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Purpose: Comparative reanalysis of single-cell transcriptomics data to gain useful novel 
insights into cancer stem cells (CSCs), which are a rare subset of cells within tumors, 
characterized by their capability to self-renew and differentiate, and their role in 
tumorigenicity.
Patients and Methods: This project utilized publically available liver single-cell RNA-seq 
datasets of liver cancer and liver progenitor cell types to demonstrate how shared large 
amounts of data can generate new and valuable information. The data were analyzed using 
EdgeR differential expression analysis, with focus on a set of 34 known stemness markers.
Results: We showed that the expression of stemness markers SOX9, KRT19, KRT7, and 
CD24, and Yamanaka factors Oct4 and SOX2 in CSCs was significantly elevated relative to 
progenitor cell types, potentially explaining their increased differentiation and replication 
potential.
Conclusion: These results help to further document the complementary expression changes 
that give CSCs their distinct phenotypic profile. Our findings have potential significance to 
advance our knowledge of the important genes relevant to CSCs.
Keywords: Yamanaka factors, single cell sequencing, CSCs, RNA-seq; cancer

Introduction
National Institutes of Health and other agencies are funding high-throughput 
genomics and transcriptomics (‘omics) experiments that deposit digital samples of 
data into the public domain at a rapidly increasing scale.1,2 The importance of these 
digital samples of data is further illustrated by the growing number of linked peer- 
reviewed publications that demonstrate its scientific value.3,4 Investigations of 
cancer stem cells (CSC) is a promising research avenue, which leads to the 
generation of large volumes of unique data. There is growing evidence implicating 
CSCs in causing therapeutic resistance, tumor recurrence, and metastasis. It is 
known that these cells possess stem-like properties/functions and represent 
a critical subset within the tumor mass that is responsible for perpetuating the 
tumor, even in post-therapy patients. CSCs share similar properties with normal 
stem cells, including the ability to self-renew and differentiate that gives rise to 
heterogeneous cancer cells, making up the bulk of the tumor.5

Recently, much work has been done on identifying the specific cell markers 
and gene expression profiles that can be used to identify and distinguish CSCs, but 
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it is still not entirely understood how CSCs compare to 
naturally occurring progenitor cells.5 It has been pre-
viously shown that there are multiple transcription factors 
that are currently known to be expressed in normal stem 
cells. Many of these factors have been found in multiple 
human cancers.6 Further, stemness factors are an impor-
tant medical target for cancer therapy.7 We expanded on 
this question of the importance of stemness factors for 
CSCs, by undertaking a reanalysis of publically available 
single-cell RNA-seq datasets, which characterize primary 
liver cancer samples8 and fetal and adult healthy liver 
samples.9 The importance of the study is based on the 
fact that liver cancer is the sixth deadliest cancer in the 
world.10 Using this cost-effective publically available 
data source, we compared expression levels of differen-
tiation stemness markers and factors across different cell 
types present in these liver samples to identify similarities 
between liver CSCs, liver pluripotent stem cells (hepato-
biliary hybrid progenitors), and hepatic progenitor cells. 
The liver cancer dataset samples contain both hepatocel-
lular carcinoma (HCC) and intrahepatic cholangiocarci-
noma (ICC). CSCs have been shown to be important 
factors in the development of both cancers.11 Further, 
since the liver contains bi-potential progenitor cells, 
which can potentially develop into both HCC and 
ICC,12 it is of great interest to understand the similarities 
and differences in expression between these fetal progeni-
tors and the CSCs.

We focused on the expression of 34 known stemness 
transcription factors and cell markers,13,14 to better 
understand the CSC classification of malignant cells 
and further delineate key liver CSC factors. Next, we 
compared the broader expression of genes to identify 
potential novel stemness factors. Here we showed that 
liver CSCs show higher expression levels of specific 
differentiation markers (SOX9, KRT19, KRT7, and 
CD24) and Yamanaka factors15 (SOX2 and Oct4) rela-
tive to expression levels in fetal and adult progenitors 
cell types, suggesting that they potentially explain the 
differentiation potential of CSCs. We further identified 
CXCL10 as a potential marker of CSCs. Expanding our 
knowledge of CSCs’ properties, using publically avail-
able data repositories, could lead to new therapeutic 
pathways for CSC-targeted cancer therapies.

Materials and Methods
Expression data from the liver cancer8 and fetal and adult 
healthy liver9 studies were retrieved from the NCBI Gene 

Expression Omnibus (GEO)16 repository. GEO is 
a public functional genomics data repository that 
employs MIAME (Minimum Information About 
a Microarray Experiment) and MINSEQE (Minimum 
Information About a Next-generation Sequencing 
Experiment) data standards. This ensures that the stored 
data are properly formatted to promote data sharing and 
re-analysis for further knowledge discovery. The data 
stored in GEO include both raw data in FASTQ format 
and final processed (normalized) data in the form of gene 
expression data count matrices, which allows for reana-
lysis from multiple starting points ensuring both fidelity 
to the previous results and the speed of data analysis. For 
our reanalysis study, we started from gene expression 
data count matrices for the two studies. This decision 
was based on the unavailability of the raw data from 
the liver cancer study which is under restriction from 
the database of Genotypes and Phenotypes (dbGaP).17 

However, given the similarity of sequencing, assembly, 
and gene calling approaches across the studies, we did 
not expect any systematic issues in the gene expression 
profiles to come from using the gene expression data 
count matrices that could not be accounted for by strin-
gent normalization, which would make our results quali-
tatively different from a reanalysis starting from raw 
data.

The liver cancer study consists of 9946 single-cell 
RNA-seq profiles from 19 patients, totaling over 
56 million reads and 4.2 billion base pairs 
(GSE125449).8 The fetal and adult liver study consists of 
1467 single-cell RNA-seq profiles, totaling 283 million 
reads and 21 billion base pairs (GSE130473).9 To account 
for the effects of low coverage samples, low coverage 
genes, and differences in reads per single-cell sample, we 
performed stringent filtering steps and normalization to 
account for sample-specific effects. To filter out low cover-
age samples, samples with fewer than 1000 total reads 
were excluded from further analysis. This resulted in 
9505 liver cancer samples and 1260 healthy liver samples 
submitted for differential expression analysis.

Additionally, genes with 0 reads in all samples were 
excluded, resulting in a final set of 42,684 genes included 
in the analysis. In addition to protein coding genes, the 
gene set includes pseudogenes and lncRNAs.

The normalization and differential expression analysis 
was performed using the edgeR18 R package, using the 
standard methodology. First, the library sizes where nor-
malized by finding scaling factors for the library sizes that 
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minimize the log-fold changes between the samples. This 
was done using a trimmed mean of M-values (TMM) 
between each pair of samples,19 to calculate the effective 
library size scaling factor. Next, the Cox-Reid profile- 
adjusted likelihood (CR) method was used to estimate 
dispersions by fitting generalized linear models (GLM) 
with a design matrix.20 We calculated the common disper-
sion for all genes, trended dispersion depending on gene 
abundance, and individual gene dispersion. After fitting 
the negative binomial GLM for each gene, differential 
expression was assessed using the quasi-likelihood 
F-test,21 which takes into account the uncertainty in esti-
mating the dispersion for each gene and as a result pro-
vides a more robust and reliable error rate control. To 
account for differences in mRNA detection between the 
two datasets, we implemented a batch effect correction 
into the analysis for differential expression. Study type 
was included as in the design matrix as an additional 
variable. False discovery rate was further controlled 
using Bonferroni multiple testing correction.

Gene Ontology analysis was performed using DAVID 
6.822 Functional Annotation Tool. The Benjamini multiple 
testing correction was employed on the p-values from the 
GO analysis results. The enrichment analysis was per-
formed on the three sub-ontologies: Biological Process, 
Molecular Function, and Cellular Component. The full 
Homo sapiens gene set was used as the background 
gene set.

Clustering of all 10,865 single-cell samples was per-
formed using a t-distributed stochastic neighbor embed-
ding (t-SNE) analysis. Filtered gene count data were 
normalized using the EdgeR approach and log2 trans-
formed to counts per million (CPM), to account for differ-
ences in read count between samples without altering the 
gene composition of the samples, allowing for a more 
accurate comparison across samples. The t-SNE analysis 
was performed using the Scikit-learn Python package.23 

The data were visualized in two dimension of the 
embedded space. A perplexity value, related to the number 
of nearest neighbors, was set to 30 to account for the large 
dataset size. We employed 300 optimization iteration to 
refine the clustering analysis. The early exaggeration fac-
tor, which controls how tight natural clusters are in the 
embedded space, was kept at the default 12.0. Similarly 
the learning rate was kept at the default value of 200.0. 
The resultant embedded space was plotted using the 
matplotlib24 and seaborn25 python packages as a scatter 
plot using a paired color palette.

Box plot and violin plots were generated using 
ggplots2,26 with the log2 CPM values.

Results
Using previously published single-cell RNA-seq data for 
liver cancer8 and fetal and adult healthy liver,9 we reana-
lyzed 10,865 samples across 42,684 genes. This combined 
dataset represents a sequencing library of over 25.2 billion 
base pairs. Given that the data from the two experiments 
were sequenced and assembled using slightly different 
platforms and programs, we performed stringent filtering 
and normalization steps to ensure that the gene expression 
profiles were directly comparable across the studies. This 
step included filtering out cells with fewer than 1000 
reads, genes with zero reads in all samples. Next, we 
performed library size normalization factors and calculated 
the common dispersion for all genes, trended dispersion 
depending on gene abundance, and individual gene disper-
sion, using the edgeR18 R package. Since the cDNA 
library preparation was performed using two different 
approaches, 10x Genomics Single Cell 3ʹ for Ma et al8 

versus SmartSeq2 for Segal et al,9 we first confirmed the 
validity of our normalization approach on a set of house-
keeping genes.27 Our analysis of the expression of a set of 
genes useful as references in gene expression studies, 
showed no significant differences in expression between 
the liver cancer8 and the fetal and adult healthy liver9 

datasets (Figure 1). Of the 7 housekeeping genes examined 
to validate the normalization of expression (MB, 
FAM96B, NDUFB4, NOP10, SNRPD2, RPSA, RPLP0), 
SNRPD2 showed the biggest fold difference with 0.20 
fold higher expression in the Ma et al dataset. These 
results confirmed the validity of our normalization 
approaches, by highlighting the similarity in expression 
levels across the studies, given the potential for expression 
differences induced by differences in library preparation 
methodology.

To further increase the confidence in our normalization 
results, we performed a tSNE analysis of the raw count 
data from both studies in comparison to normalized, log 2 
transformed CPM values. The raw count tSNE figure 
demonstrated that there was a distinct separation between 
the samples from Ma et al and those from Segal et al, 
which is potentially due to the differences in cDNA library 
preparation (Figure 2). Following our normalization 
approach however, the t-SNE graph showed much more 
intermixing of the Ma et al and Segal et al samples 
(Figure 3). This is indicative of the samples’ clustering 
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Figure 1 Expression comparison of housekeeping genes MB, FAM96B, NDUFB4, NOP10, SNRPD2, RPSA, RPLP0 between Ma et al8 and Segal et al.9

Figure 2 t-SNE analysis of the raw counts from the liver cancer and fetal/adult liver single cell RNA-seq samples, colored by study.
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based on their gene expression profiles, and by extension 
their cell type profiles. Given the intermixing of the sam-
ples, we were confident that differential expression analy-
sis would reflect real differences between the cell types.

Following normalization, our first aim was to identify 
expression changes responsible for pluripotency in 
malignant cells, and gauge the appropriateness of their 
classification as CSCs. To address this aim, we compared 
the expression of liver CSCs (malignant cells) and fetal 
progenitor cell types (CD235a-/CD45-/EpCAM+/NCAM 
+ FETAL) to adult and fetal differentiated cell types 
(Figure 4). This control set included normal adult differ-
entiated liver cells (CD235a-/EpCAM-/ASOPR1+ 
ADULT and CD235a-/EpCAM+ ADULT), fetal differen-
tiated liver cells (CD235a-/CD45+/EpCAM- FETAL, 
T cells, B cells), cancer-associated fibroblasts (CAFs), 
tumor-associated macrophages (TAMs), and tumor- 
associated endothelial cells (TECs). We found that 76 

genes were significantly upregulated vs the normal dif-
ferentiated liver cells (>5 fold over-expression and 
Bonferroni corrected p-value < 0.001) (Supplementary 
Table 1). We then focused on 34 known stemness mar-
kers important for the CSC phenotype (Supplementary 
Table 2).13,14 This set included cell surface markers as 
well as transcription factors, including the Yamanaka 
factors.15 Among the upregulated genes, the following 
genes were implicated as stem cell markers: SOX9, 
KRT19, KRT7, and CD24. These results support the 
assertion that liver cancer stem cells mimic the expres-
sion profiles of fetal hepatobiliary progenitor cells, as 
well as the proper classification of these cells as CSCs.

Of potential interest, when we looked at over-expressed 
genes overall, we found that they were significantly enriched 
of extracellular matrix genes (GO:0031012, p-value = 4.3E- 
9), given the importance of the extracellular matrix in mod-
ulating proliferation of stem cells28 and promotion of CSC 

Figure 3 t-SNE analysis of the normalized log2 CPM values from the liver cancer and fetal/adult liver single cell RNA-seq samples, colored by study.
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renewal.29 Conversely, only two genes showed significant 
(>5 fold) underexpression among liver CSCs and fetal pro-
genitors: serglycin and HLA Class II Histocompatibility 
Antigen, DR Alpha Chain (HLA-DRA). Given that HLA- 
DRA is expressed in mature immune cells, which made up 
a large part our control set of cell types, this result gives us 
confidence that our set of liver CSCs and fetal progenitor 
cell types formed a distinct undifferentiated set from our 
differentiated control set of cell types.

To further support our results, we next included the 
subset of adult cells expressing hepatic progenitor cell 
markers (HPC-like) with liver CSCs and fetal progeni-
tor cell types. We found that 46 genes were signifi-
cantly overexpressed (> 5 fold over-expression and 
Bonferroni corrected p-value < 0.001) in this set vs 
the control cell types (Supplementary Table 3). 
Confirming our previous results, we again found that 
SOX9, KRT19, KRT7, and CD24 stemness markers 
were overexpressed in this set.

Finally, we analyzed the differences in expression 
between liver CSCs and fetal progenitor cell types. We 
found that 248 genes were at least 5 fold overexpressed in 
liver CSCs (p-value < 0.001) (Supplementary Table 4). 
Interestingly, liver CSCs had a significant enrichment of 
overexpressed genes functioning in SRP-dependent 
cotranslational protein targeting to membrane 
(GO:0006614, p-value = 5.5E-14), structural constituent 
of ribosome (GO:0003735, p-value = 4.0E-12) and trans-
lational initiation (GO:0006413, p-value = 1.9E-11). This 
potentially speaks to the dysregulation of translation in 
cancer and increased growth rate of CSCs relative to 
fetal progenitor cells. Interestingly, 2 Yamanaka factors15 

were significantly overexpressed in liver CSCs relative to 
fetal progenitor cells: Oct4/POU5F1 (2.14 fold, p-value = 
8.28E-48) and SOX2 (1.13 fold, p-value = 0.0392) 
(Figure 5). Additionally, liver CSCs had significantly 
higher expression of 3 additional stemness factors: CD44 
(3.25 fold, p-value = 4.24E-21), KRT7 (2.2 fold, p-value = 

Figure 4 t-SNE analysis of the normalized log2 CPM expression values for the liver cancer and fetal/adult liver single cell RNA-seq samples, colored by cell type 
classification.
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1.27E-15), and SOX9 (1.71 fold, p-value = 1.08E-7). 
Further supporting the importance of CD44 in cancer 
development and progression,30 CD44 was also signifi-
cantly over-expressed in liver CSCs relative to HPC-like 
(2.45 fold, p-value = 7.01E-29).

To further delineate the malignant liver cancer cells 
from liver CSCs, we performed t-SNE analysis using all 
10,865 sample cells across all 42,684 genes. Malignant 
cells showed mostly distinct clustering apart from the 
other cell types, replicating previously observed results 
of Ma et al.8 However, of particular interest was a large 
cluster which contained the majority of HPC-like cells 
(526/988) which also contained a small subset of malig-
nant cells (155/1990). Given the overall similarity in 
expression between these malignant cells and HPC-like 
cells, it suggests that these could be a more accurate 
delineation of liver CSCs. Although no significant differ-
ences between these two groups were observed, CSCs 
within this cluster had lower levels of CXCL10 than the 
HPC-like cells (0.749 fold, p-value = 0.145). This decrease 
in expression could potentially promote CSC proliferation, 
given the anti-tumor activity of CXCL10.31

Discussion
With the diversity of cancer studies now being carried out 
with single-cell next generation sequencing, the abundance 
of data allows us to begin asking additional questions 
beyond the original scope of the researchers. Cell 

expression profiles are important tools for understanding 
the transformation of non-cancerous to cancerous cells and 
understanding the stemness of CSCs. Using big datasets is 
critical for these types of analyses. This study built on 
previous studies, and expands on previously established 
methods for gene expression meta-analyses to tackle even 
larger datasets.32 This allows us to reach new levels in the 
size of our comparative analyses to generate novel knowl-
edge discovery. Specifically, we aimed to understand how 
the expression profiles of CSCs compare to adult and fetal 
progenitor cells in order to better understand the self- 
renewal and differentiation capabilities of CSCs. To 
achieve our aim we undertook a reanalysis of two pub-
lically available single-cell RNA-seq datasets which char-
acterize liver cancer and adult and fetal healthy liver 
samples.

We first examined the expression profiles of 34 known 
stemness markers13,14 to ensure the accuracy of the pre-
vious study’s characterization of cells as CSCs. Examining 
the expression of a set of stemness factors across the 
different cell types of cancerous and healthy adult and 
fetal liver samples, we observed that CSCs fall into 
a distinct expression profile that is much more similar to 
that of progenitor cell types in contrast to terminally dif-
ferentiated cell types. Specifically, we observed signifi-
cantly higher expression of SOX9, KRT19, KRT7, and 
CD24 stem cell markers in CSCs compared to terminally 
differentiated cell types. Additionally, CSCs had 

Figure 5 Box plots of expression of stemness factors (OCT4, SOX2, CD44, KRT7, SOX9) that distinguish liver CSCs from fetal progenitor cell types. 
Notes: *p-value < 0.05; ***p-value < 0.0001.
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significantly higher expression levels Oct4 and SOX2 than 
progenitor cell types. Based on this, we suggest the impor-
tance of these two Yamanaka factors15 in promoting the 
self-renewal and differentiation capabilities of CSCs.

Our results also revealed a significant enrichment of 
GO terms, SRP-dependent cotranslational protein tar-
geting to membrane, structural constituent of ribosome, 
and translational initiation, in liver CSCs relative to 
hepatobiliary hybrid progenitors. It is interesting that 
all three GO terms function in the increased production 
of proteins, particularly those that are membrane tar-
geted. Recent research has previously implicated the 
importance of SRP-dependent cotranslational protein 
targeting to membrane in lung cancer.33 Further, pro-
teins belonging to these GO categories have been 
shown to activate tumor growth and metastasis in 
breast cancer cells.34 These results further illustrate 
the similarities in gene expression across cancer 
types, and provide additional potential avenues for 
novel liver cancer treatments, as inhibitors of protein 
translocation across membranes have been recently 
implicated as anticancer agents.35

These results provide novel insight into cancer biol-
ogy that was made possible by harmoniously utilizing 
publically available datasets. While many of the stem-
ness factors have been previously identified as important 
in cancer, our results provide unique insight into how 
cancer stem cells differ in expression from liver progeni-
tor cell types. We believe this provides a better under-
standing of how these markers function in providing the 
increased proliferation and differentiation potential seen 
in cancer stem cells. Specifically, while CD44 and SOX9 
have been previously implicated in promoting prolifera-
tion of cancer stem cells,36 we believe our work is the 
first to implicate KRT7 in the proliferation of liver can-
cer stem cells. Our study demonstrates the potential 
power of harnessing shared large amounts of data for 
driving novel knowledge discovery and hypothesis 
generation.
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