
R E V I E W

Review – Nutraceuticals Can Target Asthmatic 
Bronchoconstriction: NADPH Oxidase- 
Dependent Oxidative Stress, RhoA and Calcium 
Dynamics

Mark F McCarty1 

James J DiNicolantonio2 

Aaron Lerner 3

1Catalytic Longevity Foundation, San 
Diego, CA, USA; 2Department of 
Preventive Cardiology, Saint Luke’s Mid 
America Heart Institute, Kansas, MO, 
USA; 3Chaim Sheba Medical Center, The 
Zabludowicz Research Center for 
Autoimmune Diseases, Tel Hashomer, 
5262000, Israel 

Abstract: Activation of various isoforms of NADPH oxidase contributes to the pathogen-
esis of asthma at multiple levels: promoting hypercontractility, hypertrophy, and proliferation 
of airway smooth muscle; enabling lung influx of eosinophils via VCAM-1; and mediating 
allergen-induced mast cell activation. Free bilirubin, which functions physiologically within 
cells as a feedback inhibitor of NADPH oxidase complexes, has been shown to have 
a favorable impact on each of these phases of asthma pathogenesis. The spirulina chromo-
phore phycocyanobilin (PhyCB), a homolog of bilirubin’s precursor biliverdin, can mimic 
the inhibitory impact of biliverdin/bilirubin on NADPH oxidase activity, and spirulina’s 
versatile and profound anti-inflammatory activity in rodent studies suggests that PhyCB 
may have potential as a clinical inhibitor of NADPH oxidase. Hence, spirulina or PhyCB- 
enriched spirulina extracts merit clinical evaluation in asthma. Promoting biosynthesis of 
glutathione and increasing the expression and activity of various antioxidant enzymes – as by 
supplementing with N-acetylcysteine, Phase 2 inducers (eg, lipoic acid), selenium, and zinc – 
may also blunt the contribution of oxidative stress to asthma pathogenesis. Nitric oxide (NO) 
and hydrogen sulfide (H2S) work in various ways to oppose pathogenic mechanisms in 
asthma; supplemental citrulline and high-dose folate may aid NO synthesis, high-dose biotin 
may mimic and possibly potentiate NO’s activating impact on soluble guanylate cyclase, and 
NAC and taurine may boost H2S synthesis. The amino acid glycine has a hyperpolarizing 
effect on airway smooth muscle that is bronchodilatory. Insuring optimal intracellular levels 
of magnesium may modestly blunt the stimulatory impact of intracellular free calcium on 
bronchoconstriction. Nutraceutical regimens or functional foods incorporating at least several 
of these agents may have utility as nutraceutical adjuvants to standard clinical management 
of asthma. 
Keywords: asthma, bronchoconstriction, calcium, NADPH oxidase, RhoA, oxidative stress

Introduction
Asthma is a chronic inflammation of the airways of the lungs, characterized by 
reversible airflow obstruction, variable and recurring symptoms, and allergen triggered 
bronchospasms.1 Genetic and environmental factors are predisposing factors and 
wheezing, shortness of breath, coughing and chest tightness are frequent presenting 
symptoms. Asthma is thought to afflict about 300 million people worldwide, and its 
prevalence over the last several decades has increased markedly.2 There is no 
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definitive cure for the disease. Symptoms can be prevented 
by avoiding allergens and irritants, or treated by inhaled 
corticosteroids, long-acting beta agonists or anti- 
leukotriene agents.3 Various diets and food supplements 
have been suggested for aiding asthma control, but 
a comprehensive review describing how nutraceuticals 
might target asthmatic bronchoconstriction is lacking.4 

This review summarizes what is known regarding the mole-
cular biology underlying the pathogenesis of asthma, focus-
ing in particular on the role played by reactive oxygen 
species generated by NADPH oxidase complexes, and pro-
poses that certain specific nutraceuticals have potential for 
asthma control, meriting clinical evaluation in this regard.

Pathogenesis of Allergic Asthma
Allergic asthma constitutes an inflammatory stew in which 
Th2 lymphocytes, mast cells, basophils, and eosinophils, 
in response to an allergen challenge, congregate in the 
lung and produce a range of autacoids and toxins that 
increase resistance to air flow both by inducing broncho-
constriction and by increasing mucus production.5 In the 
longer term, bronchial hyperplasia can evolve, further 
increasing airway resistance in a manner not susceptible 
to acute therapeutic control.6

Mechanisms of Bronchoconstriction in 
Asthma
Figure 1 provides an overview of the molecular biology 
underlying asthmatic bronchoconstriction. Autacoids such 
as histamine, prostaglandins and leukotrienes act via 
G protein-coupled receptors to induce activation of the 

G protein RhoA and phospholipase C, while exerting 
a depolarizing effect on smooth muscle plasma membrane 
that promotes calcium influx via voltage-gated calcium 
channels.7 RhoA activity is boosted by G12/13-mediated 
activation of RhoA GEFs (guanosine nucleotide exchange 
factors) that induce RhoA binding to GTP.7,8 Activated 
RhoA then stimulates Rho-activated kinase (ROCK), 
which confers an inhibitory phosphorylation on the myo-
sin light chain phosphatase (MLCP) complex.7 

Concurrently, this complex is also inhibited by the protein 
CPI-17; the inhibitory efficacy of this protein is activated 
by a phosphorylation conferred by protein kinase 
C (PKC), which in turn is activated by G protein- 
mediated stimulation of phospholipase C activity (PLC).9 

Meanwhile, broncho-constrictive autacoids boost the 
activity of myosin light chain kinase by inducing calcium 
influx via L-type voltage-sensitive calcium channels; these 
autacoids promote a depolarization of the plasma mem-
brane that induces this influx. With respect to histamine, 
stimulation of H1 receptors activates PKC, which in turn 
confers an inhibitory phosphorylation on Kv7.5 potassium 
channels, resulting in depolarization and consequent cal-
cium influx.10,11 The net impact of these mechanisms is to 
boost the activity of MLCK while suppressing that of 
MLCP, amplifying the Ser-19 phosphorylation of the 20 
kDa myosin light chain that induces smooth muscle 
constriction.12,13

The bronchial smooth muscle of asthmatics typically 
displays increased expressions of the Nox4 isoform of 
NADPH oxidase; moreover, the hypersensitivity of asth-
matic bronchial smooth muscle to bronchoconstrictors is 
ameliorated by inhibition of Nox4.14 This may reflect an 
oxidant-induced amplification of RhoA expression and 
activity. Oxidant production by Nox4 has been shown to 
increase RhoA/ROCK expression in vascular smooth mus-
cle, and other studies show that stimulation of oxidant 
production in smooth muscle boosts RhoA activity or 
expression.15–18 One possible explanation for this phe-
nomenon is that oxidants suppress the expression of 
MiR-133a, which targets the 3ʹ untranslated region of 
RhoA mRNA, promoting its degradation; hence, oxidants 
would be expected to up-regulate RhoA mRNA.18 The 
Th2-generated cytokines IL-4 and IL-13 can also increase 
RhoA expression in bronchial smooth muscle.19 On the 
other hand, activation of RhoA is opposed by the bioactiv-
ities of both nitric oxide (NO) and hydrogen sulfide (H2S). 
NO-mediated activation of soluble guanylate cyclase 
(sGC) stimulates synthesis of cyclic GMP (cGMP), 
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Figure 1 Regulation of bronchial constriction. Nutraceuticals with potential for 
intervening in this process are highlighted in bold. i–intracellular.
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which in turn binds to and activates protein kinase 
G (PKG). Activated PKG can then confer 
a phosphorylation on RhoA that prevents it from interact-
ing with its GEF and binding GTP.20,21 H2S can interact 
directly with RhoA via reversible S-sulfhydration of 
a cysteine group; this likewise prevents the activation of 
RhoA.22,23 Concurrently, H2S acts to upregulate NO 
bioactivity, by reversing a peroxynitrite-mediated oxida-
tion of sGC that renders it non-responsive to NO.24 H2 

S can also boost cellular cGMP levels via inhibition of 
phosphodiesterase-5, which degrades cGMP.25,26 Hence, 
measures which inhibit Nox4 activity, amplify or mimic 
NO bioactivity, or boost H2S synthesis can be expected to 
oppose bronchoconstriction by decreasing the expression 
or activation of RhoA.

Multiple Roles for NADPH Oxidase 
in the Pathogenesis of Asthma
The foregoing discussion cites evidence that Nox4 over-
expression in bronchial smooth muscle is a key mediator 
of bronchoconstriction in asthma. However, NADPH oxi-
dase activity plays a number of additional key roles in the 
pathogenesis of asthma:

Airway Smooth Muscle Hypertrophy and 
Hyperplasia
The hypertrophic and proliferative response of airway 
smooth muscle (ASM) cells in culture to serum or agonists 
such as TGF-β1 appears to likewise be mediated by Nox4 
activation, as silencing of Nox4 or other measures known 
to inhibit NADPH oxidase activity render ASM more 
quiescent.27–29 Pertinent downstream targets activated by 
Nox4-induced oxidants include NF-kappaB, ERK1/2, and 
mTORC1. Expansion of airway smooth muscle mass is 
a common feature of chronic asthma, leading to persistent 
smooth airway obstruction not reversible with 
bronchodilators.

Ciliary Dysfunction
In airway epithelium, reduced cilia beat frequency is 
observed in patients with a neutrophilic subtype of asthma; 
this impairs mucus clearance and is linked to increased 
risk for lung infections.30,31 Studies with ex vivo epithelial 
strips from such patients indicate that Nox4 is overex-
pressed in this epithelium, and that reduction in beat 
frequency is reversed by a chemical that inhibits specifi-
cally the Nox1 and Nox4 isoforms of NADPH oxidase.31

Eosinophil Influx
Pulmonary eosinophilia is a typical feature of asthma, and 
is suspected to exacerbate the syndrome by release of 
various pro-inflammatory mediators.32 Circulating eosino-
phils access the lung parenchyma via VCAM-1 receptors 
on lung endothelial cells.33,34 (Lymphocytes also employ 
this transit mechanism, although they are less obligately 
dependent upon it.) Engagement of endothelial VCAM-1 
receptors by eosinophils induces activation of Nox2- 
dependent NADPH oxidase activity in endothelium, and 
the resulting oxidant production plays an obligate role in 
enabling infiltration of eosinophils into the lung.35,36 

Hence, in Nox2-knockout mice rendered chimeric by irra-
diation and implantation of wild-type hematopoietic cells, 
lung eosinophil influx following intranasal challenge with 
ovalbumin (in mice previously sensitized to this protein) is 
substantially blunted in contrast to wild-type mice; more-
over, the airway hyperresponsiveness following ovalbumin 
challenge is likewise blunted in these chimeric mice, con-
sistent with a role for eosinophil influx in airway 
obstruction.37

Mast Cell Activation
Agonists which promote mast cell degranulation, and 
boost mast cell production of Th2 cytokines such as IL-4 
and IL-13, do so via a signaling pathway obligately depen-
dent on NADPH oxidase activation.38–40 Mast cell activa-
tion evidently plays a crucial role in allergic asthma.

Evidently, agents which can safely down-regulate 
NADPH oxidase activity, or which counteract the signal-
ing impact of oxidants by either promoting catabolism of 
oxidants, or by acting to reverse the oxidation of acidic 
cysteine groups induced by hydrogen peroxide, should 
have interesting potential for preventing or controlling 
asthma. Figure 2 depicts the multiple roles of NADPH 
oxidase-generated oxidants in the pathogenesis of asthma.

Nutraceutical Strategies for 
Controlling NADPH Oxidase 
Activity
These considerations suggest that therapeutic strategies 
capable of safely down-regulating NADPH oxidase activa-
tion in the lung could have major potential for controlling 
asthma. Indeed, systemic administration of the NADPH 
oxidase-inhibitory agent apocynin notably blunts airway 
hyperresponsiveness and lung inflammation in sensitized 
mice challenged with ovalbumin.41 In mild human 
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asthmatics, inhalation of aerosolized apocynin prior to and 
during exposure to ozone blunted the subsequent airway 
hyperresponsiveness in response to methacholine.42

Moreover, recent research has established that the pro-
found physiological antioxidant activity of bilirubin – 
observed intracellularly at low nanomolar concentrations – 
reflects inhibition of NADPH oxidase complexes; the 
mechanism and isoform specificity of this effect requires 
further clarification.43–46 When cells are oxidatively 
stressed – oftentimes by overactivation of NADPH oxi-
dase – induction of heme oxygenase-1 results in break-
down of heme, yielding carbon monoxide and biliverdin; 
the latter is quickly reduced to bilirubin, which provides 
feedback inhibition of NADPH oxidase.46 Ohrui and col-
leagues have reported an intriguing case history in which 
a teenager with chronic hard-to-control asthma was hospi-
talized for acute hepatitis B.47 The patient’s serum bilir-
ubin level tripled during the course of his hospital stay, 
and his physicians were intrigued to note that his intract-
able asthma almost completely remitted during this time, 
such that asthma medications could be discontinued. 
However, within a couple of weeks, his bilirubin levels 
normalized – and this was associated with return of his 
asthma. His physicians insightfully suggested that the anti-
oxidant activity of bilirubin may have been responsible for 
his temporary remission.

Experimental studies likewise suggest that bilirubin 
may function physiologically to quell the asthma syn-
drome. In a mouse model of allergic asthma engendered 
by repeated nasal administration of aspergillus/ovalbumin 
proteins, i.p or i.v. administration of bilirubin nanoparti-
cles markedly reduced airway hyperresponsiveness to 
methacholine, decreased cell count in bronchoalveolar 
fluid (BALF), and suppressed eosinophil influx.48 In 
vitro, bilirubin has been shown to impede VCAM- 

1-dependent trans endothelial migration; in a murine 
asthma model, i.p. administration of bilirubin was found 
to suppress lung infiltration by eosinophils and 
lymphocytes.49 The ability of heme oxygenase-1 induction 
to antagonize ASM cell hypercontractility and prolifera-
tion has been traced to the bilirubin generated by this 
enzyme.50,51 Analogously, exposure of mast cells to low 
micromolar concentrations of bilirubin opposes agonist- 
induced degranulation and up-regulation of adhesion, 
mimicking the impact of heme oxygenase-1 induction in 
this regard.52,53 Hence, bilirubin has been shown to antag-
onize most of the NADPH oxidase-dependent phases of 
asthma pathogenesis highlighted above.

Phycocyanobilin as a Clinically Feasible 
NADPH Oxidase Inhibitor
Unfortunately, bilirubin is unsuitable for oral administra-
tion owing to its marked insolubility; its more soluble 
precursor biliverdin is more feasible in this respect, but 
there are no known rich sources of this chemical, and it is 
expensive to synthesize. It is therefore quite propitious that 
cyanobacteria such as spirulina are very rich sources – 
about 0.6% by dry weight – of the chromophore phyco-
cyanobilin (PhyCB), a biliverdin metabolite.54 Within 
cells, PhyCB is quickly converted to phycocyanorubin, 
whose structure is quite similar to that of bilirubin.55 

Indeed, PhyCB, likely via its metabolite phycocyanorubin, 
has been shown to inhibit NADPH oxidase complexes 
in vitro and in vivo with a dose-dependent potency similar 
to that observed with biliverdin/bilirubin.54,56 This phe-
nomenon likely explains why oral administration of spir-
ulina or of phycocyanin (the spirulina protein which 
contains PhyCB as a covalently attached chromophore) 
has exerted profound anti-inflammatory effects in a host 
of rodent models of inflammation.54,57 Oral phycocyanin 

Phase 2 Inducers
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Bronchial Smooth Muscle Hyperplasia
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Figure 2 The multiple roles of NADPH oxidase-driven oxidative stress in the pathogenesis of asthma. Nutraceuticals with potential for intervening in this process are 
highlighted in bold.
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has shown marked anti-atherosclerotic activity in choles-
terol-fed hamsters, and nearly completely prevented 
nephrosclerosis in diabetic mice – syndromes known to 
be driven, in part, by NADPH oxidase activation.56,58

In light of the foregoing discussion, it seems quite 
reasonable to propose that an adequate intake of spirulina, 
phycocyanin, or PhyCB-enriched spirulina extracts may 
have important clinical utility in asthma. Of course, this 
hinges on the presumption that humans can absorb and 
metabolize PhyCB much like rodents do – a proposal 
which still requires clinical confirmation. Arguably, asses-
sing the clinical impact of high-dose spirulina on asthma 
could be a quick and highly feasible way of confirming 
that PhyCB has the antioxidant/anti-inflammatory poten-
tial in humans that it clearly does in rodents. Extrapolating 
from the doses that have proved highly effective in rodent 
models, it has been estimated that humans might need to 
take 15–30 g spirulina daily – or the equivalent intake of 
PhyCB – to achieve optimal anti-inflammatory effects.54 

However, a small non-blinded controlled trial in adult 
asthmatics found that one gram daily of spirulina provided 
clinical benefit comparable to standard medication, and 
that the combination of spirulina with medication pro-
duced the best clinical outcomes.59 A comparable study 
in a larger group with a higher dose of spirulina would be 
warranted.

Moreover, if PhyCB can function as a clinically feasi-
ble NADPH oxidase inhibitor in humans, there is reason to 
suspect that it may have much broader utility for lung 
protection. A recent massive prospective epidemiological 
analysis in the UK found that people with relatively high 
serum bilirubin levels were at notably lower risk for both 
lung cancer and chronic obstructive pulmonary diseases – 
an effect which arguably could reflect down-regulated 
activity of NADPH oxidase complexes in lung tissue.60 

Intravenous bilirubin infusion protects rats from bleomy-
cin-induced pulmonary fibrosis, likely reflected the role of 
NADPH oxidase in TGF-beta signaling.61 The same clin-
ical group which noted improvement of asthma in a patient 
during an episode of temporary hyperbilirubinemia, also 
reported resolution of idiopathic pulmonary fibrosis in 
a patient who developed sustained elevated bilirubin 
owing to biliary tract obstruction.62 The hypercontractility 
and hyperplasia of pulmonary vascular smooth muscle 
triggered by chronic hypoxia during the onset of pulmon-
ary hypertension, appears to be mediated by oxidative 
stress in this vascular muscle that stems from both mito-
chondria and NADPH oxidase.17,63–65 The overexuberant 

lung inflammation that mediates death in “killer” influen-
zas appears to reflect viral activation of NADPH oxidase 
in lung epithelium.66–68 Endotoxin-induced acute lung 
injury in rats – a model for acute respiratory distress 
syndrome – is substantially blunted by biliverdin adminis-
tration; mortality is also markedly decreased.69 NADPH 
oxidase activation seems likely to play a pathogenic role in 
cystic fibrosis.70,71 It can be concluded that, if spirulina/ 
PhyCB do indeed have useful clinical activity in asthma, 
they may have a much broader potential for promotion of 
pulmonary health.

There is also some evidence that spirulina, and perhaps 
PhyCB, has the potential to down-regulate the induction of 
Th2 cells that play a central role in the pathogenesis of 
asthma and allergic rhinitis. In a double-blind trial, admin-
istration of 2 g spirulina daily was found to lower the ex 
vivo production of phytohaemaglutinin-stimulated periph-
eral blood mononuclear cells by a significant 32%.72 Such 
an effect could be expected to diminish the differentiation 
of Th2 cells. This is paralleled by evidence that i.p. admin-
istration of bilirubin can reduce BLF content of the Th2 
cytokines IL-4, IL-5, and IL-13; moreover, in vitro, bilir-
ubin nanoparticles dose-dependently reduce the induction 
of IL-4-producing T cells in stimulated CD4+ 
lymphocytes.48 Curiously, there is also evidence that bilir-
ubin/biliverdin and PhyCB may modulate T cell develop-
ment by promoting induction of Treg cells.73–75 This latter 
effect might hinge on the ability of bilirubin (and possibly 
PhyCB’s metabolite phycocyanorubin?) to act as an ago-
nist for the arylhydrocarbon receptor, which likewise pro-
motes Treg induction.76–78

Increasing Lung Glutathione Levels 
May Counter Some Pathogenic 
Effects of Oxidative Stress
Many of the pro-inflammatory effects of oxidative stress – 
including presumably some of those stemming from Nox4 
activity in asthma – are mediated by hydrogen peroxide, 
which oxidizes acidic cysteine groups in signaling proteins 
or enzymes to sulfenic acid.79,80 Reduced glutathione, 
working in concert with glutaredoxin, can reverse these 
oxidations, restoring protein-bound cysteine to its native 
form.81–83 In this way, glutathione works to counteract 
oxidant-induced pro-inflammatory signaling. The avail-
ability of cysteine is rate-limiting for glutathione synthesis, 
and many studies – both in rodents and humans – demon-
strate that supplementation with N-acetylcysteine (NAC) 
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can increase tissue glutathione levels;84,85 NAC is better 
tolerated and more stable than free cysteine when admi-
nistered orally, and readily gives rise to free cysteine once 
absorbed. Hence, there is reason to suspect that supple-
mental NAC could aid control of asthma. Indeed, two 
groups have reported favorable effects of NAC adminis-
tration in ovalbumin-induced asthma in rodents.86–88 In 
a controlled clinical study, enrolling individuals hyperre-
sponsive to methacholine challenge, 6 days of NAC pre- 
treatment (600 mg three time daily) reduced baseline 
methacholine responsiveness by about 20%, and also 
blunted the ability of diesel exhaust to increase airway 
hyperresponsiveness.89 However, a controlled trial of 
NAC (600 mg twice daily) in patients experiencing asthma 
exacerbations failed to observe clinical benefit.90

Glutathione synthesis can also be promoted by admin-
istration of so-called phase 2 inducers, which stimulate 
activity of the nrf2 transcription factor to increase expres-
sion of a number of antioxidant enzymes, including γ- 
glutamylcysteine synthetase, rate-limiting for glutathione 
synthesis.91 Enzymes whose expression is enhanced by 
phase 2 inducers work in conjunction with glutathione 
and the small proteins thioredoxin and glutaredoxin to 
catabolize oxidants such as hydrogen peroxide, or to 
reverse the oxidizing impact of hydrogen peroxide on 
protein sulfhydryl groups. The most clinically developed 
of phase 2 inducers is the natural cofactor lipoic acid (LA), 
which has been shown to be therapeutically beneficial in 
diabetic neuropathy in doses of 600 mg 2–3 times 
daily.92,93 LA administration has been evaluated in oval-
bumin-induced asthma in mice; LA decreased airway 
hyperresponsiveness, eosinophil influx, and markers of 
oxidative stress in bronchoalveolar lavage fluid.94 In 
a longer term study in this model, LA administration 
suppressed airway remodeling.95 The natural phase 2 indu-
cer ferulic acid, used in China as a medication for cardi-
ovascular disorders, likewise has been found to ameliorate 
ovalbumin-induced asthma in mice.96,97

Phase 2 inducers have the additional merit of boosting 
expression of heme oxygenase-1, which degrades heme to 
generate free bilirubin within cells.98 This effect could 
evidently complement the utility of PhyCB for suppressing 
NADPH oxidase activity within the lung.

The essential mineral selenium is an obligate compo-
nent of certain phase 2-inducible antioxidant enzymes, 
including thioredoxin reductase and various isoforms of 
glutathione reductase.99 Hence, it is reasonable to presume 
that achieving adequate selenium status in asthma patients 

with poor baseline selenium nutrition may favorably 
impact asthma control. Indeed, a recent meta-analysis has 
concluded that patients with asthma tend to have lower 
plasma selenium levels than controls.100

NO and H2S Bioactivity Both 
Oppose Pathogenic Mechanisms in 
Asthma
In the healthy lung, nitric oxide (NO), produced primarily 
by airway epithelium, vascular endothelium, and neurons 
via the constitutive endothelial and neuronal forms of NO 
synthase, acts directly on bronchial smooth muscle to 
promote bronchodilation and oppose hypertrophy and 
hyperplasia.101–104 NO produced by airway epithelium 
boosts ciliary beat frequency.105,106 NO production by 
vascular endothelium opposes the influx of eosinophils 
into lung parenchyma.107–110 The effects of NO bioactivity 
on bronchial smooth muscle, epithelial ciliary function, 
trans endothelial eosinophil influx, and mast cell activity 
are in opposition to those of lung oxidative stress, which is 
not entirely coincidental, as superoxide and its down-
stream products act in various ways to oppose NO bioac-
tivity. Superoxide reacts avidly and spontaneously with 
NO to produce the potent oxidant peroxynitrite; peroxyni-
trite, in turn, can cause an inhibitory oxidation of sGC, and 
also cause uncoupling of NO synthase via oxidation of its 
obligate cofactor tetrahydrobiopterin.111,112 Oxidative 
stress can also impair the activity of dimethylarginine 
dimethylaminohydrolase (DDAH), the enzyme which cat-
abolizes the natural metabolite asymmetric dimethylargi-
nine (ADMA).113 The latter also uncouples NO synthase, 
so a deficit in DDAH activity tends to promote this uncou-
pling by boosting tissue levels of ADMA.114 Conversely, 
genetic overexpression of DDAH1 in mouse models of 
asthma attenuates lung inflammation, presumably by 
enhancing coupled NO synthase activity.115

Theoretically, nutraceutical measures which boost NO 
synthase activity should be helpful in asthma control. 
However, in seeming paradox, exhalation of NO in asthma 
patients tends to be elevated, reflecting the ability of pro- 
inflammatory cytokines in the lungs to boost expression of 
the inducible form of NO synthase (iNOS).116–118 Indeed, 
higher levels of exhalate NO tend to correlate with severe 
disease in asthma patients, associated with greater inflam-
mation within the lungs.114,119 The failure of this elevated 
NO production to confer notable benefit in asthma patients 
appears to reflect impaired activity of sGC. This 
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impairment is attributable, in part, to oxidative inactivation 
of sGC, likely mediated by peroxynitrite.111 Additionally, 
the expression of sGC, both at the mRNA and protein 
level, is reduced in the ASM of mice with ovalbumin- 
induced asthma; why this occurs remains 
mysterious.120,121

Measures which promote proper coupling of NO 
synthase should be doubly beneficial for asthma control, 
as these could be expected both to enhance NO production 
and bioactivity, and to decrease production of 
superoxide.114 Blood and lung levels of ADMA tend to 
be elevated in asthma patients; indeed, elevation of 
ADMA may be a key reason why obesity tends to increase 
asthma severity.115,122–126 Moreover, increases in lung 
arginase expression in asthma diminish the arginine/ 
ADMA ratio, further promoting uncoupling of NO 
synthase. Nutritional elevation of plasma and tissue argi-
nine levels – most effectively achieved by supplementation 
with the arginine precursor citrulline127,128 – promotes 
recoupling of NO synthase in the context of elevated 
ADMA and arginase.114,129 (Indeed, citrulline functions 
as a competitive inhibitor of arginase.130) Hence, citrulline 
supplementation may exert an antioxidant effect on the 
lungs of asthmatics, while concurrently boosting NO pro-
duction. Arginine supplementation has provided benefit in 
several rodent models of asthma – albeit not all.131–135 

Conversely, elevation of plasma ADMA via continuous 
subcutaneous infusion potentiates ovalbumin-induced 
allergic lung inflammation in mice, whereas DDAH1 over-
expression is protective in this regard.136 In a recent open 
clinical study, obese asthmatics with NO exhalation in the 
low-normal range were treated with 15 g citrulline daily 
for a minimum of 14 days; forced vital capacity and an 
index of quality of control improved slightly but signifi-
cantly, exhalation of NO increased, and the plasma ratio of 
arginine to ADMA nearly doubled.137

With respect to the possibility that increased ADMA is 
a mediator of the greater severity of asthma in diabetics, it 
is of interest that treatment with the drug metformin, 
which has been shown to lower ADMA levels in diabetics, 
has been associated epidemiologically with lower risk for 
asthma in diabetics, and better control of asthma in dia-
betics who already have it.138–140 Hence, metformin may 
be a good therapy choice in asthmatic diabetics. Berberine, 
an herbally-derived nutraceutical used commonly for dia-
betes treatment in China, and which replicates metformin’s 
ability to activate AMP-activated kinase, has been shown 

to favorably influence ovalbumin-induced asthma in 
rats.141

It seems likely that peroxynitrite-mediated oxidation of 
tetrahydrobiopterin also contributes to uncoupling of lung 
NO synthase in asthma.112 When the vascular system is 
under oxidative stress, administration of high-dose folate 
(eg, 10–80 mg daily) helps to recouple eNOS.142–145 This 
seems to reflect two effects. Reduced metabolites of folate 
produced within cells are effective scavengers of peroxy-
nitrite-derived radicals (an effect that might conceivably 
protect sGC activity as well).146 Moreover, high levels of 
folate induce increased expression of dihydrofolate reduc-
tase in endothelial cells; this enzyme functions to reduce 
dihydrobiopterin to tetrahydrobiopterin, reversing the oxi-
dizing impact of peroxynitrite on this cofactor.147–150 

Whether high-dose folate can exert a comparable inductive 
effect in lung epithelial cells merits study.

Metallothionein (MT) can function to quench peroxy-
nitrite-derived oxidants, and ovalbumin-induced asthma is 
more intense in MT-knockout mice.151–153 Conversely, 
zinc supplementation can boost MT expression, which 
may help to rationalize the favorable impact of zinc sup-
plementation on asthma in pilot clinical trials and in 
mouse models.154–159 A meta-analysis has determined 
that plasma zinc levels tend to be lower in asthma patients 
than controls.100

Another way to protect sGC from oxidative inhibition 
is to boost production of hydrogen sulfide (H2S). This 
gaseous mediator works in a variety of ways to comple-
ment the bioactivity of NO.160 In particular, H2S, much 
more effectively than glutathione, can reactivate oxidized 
sGC by re-reducing it.24 Moreover, in cells prominently 
expressing phosphodiesterase 5 (PDE5), it can up-regulate 
cGMP levels by inhibiting this enzyme (like the pharma-
ceutical PDE5 inhibitors used to treat erectile 
dysfunction).161

The primary enzymes which produce H2S, using 
cysteine as a substrate, are cystathionine β-synthase 
(CBS) and cystathionine γ-lyase (CSE); these are 
expressed in airway smooth muscle, as well as the 
endothelium and smooth muscle of the pulmonary 
vasculature.162 Serum levels of H2S are depressed in 
asthma patients – more so in those with disease exacerba-
tions as opposed to stable asthma.163 In patients with acute 
asthma, serum H2S correlates directly with forced expira-
tory volume in one second (FEV1). In mice with ovalbu-
min-induced asthma, both serum and lung H2S are 
decreased, as is expression of CBS and CSE in lung 
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tissue.164 Exogenous H2S (provided via injection of 
NaHS) improved peak expiratory flow and alleviated 
lung inflammation in this syndrome – whereas inhibition 
of CSE with the drug D,L-propylarginine exacerbated 
it.164

H2S can work in a range of ways to ameliorate asthma, 
and some of these are independent of its amplifying 
impact on NO bioactivity.162 H2S induces relaxation in 
tracheal smooth muscle by reducing calcium influx – an 
effect independent of NO.165 It also acts in vitro to slow 
proliferation of ASM and airway fibroblasts, and to stabi-
lize mast cells.166–168 NaSH2 administration decreases ele-
vations of eotaxin in the lungs of mice with ovalbumin- 
induced asthma, suggesting that H2S can slow influx of 
eosinophils.169 Hence, its effects on the asthma syndrome 
appear to be comparable to those of NO.

Supporting Endogenous Production 
of H2S
Although drugs achieving slow systemic release of H2 

S are being developed, it may be feasible to boost endo-
genous H2S production with nutraceuticals. Since cysteine 
availability is not saturating for either CBS or CSE, boost-
ing lung cysteine levels with supplemental NAC can be 
expected to enhance lung H2S.170 Hence, NAC supple-
mentation in asthma may serve a dual purpose, enhancing 
synthesis of both glutathione and H2S.

With respect to the expressions of CBS and CSE, an 
intriguing recent study has shown that taurine supplemen-
tation increases expression of these enzymes in the aorta 
of mice; moreover taurine dose-dependently increases 
their expression in human mesenteric arteries ex vivo.171 

In human hypertensives, oral administration of 1.6 
g taurine daily doubled serum levels of H2S, while achiev-
ing reductions in both systolic and diastolic blood pressure 
that were significant with respect to placebo-treated 
patients.171 It is credible to speculate that H2S may be 
a primary mediator of the anti-atherosclerotic and anti- 
hypertensive effects of taurine extensively documented in 
rodent studies, as H2S is known to work in multiple 
complementary ways to protect vascular health.170,172,173 

Whether taurine can influence CBS and CSE expression in 
lung has not yet been determined. Only a single study has 
evaluated taurine in a rodent asthma model; 7 days of oral 
pre-treatment with taurine did not lessen the bronchocon-
striction induced by antigen inhalation, but did subse-
quently decrease hyperresponsiveness to the 

bronchoconstrictor 5-hydroxytryptamine, while also 
decreasing eosinophils and markers of oxidative stress in 
bronchoalveolar lavage fluid.174 (Curiously, these effects 
were quite similar to those which the same group reported 
with supplemental NAC in the same rodent model – 
though perhaps not surprising if these agents both promote 
H2S synthesis.86) More research with taurine in rodent 
models is evidently warranted.

High-Dose Biotin Can Act as 
a Direct Activator of Soluble 
Guanylate Cyclase
An alternative strategy for boosting NO bioactivity in the 
lung is to administer drugs that interact directly with sGC 
to stimulate or activate it. A category of drugs known as 
sGC stimulators binds to the active (reduced) form of sGC, 
directly enhancing its activity and boosting its responsive-
ness to NO exposure.175,176 In contrast, sGC activator 
drugs interact with the oxidized, deactivated form of sGC 
(and only that form), restoring its ability to produce cGMP. 
Drugs of both classes have been shown to reverse the 
hypersensitivity of airway smooth muscle to bronchocon-
strictors in allergic asthma in mice.177 A sGC stimulator 
drug, Riociguat, has been approved for treatment of pul-
monary hypertension, but has not been studied clinically in 
asthma.178

In concentrations roughly two orders of magnitude 
higher than the physiological level – readily achievable 
with affordable supplementation – the vitamin biotin is 
known to act as an sGC activator, stimulating its produc-
tion of cGMP 2-3-fold.179–181 Whether, like pharmaceuti-
cal cGMP activators, biotin also potentiates 
responsiveness of sGC to concurrent NO exposure, has 
not yet been studied. In spontaneously hypertensive 
stroke-prone rats, dietary high-dose biotin has been 
shown to lower blood pressure modestly, while markedly 
reducing stroke incidence and mortality; concurrent 
administration of an inhibitor of sGC abrogates the anti- 
hypertensive effect of biotin in this model.182 Stimulation 
of sGC might also underlie the favorable impacts of high- 
dose biotin on diabetic control demonstrated in rodents 
and humans, and there is reason to suspect that the clinical 
utility of high-dose biotin in multiple sclerosis may reflect 
this mechanism.183–185 Supplemental biotin is well toler-
ated in daily doses of 100 mg or more, presumably 
because the maximal stimulation of sGC it can achieve is 
far lower than maximal response of this enzyme to 
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NO.184,186 Hence, high-dose biotin may have practical 
potential for use in asthma management – albeit it has 
never been tested in rodent models of this disorder, or 
indeed in any lung disorders.

Glycine and Magnesium Promote 
Bronchodilation via Calcium 
Modulation
Many tissues express strychnine-inhibitable chloride chan-
nels which are opened by interaction with the amino acid 
glycine. The affinity of these channels for glycine is close 
to normal plasma concentrations, so elevations of plasma 
glycine achievable through practical supplementation can 
increase the open probability of these channels.187,188 

Except in tissues that concentrate chloride intracellularly, 
glycine-mediated activation of chloride channels exerts 
a hyperpolarizing effect on plasma membrane by promot-
ing chloride influx. In macrophages – including alveolar 
macrophages – hyperpolarization reduces their production 
of oxidants and pro-inflammatory mediators.187,189,190 

However, the effect of glycine on mast cells and eosino-
phils does not seem to have been studied. Of particular 
interest is recent evidence that ASM express glycine- 
activated chloride channels; these induce membrane 
hyperpolarization in response to glycine.191 This hyperpo-
larization opposes calcium influx via voltage-sensitive 

calcium channels, and hence induces bronchodilation. 
When patients with cystic fibrosis were given glycine 
(0.5 g/kg/day in fluid) for 8 weeks in a double-blind cross-
over protocol, FEV1 increased significantly and symptom 
score improved significantly during supplemental glycine; 
no adverse effects were noted.192 Glycine is inexpensive in 
ample doses, has a pleasant mildly sweet flavor, and is 
highly and rapidly soluble, lending itself well to adminis-
tration in water or other fluids; it may also be protective 
for vascular health.188 Hence, it may have practical poten-
tial as a bronchodilatory nutraceutical in asthma 
management.

It may also be noted that glycine, like cysteine, is 
a glutathione precursor, and appears to complement the 
utility of NAC for raising tissue glutathione levels.193

Limited epidemiology suggests that better magnesium 
(Mg) nutrition correlates with better lung function. In 
a random sample of over 2600 adults, dietary Mg was 
assessed by food questionnaire and lung function was 
assessed; after adjustment for multiple confounding vari-
ables, a 100 mg/day increase in Mg intake was associated 
with a 27 mL higher FEV1, and an 18% lesser chance of 
showing hyperreactivity in a methacholine challenge.194 

Three placebo controlled studies of Mg supplementation 
in asthmatics, one involving exclusively children, demon-
strated functional and symptomatic improvement during 

Table 1 Proposed Nutraceutical Strategies for Controlling Asthma

Nutraceutical Mode of Action Dose Range/Day

PhyCB Inhibit NADPH Oxidase Complexes 100 mg (or 15 g spirulina)

NAC Support Glutathione Synthesis and Expression of Antioxidant Enzymes: 600 mg, x2-3

Lipoic Acid 600 mg, x2-3

Glycine 5–10 g, x2-3

Selenium 50–100 mcg

Zinc 10–25 mg, x2

Citrulline Support NO Biosynthesis/Bioactivity: 2–3 g, x2

High-Dose Folate 10–80 mg

High-Dose Biotin 10 mg, x2-3

NAC Support H2S Biosynthesis: 600 mg, x2-3

Taurine 1–3 g, x2

Glycine Dilate Bronchioles: 5–10 g, x2-3

Magnesium 100–200 mg, x2
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Mg administration;195–197 one controlled study failed to 
observe benefit.198

The apparent benefit of improved Mg status for lung 
function in asthma might reflect a direct impact of Mg on 
ASM hyperreactivity. Agonists which provoke ASM con-
traction do so, in part, by increasing intracellular free 
calcium; this activates the calmodulin-dependent myosin 
light chain kinase (MLCK), which confers 
a phosphorylation on myosin light chain that promotes 
contraction. At physiological cellular concentrations, Mg 
competes with calcium for binding to the N-terminal arm 
of calmodulin; binding of calcium to two sites on calmo-
dulin is required to induce the conformational change that 
enables it to activate various enzymes.199,200 Activation of 
MLCK by calmodulin is notably less effective when cal-
modulin is partially Mg-bound.201 Hence, a small increase 
in intracellular Mg level may modestly blunt the ability of 
calcium influx to activate MLCK. Whether this might be 
the main mechanism whereby Mg status regulates lung 
function in asthmatics remains unclear.

Overview
This review suggests that nutraceutical measures which 
help to control lung oxidative stress (PhyCB, NAC, LA 
or ferulic acid, selenium and zinc), that promote bioactiv-
ity of NO (citrulline, high-dose folate, high-dose biotin) 
and of H2S (NAC, taurine), and that directly induce 
bronchodilation via calcium modulation (glycine, Mg) – 
may have clinical potential for aiding asthma control. 
Table 1 summarizes these suggestions, with guesstimates 
as to dose ranges which might be useful. Some of these 
agents have never been tested even in rodent models of 
asthma, let alone in clinical asthma, so these proposals are 
still largely speculative. Nonetheless, if these agents can 
be shown to be of at least marginal utility, complex sup-
plements or functional foods featuring at least several of 
them may have practical potential as adjuvants to current 
management of asthma. Owing to the fact that some of the 
agents of potential benefit would require bulky multigram 
daily doses for optimal efficacy (spirulina, citrulline, taur-
ine, glycine), functional foods or beverages might be the 
most feasible way to deliver them.
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