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Background: The human progesterone receptor (hPR) belongs to the steroid receptor family. 

It may be found as monomers (A and B) and or as a dimer (AB). hPR is regarded as the 

prognostic biomarker for breast cancer. In a cellular dimer system, AB is the dominant species 

in most cases. However, when a cell coexpresses all three isoforms of hPR, the complexity of 

the action of this receptor increases. For example, hPR A suppresses the activity of hPR B, and 

the ratio of hPR A to hPR B may determine the physiology of a breast tumor. Also, persistent 

exposure of hPRs to nonendogenous ligands is a common risk factor for breast cancer. Hence 

we aimed to study progesterone and some nonendogenous ligand interactions with hPRs and 

their molecular docking.

Methods and results: A pool of steroid derivatives, namely, progesterone, cholesterol, 

testosterone, testolectone, estradiol, estrone, norethindrone, exemestane, and norgestrel, was used 

for this in silico study. Dockings were performed on AutoDock 4.2. We found that estrogens, 

including estradiol and estrone, had a higher affinity for hPR A and B monomers in comparison 

with the dimer, hPR AB, and that of the endogenous progesterone ligand. hPR A had a higher 

affinity to all the docked ligands than hPR B.

Conclusion: This study suggests that the exposure of estrogens to hPR A as well as hPR B, 

and more particularly to hPR A alone, is a risk factor for breast cancer.

Keywords: human progesterone receptor, breast cancer, steroid derivatives, estrogens,  molecular 

docking

Introduction
The human progesterone receptor (hPR), like other members of the steroid receptor 

family of proteins, is a ligand-induced transcription factor which mediates the effects 

of progesterone.1–3 Progesterone is well known for its critical role in regulation of the 

normal physiology of the ovary, uterus, mammary gland, as well as brain development 

during childhood. Progesterone also plays an important role in the maintenance of the 

cardiovascular, central nervous, and skeletal systems.4–7 The importance of the hPR 

can therefore be understood from its extensive involvement in human physiological 

processes.

hPR is comprised of specific functional domains, including the central DNA-binding 

domain and a carboxyl-terminal ligand-binding domain. The central DNA-binding and 

ligand-binding domains are the sites of hPR activity. In addition to these domains, hPR 

have many elements with activator and inhibitory functions enhancing and repressing 

the transcriptional activation of hPR by their interaction with different transcriptional 

coregulators.3,8–12 Cytoplasmic hPR have been found as multiprotein chaperone 
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complexes which facilitate their inactive conformation, 

whereby a ligand can bind with hPR.13,14

Two distinct isoforms (hPR A and hPR B) of hPR have 

been reported previously, and differ by an additional amino 

acid at position 164 in hPR B. These differences arise as a 

result of either alternate initiation of translation by the same 

mRNA or by transcription from alternate promoters within 

the same gene.15

Our understanding of the mechanisms underlying the 

different activities of these two isoforms of human hPR is 

limited. However, structural and functional studies indicate 

that the hPR B isoform contains an additional domain, AF3, 

that accounts for the transcriptional activity of hPR B by 

suppressing the activity of an inhibitory domain contained 

within the sequences common to hPR A and hPR B.11,16,17 

The evidence suggests that the two isoforms acquire different 

conformations within the cell, and hence interact with distinct 

coregulators, ie, the coregulators of hPR A are different from 

those of hPR B.18–20

Much of our knowledge regarding the structure and 

function of hPR A and hPR B comes from models of 

single hPR isoform expression and models where the hPR 

homodimer is the dominant molecular species. However, cell 

types which coexpress the hPR isoforms may possibly have 

all three kinds of molecules, ie, hPR A, hPR B, and hPR AB, 

which increases the complexity of the action of hPR.

hPR is a ligand-activated receptor, and its activation/

deactivation is associated with the pathogenesis of many 

diseases, including breast cancer.21,22 Hence, the specificity of 

hPR with regard to interaction with its ligand (progesterone) 

is an important area of research. It has been reported that 

prolonged exposure to certain nonendogenous ligands, 

particularly estrogens (which are steroid derivatives) is the 

strongest risk factor for breast cancer.23,24 In the absence of 

progesterone, the hPR A:hPR B ratio influences the biology 

of estrogen receptor-positive tumors and their response to 

treatment, and hPR A isoforms are functionally dominant in 

progesterone-deficient states. This explains why PR A-rich 

tumors are particularly aggressive.25 We hypothesized that 

hPR A, hPR B, and hPR AB have different affinities for dif-

ferent ligands, based on conditions such as the availability of 

progesterone and the concentration of hPR monomers and 

dimers, which may be a possible cause for the development of 

breast cancer. The aim of our study was to test this hypothesis 

and find the affinities of the different steroid derivatives for 

hPRs. Hence, other steroids that can trigger the develop-

ment of breast cancer by forming a ligand receptor complex 

with hPR can be predicted. A battery of steroid derivatives, 

namely, progesterone (DB00396), cholesterol (DB04540), 

testosterone (DB00624), testolectone (DB00894), estradiol 

(DB00783), estrone (DB00655), norethindrone (DB00717), 

exemestane (DB00990), and norgestrel (DB00506), was used 

for this in silico study (Figure 1).

Methods and materials
software, data sources, and experiments
All the software used in this study is freely available for 

academic use. Table 1 provides the source of the data, and 

Table 2 lists the software and online servers used. The Protein 

Data Bank (www.rcsb.org) is a World Wide Web repository 

where data are processed and distributed in the form of 

three-dimensional biological macromolecular structures.26 

The Protein Data Bank now has more than 20,000 structures 

determined by x-ray diffraction. Protein structures can be 

accessed and downloaded using keywords or the Protein 

Data Bank alphanumeric file name.

The Drug Bank (http://redpoll.pharmacy.ualberta.ca/

drugbank/) database is a unique bioinformatics and chemin-

formatics resource that combines detailed drug (ie, chemical, 

pharmacological, pharmaceutical) data with comprehensive 

drug target information (ie, sequence, structure, pathway).27 

The database contains nearly 4300 drug entries, including 

more than 1000 small molecule drugs approved by the US 

Food and Drug Administration (FDA), 113 FDA-approved 

biotechnologic (protein/peptide) drugs, 62 nutraceuticals, 

and more than 3000 experimental drugs. Additionally, more 

than 6000 protein (ie, drug target) sequences are linked to 

these drug entries. Each drug card entry contains more than 

80 data fields, with half of the information concerning drug 

and chemical data and the other half concerning drug target 

or protein data.

PyMOL is a Python-based visualization program 

(version1.1r1; Delano Scientific 2006, www.pymol.org).28 

PyMOL was used to obtain graphical representations of 

proteins in the Protein Data Bank and the amino acid residues 

are in contact with the ligand. PyMOL tools can measure 

distances as well as identify different amino acid residues 

of receptors that interact with the ligands. Docking results 

were also analyzed by PyMOL.

AutoDock 4.2 docking software (Scripps Research 

Institute, www.scripps.edu) and AutoDockTools was used 

to perform the docking experiments.29–31 AutoDockTools is 

an accessory program that allows the user to interact with 

AutoDock from a graphic user interface. AutoDock is a 

suite of automated docking tools designed to predict how 

small molecules/ligands bind to a receptor/protein of known 
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three-dimensional structure. AutoDock consists of three 

separate programs, ie, AutoDock, which docks the ligand 

to a set of grids describing the target protein, AutoGrid, 

which precalculates these grids, and AutoTors, which sets 

up bonds which will be treated as rotatable within the ligand. 

We calculated the binding energy of the different ligands 

for hPR A, hPR B, and hPR AB, and the molecular docking 

process was performed according to the method described 

by Mukharjee and Majumder.32 The details of the procedure 

are as follows.

Preparing hPRs and ligand files  
for AutoDock
The Protein Data Bank files downloaded from the World 

Wide Web repository are often not perfect for docking 

studies because of missing hydrogen atoms, presence of 

multiple molecules, added waters, and related problems. 

Using the AutoDockTools graphic user interface, the files 

were prepared as follows.

For the hPRs file, all heteroatoms in the Protein Data 

Bank files were removed. Three separate Protein Data Bank 

files were then prepared for hPR A, hPR B, and hPR AB, and 

saved with an extension of .pdb. All three Protein Data Bank 

files were first read in AutoDockTools, any added waters 

removed, and polar hydrogens added. AutoDockTools was 

then used to check if the molecule had charges and, if not, 

AutoDockTools determined whether the molecule was a 

peptide (ie, whether all of the names of its residues appeared 
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Figure 1 structure of ligands (as retrieved from Drug Bank) used for docking study.

Table 1 sources of data used in this study

Protein or drug data Source

Human progesterone receptor PDB iD 1A28
Progesterone DB00396
Cholesterol DB04540
Testosterone DB00624 
Testolectone DB00894
estradiol DB00783
estrone DB00655 
norethindrone DB00717 
exemestane DB00990
norgestrel DB00506

Abbreviations: PDB, Protein Data Bank; DB, Drug Bank.
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in the standard set of 20 commonly occurring amino acids). 

If the molecule was found to be a peptide, Kollman charges 

were added, otherwise Gasteiger charges were added. Finally, 

solvation parameters were added, and the files were saved 

with .pdbqs extension (where q and s represent charge and 

solvation, respectively).

Ligand files
Protein Data Bank files of ligands obtained from the Drug 

Bank, were read in AutoDockTools, modified as necessary, and 

saved using .pdbqs extension. AutoDockTools was then used 

for automatic calculation of the best root, ie, the fixed portion 

of the ligand from which rotatable branches sprout. We also 

determined the rotatable bonds in the ligand, making all amide 

bonds nonrotatable, and set the number of active torsions to the 

least number of atoms. The ligand files were then saved with 

ligand.out.pdbq extension (q representing charge).

Grid parameter files
For the calculation of interaction energy, parameters were 

set to create a grid (ie, a three-dimensional box) capable of 

enclosing hPRs molecules. The grid volume was large enough 

to allow the ligand to rotate freely, even with its most fully 

extended conformation. Grid parameters were stored in a 

grid parameter file using molecule.gpf extension.

Autogrid4 program
The AutoGrid4 program was run, creating a map for every 

type of atom in the ligand. For example, a molecule having 

carbon, nitrogen, oxygen, and hydrogen maps was created 

as a molecule.C.map, molecule.N.map, molecule.O.map, 

and molecule.H.map. These grid maps were saved in ASCII 

format for readability by AutoDock. AutoGrid also generates 

a corresponding output of the macromolecular file with the 

extension molecule.glg.

Docking parameter file
The docking parameter file and other properties defined for 

the ligand was created. A docking parameter file instructs 

AutoDock on which ligand to move and the map files to use. 

AutoDock’s search methods include the Monte Carlo simulated 

annealing method, the genetic algorithm, local search, and the 

hybrid genetic algorithm with local search (GALS). The GALS 

is also considered as the Lamarckian genetic algorithm because 

the offsprings are allowed to inherit the local search adaptations 

of their parents. GALS was the chosen algorithm for hPR and 

ligand interaction analysis.

AutoDock program
Finally, the AutoDock program was run from the AutoDock 

graphic user interface, and the docked ligand f iles 

(.dlg extension) were used for this study. The .dlg files were 

read in Autodock as well as in PyMOL to calculate the 

binding energies in the docked ligand-protein complexes.

Results
Rigorous docking experiments were done to assess the 

cross-reactivity of various steroid derivatives (ligands) with 

hPR monomers and dimers. The ligands, receptors, and their 

corresponding docking results are listed in Table 3, and 

receptor-ligand interactions demonstrated in Figures 2, 3, 

and 4. In these docking experiments, all selected ligands 

were able to bind with hPR A. Estradiol showed the high-

est binding affinity (∆G kcal/mol) at −3.68e+06, followed 

by estrone, progesterone, and cholesterol (3.38e+06, 

−3.54e+06, and −2.19e+06 kcal/mol, respectively). 

Testosterone, testolactone, norethindrone, exemestane, and 

norgestrel exhibited binding affinities in the range of −8.73 

to −7.14 kcal/mol. Ligand interactions with hPR B showed 

lower binding affinity than with hPR A. A similar pattern of 

binding affinity was found for ligands with hPR B, except 

for progesterone and cholesterol. Estradiol had the highest 

binding affinity at −3.64e+6 kcal/mol followed by estrone, 

cholesterol, and progesterone (3.19e+6, −2.53e+6, and 

2.05e+6 kcal/mol, respectively). Testosterone, testolactone, 

norethindrone, exemestane, and norgestrel exhibited binding 

affinities in the range of −5.86 to −4.75 kcal/mol. All the 

ligand interactions with hPR homodimer (AB) had similar 

binding affinity, except for cholesterol, which had a  binding 

affinity of −1.86e+6 kcal/mol, which was the highest  binding 

affinity among all the ligand interactions with hPR AB. 

 Progesterone had a binding affinity of −10.82 kcal/mol, and 

the remainder of the ligand binding affinities were in the 

range of −9.82 to −8.50 kcal/mol.

Using this molecular modeling study, we found that 

the estrogens, estradiol and estrone, had higher affinity 

Table 2 software and online servers and corresponding UrLs

Protein Data Bank file and FASTA format of hPR rCsB server online http://www.pdb.org/pdb/explore/explore.do?structureid=1A28
PyMOL image PyMOL 1.1r1 http://download.cnet.com/PyMOL/3000-2054_4-10914845.html
AutoDock AutoDock v 4.2 The scripps research institute, www.scripps.edu
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for the hPR monomers A and B. Therefore, we undertook 

binding site analyses for hPR A, B, and AB, for estradiol 

and estrone. Table 4 summarizes the amino acid residues 

involved in the binding of estradiol and estrone with hPR A, 

hPR B, and AB. Only the HIS 93 residue of hPR A created 

a single hydrogen bond (H-bond) with estradiol and estrone 

(bond length 2.0 and 2.3 Å, respectively). In the case of 

hPR B, estradiol created two H-bonds, one with TRP 78 

(2.2 Å) and the other with ARG 89 (2.0 Å), whereas estrone 

made three H-bonds, two with GLN 48 (2.2 and 2.2 Å) and 

one with ARG 89 (2.1 Å). Interestingly, hPR AB was not 

involved in the formation of any H-bond with estrone and 

only ASP 205 of hPR AB made a single H-bond with estra-

diol (1.7 Å). The rest of the amino acid residues listed in 

Table 4 were involved in hydrophobic interactions through 

their side chains.

Discussion
Specificity in biomolecular interactions is determined mainly 

by noncovalent forces like Coulombic electrostatic forces, 

hydrogen bonds, London’s dispersive forces, and van der 

Waals forces. In addition, the structure of biomolecules is a 

function of forces among the constituent structural elements, 

as well as environmental forces. Binding affinity is inversely 

proportional to free Gibbs energy. To find the specificity of 

hPR for different steroid derivatives, monomers and dimers 

of hPR were studied separately because it had been found 

in vivo that there is a difference in the binding pattern of 
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Figure 2 Progesterone (A), cholesterol (B), testosterone (C), testolactone (D), 
estradiol (E), estrone (F), norethindrone (G), exemestane (H), and norgestrel (I) 
docked onto the human progesterone receptor A (hPr A, green) in its lowest 
energy-docked conformation. Ligand molecules are shown in red.
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Figure 3 Progesterone (A), cholesterol (B), testosterone (C), testolactone (D), 
estradiol (E), estrone (F), norethindrone (G), exemestane (H), and norgestrel (I) 
docked onto the human progesterone receptor A (hPr B green) in its lowest 
energy-docked conformation. Ligand molecules are shown in red.

Table 3 Docking results of steroid derivative (ligand) molecules at human progesterone receptor chains (A, B, and AB, blind docking)

Steroid derivative  
(ligands)

hPR A hPR B hPR AB

∆G (kcal/mol) Figure number ∆G (kcal/mol) Figure number ∆G (kcal/mol) Figure number

Progesterone −3.54e+06 2A −2.05e+06 3A −10.82 4A
Cholesterol −2.19e+06 2B −2.53e+06 3B −1.86e+06 4B
Testosterone −7.14 2C −4.75 3C −9.39 4C
Testolactone −7.99 2D −5.40 3D −9.33 4D
estradiol −3.68e+06 2e −3.64e+06 3e −8.50 4e
estrone −3.38e+06 2F −3.19e+06 3F −9.03 4F
norethindrone −8.73 2g −5.86 3g −9.52 4g
exemestane −8.03 2H −5.41 3H −9.82 4H
norgestrel −8.30 2i −5.48 3i −9.55 4i

Abbreviation: hPr, human progesterone receptor.
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ligands to hPR A and B. They adopt distinct conformations in 

cells, as well as having different signaling responses.18–20,33–35 

Earlier studies of elephant and hamster uterine progesterone 

receptors reported that there are many natural and synthetic 

steroid derivatives which are nonendogenous ligands and have 

higher relative binding affinity with progesterone receptors 

as compared with progesterone.36,37 Similarly, progesterone 

is the endogenous ligand for hPR, but in this in silico study, 

where there was one-to-one correspondence between hPRs and 

ligands, as well as their flexible docking, we found that estradiol 

has more affinity with hPR A than progesterone, and estrone 

had less affinity with hPR A as compared with progesterone, 

Progesterone

Testolactone

Norethindrone

Cholesterol

Estradiol

Exemestane

Testosterone

Estrone

Norgestrel

A B C

FED

G H I

Figure 4 Progesterone (A), cholesterol (B), testosterone (C), testolactone (D), estradiol (E), estrone (F), norethindrone (G), exemestane (H), and norgestrel (I) docked 
onto the human progesterone receptor A (hPr AB green) in its lowest energy-docked conformation. Ligand molecules are shown in red.

Table 4 Amino acid residues involved in binding of estradiol and estrone with human progesterone receptors A, B, and AB

Human progesterone receptors hPR-A hPR-A hPR-B hPR-B hPR-AB hPR-AB

Estrogens Esterone Estradiol Esterone Estradiol Esterone Estradiol

Amino acids constituting gLU A 18 gLU A 18 LeU B 38 LeU B 38 LYs B 155 His A 204
the binding sites PrO A 19 PrO A 19 LeU B 41 Asn B 42 His B 204 AsP A 205*
of estrogens VAL A 21 AsP A 20 Asn B 42 LeU B 44 iLe B 208 LYs A 208

iLe A 22 VAL A 21 LeU B 44 gLn B 48 PrO B 243 LeU A 244
gLn A 48 iLe A 22 gLn B 48** TrP B 78* VAL B 248 LYs B208
ser A 51 gLn A 48 TrP B 78 MeT B 79 LYs B 249 iLU B 243
VAL A 52 ser A 51 MeT B 79 MeT B 82 LeU B 250 LeU B 244
LeU A 81 VAL A 52 MeT B 82 VAL B 83 MeT B 247
MeT A 82 LeU A 81 VAL B 83 LeU B 86
TrP A 88 MeT A 82 LeU B 88 Arg B 89*
Arg A 89 LeU A 86 Arg B 89* PHe B 101
His A 93* TrP A 88 PHe B 101 LeU B 104
PHe A 141 Arg A 89 LeU B 120 PHe B 117
LYs A 145 His A 93* MeT B 124 LeU B 120

PHe A 141 LeU B 210 MeT B 124
LYs A 145 TUr B 213 LeU B 210

CYs B 214 TYr B 213
PHe B 228 CYs B 214
MeT B 232 THr B 217

MeT B 232

Notes: *Amino acids in the binding sites involved in the formation of a single H-bond with estrogens; **Amino acids in the binding sites involved in the formation of double 
H-bonds with estrogens.
Abbreviation: hPr, human progesterone receptor.
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whereas cholesterol has a higher Gibbs energy value compared 

with progesterone. In the case of hPR B, estrone, estradiol, and 

cholesterol molecules had higher affinity with hPR B than did 

progesterone. In general, the binding energy for the ligands 

with hPR A was considerably higher than that of hPR B. This 

supports the view that, in the presence of hPR A and hPR B 

monomers in a cellular system, hPR A can exert an inhibitory 

effect on the transactivator behavior of hPR B.16,17 Our finding is 

also in agreement with earlier studies showing that hPR A-rich 

tumors are more aggressive.25 The higher binding affinity of 

ligands like estradiol and estrone for hPR A than for hPR B is 

supported by the previous study which showed that cumulative 

exposure of estradiols to hPR is the most common risk factor 

for the development of breast cancer.

Prolonged lifetime exposure to estrogens, especially 

estrone and estradiol, has long been linked to the promotion 

and progression of breast cancer because of their physi-

ological action on the mammary gland.23,24 Another in vitro 

study also reports significantly increased stimulation of the 

progesterone receptor by estrone,38 although there is a lot 

of evidence suggesting that binding of ligands with hPRs 

and their transcriptional activity is also a function of phos-

phorylation of C-terminal amino acid residues as well as 

corresponding conformational changes in hPRs.39–41 Due to 

the limitations of this in silico molecular modeling study, we 

did not consider different conformational changes of hPRs 

due to their differential phosphorylation inside the cells, and 

further crystallographic studies are required to confirm our 

findings. Our results may contribute an insight into the risk 

of breast cancer due to nonendogenous ligands, especially 

estrogens that bind with hPRs, although the higher binding 

energy of cholesterol with hPR AB cannot be explained by 

this study. However, it can be predicted that, in the presence 

of a deficiency of progesterone or an abundance of choles-

terol, formation of a cholesterol-hPR AB complex may be 

favored at equilibrium, and may be another risk factor for 

breast cancer. This observation is in agreement with earlier 

studies reporting that increased total cholesterol levels are 

associated with development of breast cancer which is resis-

tant to certain drugs, eg, tamoxifen.42–44

Conclusion
The absence of higher binding aff inity of hPRs with 

progesterone in comparison with estradiol and estrone in a 

cellular or animal model can be explained by ligand receptor 

interaction kinetics and also by study of the physiological fate 

of such ligands in animal and cellular systems. This study 

may enhance our understanding of the specificity in binding 

of steroid derivatives to hPR. Our findings advocate that 

estradiol and estrone binds with hPR A and hPR B monomers 

with higher affinity in comparison to progesterone. Such 

interactions cause aggressive tumor development. Hence, our 

study may be helpful in understanding why the hPR A:hPR B 

ratio and prolonged exposure of nonendogenous ligands, 

particularly estrogens, to hPRs in the presence and absence 

of progesterone, is a risk factor for breast cancer.
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