unresectable NRAS 
Melanoma: A Phase Ib/II Trial 

of Trametinib Plus 
Hydroxychloroquine in 

Patients With NRAS 
Melanoma

Ib/II 29 Patients with histologically 

confirmed metastatic or 
locally advanced unresectable 

malignant melanoma with an 

activating NRAS mutation 
progressing during or after 

a first line treatment by 

immunotherapy.

Trametinib + 

Hidroxicloroquine 
(3 different dose 

scalation cohorts)

Number of 

participants with AEs 
and ORR.

NCT03973151 A Phase I/II, Single Arm, Dose 

Escalation and Cohort 
Expansion Study to Evaluate 

Safety, Preliminary Efficacy of 

HL-085 in Patients With NRAS 
Mutant Advanced Melanoma.

I/II 54 Patients with histologically or 

cytologically confirmed 
unresectable Stage III or Stage 

IV melanoma according to 

AJCC (Version 7, 2010) and 
NRAS mutation.

HL-085 (MEK 

inhibitor)

Number of 

participants with AEs 
and the MTD.

NCT03932253 A Phase Ia/Ib Clinical Study to 
Evaluate the Safety, 

Pharmacokinetics (PK) and 

Preliminary Anti-tumor 
Activity of FCN-159 in 

Patients With Advanced 

Melanoma Harboring NRAS- 
aberrant (Ia) and NRAS-mutant 

(Ib)

Ia/Ib 37 Patients with histologically or 
cytologically diagnosed 

advanced melanoma who 

cannot be surgically resected, 
stage III or IV, and have failed 

or rejected standard 

treatment with NRAS 
aberration (Phase Ia) or NRAS 
mutation (Phase Ib).

FCN-159 (MEK 
inhibitor)

Number of 
participants with AEs, 

the MTD and ORR.

(Continued)
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Abbreviations: ORR, overall response rate; AEs, adverse events; DLT, dose limiting toxicities; MTD, maximum tolerated dose; WT, wild type.
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