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Purpose: We aim to present an unsupervised machine learning application in anterior 
cruciate ligament (ACL) rupture and evaluate whether supervised machine learning- 
derived radiomics features enable prediction of ACL rupture accurately.
Patients and Methods: Sixty-eight patients were reviewed. Their demographic features 
were recorded, radiomics features were extracted, and the input dataset was defined as 
a collection of demographic features and radiomics features. The input dataset was automati-
cally classified by the unsupervised machine learning algorithm. Then, we used a supervised 
machine learning algorithm to construct a radiomics model. The t-test and least absolute 
shrinkage and selection operator (LASSO) method were used for feature selection, random 
forest and support vector machine (SVM) were used as machine learning classifiers. For each 
model, the sensitivity, specificity, accuracy, and the area under the curve (AUC) of receiver 
operating characteristic (ROC) curves were calculated to evaluate model performance.
Results: In total, 5 demographic features were recorded and 106 radiomics features were 
extracted. By applying the unsupervised machine learning algorithm, patients were divided 
into 5 groups. Group 5 had the highest incidence of ACL rupture and left knee involvement. 
There were significant differences in left knee involvement among the groups. Forty-three 
radiomics features were extracted using t-test and 7 radiomics features were extracted using 
LASSO method. We found that the combination of LASSO selection method and random 
forest classifier has the highest sensitivity, specificity, accuracy, and AUC. The 7 radiomics 
features extracted by LASSO method were potential predictors for ACL rupture.
Conclusion: We validated the clinical application of unsupervised machine learning invol-
ving ACL rupture. Moreover, we found 7 radiomics features which were potential predictors 
for ACL rupture. The study indicated that radiomics could be a valuable method in the 
prediction of ACL rupture.
Keywords: unsupervised machine learning, supervised machine learning, radiomics, 
anterior cruciate ligament rupture

Introduction
Anterior cruciate ligament (ACL) rupture is a common and devastating knee injury.1,2 

Clinically, MRI has been widely used for the assessment of ACL rupture.3,4 The typical 
MRI findings of ACL rupture include abnormal orientation and abnormal signal 
intensity of ACL.5–7 In a study conducted by Zhao et al., 78 participants were 
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investigated; the diagnostic sensitivity, specificity, and accu-
racy of MRI for ACL injury were 95.45%, 91.67%, and 
94.87%.5

Although MRI has high sensitivity and specificity, the 
diagnosis rate at the early stage of ACL rupture remains 
poor.8–10 The potential causes include less experienced 
radiologists and insufficient awareness of physicians, espe-
cially for emergency physicians.11,12 Delayed diagnosis of 
ACL rupture usually results in higher risk of secondary 
knee injury and higher economic burden.8,13–15 In a study 
conducted by Church and Keating, 183 participants were 
investigated; a higher incidence of meniscal tears was 
observed in patients undergoing ACL reconstruction 
more than 12 months from injury.16 Therefore, early diag-
nosis of ACL rupture is crucial.

Recently, remarkable achievements have been made in 
knee MRI analysis using machine learning techniques.17,18 

Bien et al. applied a deep learning model to analyze 
a dataset including 1370 knee MRI exams; they found that 
their deep learning model can generate accurate clinical 
pathology classifications and improve clinical experts’ 
performance.17 Usually, machine learning methods include 
an unsupervised algorithm, a supervised algorithm, and 
a semi-supervised algorithm. For a supervised machine 
learning algorithm, the algorithm learns on a labeled dataset 
and predicts the unlabeled dataset. In contrast, an unsuper-
vised machine learning algorithm does not require labels 
and tries to work on its own to discover information.19,20

Radiomics focuses on extracting huge amounts of infor-
mation from medical images.21,22 The hypothesis is that 
massive “hidden” information that is hardly perceived by 
radiologists and physicians could be quantitatively mined 
using a radiomics approach from medical images.23 Indeed, 
numerous studies have confirmed that radiomics can be used 
in the diagnosis and prognosis of diseases, with the advan-
tages of non-invasiveness, low cost, and high efficiency.24–26 

The key challenge of radiomics is the analysis of this “hid-
den” information. Coincidentally, many machine learning 
algorithms are essentially dimensionality reduction for big 
data. Several studies have indicated that the novel combina-
tion of machine learning and radiomics contributes to max-
imize physician performance and reduce errors, paving the 
path for modern precision and personalized medicine.18,27–29

In this study, we aim to present unsupervised machine 
learning application in anterior cruciate ligament (ACL) 
rupture and evaluate whether supervised machine learning- 
derived radiomics features enable accurate prediction of 
ACL rupture.

Patients and Methods
Participants
Sixty-eight patients undergoing knee surgery between 
October 2020 and December 2020 were reviewed. The 
inclusion criteria were: (1) first knee surgery; (2) surgery 
for knee disease; (3) the disease was definitively confirmed 
by arthroscopy. The exclusion criteria were: (1) simulta-
neous bilateral knee surgery; (2) revision surgery; (3) 
follow-up data missing. The patients’ demographic fea-
tures were recorded. The study was approved by the insti-
tutional review board, and written informed consent was 
obtained.

MR Imaging Segmentation and Radiomics 
Feature Extraction
T1-weighted imaging (T1WI) of the knee was obtained in 
all patients. A musculoskeletal radiologist with 10 years of 
experience delineated regions of interest (ROIs) on T1WI 
using 3D Slicer software 4.11 (http://www.slicer.org/). The 
superior border of ROIs was at the level of the upper edge 
of the patella. The inferior border of ROIs was at the level 
of tibial insertion of the patella tendon (Figure 1). Then, all 
ROIs were manually checked by a musculoskeletal radi-
ologist with 15 years of experience who were blind to the 
medical records of the patients. All disagreements were 
resolved through consensus.

The radiomics features were extracted using an open- 
source Pyradiomics package (https://github.com/ 
Radiomics/pyradiomics). All radiomics features were nor-
malized to a value of 0 to 1.

Machine Learning
First, we used an unsupervised machine learning algorithm 
which has been validated and extensively tested in other 
diseases to convert the input dataset into a compact repre-
sentation space.30–32 The input dataset was defined as 
a collection of demographic features and radiomics fea-
tures. In the representation space, the subjects were posi-
tioned according to their similarity, while blinded to the 
patient’s outcome status. Once positioned in the compact 
representation space, subjects were clustered to identify 
phenotypically distinct categories of patients undergoing 
knee surgery. Clustering was performed using the 
K-means clustering algorithm and the best value of 
k was determined automatically.

Second, we used a supervised machine learning algorithm 
to construct a radiomics model based on extracted radiomics 
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features. The t-test and least absolute shrinkage and selection 
operator (LASSO) method were adopted to select potential 
radiomics features contributing to the prediction of ACL rup-
ture. Briefly, the LASSO technique constructs a model by 
constructing a penalty function, the LASSO model penalty 
function enables an efficient shrinking of coefficients to zero. 
The complexity of the LASSO model is controlled by the 
penalty parameter lambda, the maximum lambda value was 
selected with minimum mean-squared error (MSE) values. 
Then, random forest and support vector machine (SVM) 
were used as machine learning classifiers. For each model, 
the sensitivity, specificity, accuracy, and the area under the 
curve (AUC) of receiver operating characteristic (ROC) 
curves were calculated to evaluate model performance.

Statistical Analysis
The machine learning algorithms and the statistical analy-
sis were implemented in Python (Python Software 

Foundation). Multiple comparisons among groups were 
analyzed by chi-square test for categorical variables, and 
ANOVA for continuous variables. A two-sided P value < 
0.05 was considered significant.

Results
Characteristics of the Participants
There were 30 males and 38 females in the study. Five 
demographic features were recorded including gender, age, 
involved knee, trauma-history, and diagnosis. The demo-
graphic characteristics of the patients are listed in Table 1.

In total, 106 radiomics features were extracted, including 
first-order features (n = 18), shape and size features (n = 13), 
and textural features (n = 75). The textural features included 
the gray-level co-occurrence matrix (GLCM), gray-level 
dependence matrix (GLDM), gray-level run-length matrix 
(GLRLM), gray-level size zone matrix (GLSZM), and 
neighbouring gray tone difference matrix (NGTDM).

Figure 1 Image acquisition and segmentation.
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In total, the input dataset included 111 features (5 
clinical features and 106 radiomics features).

Results of the Unsupervised Machine 
Learning Algorithm
By applying the unsupervised machine learning algorithm, 
patients were divided into 5 groups. The scatter plot of 
principal component is shown in Figure 2. Group 5 has the 
highest incidence of ACL rupture and left knee involved. 

There were significant differences in left knee involvement 
among the groups. The demographic characteristics among 
groups are listed in Table 2.

Results of the Supervised Machine 
Learning Algorithm
Based on the t-test, 43 radiomics features were extracted and 
considered as potential predictors of ACL rupture, meanwhile, 
the sensitivity, specificity, accuracy, and AUC corresponding 
to random forest and SVM classifiers are shown in Table 3.

Based on the LASSO method, 7 features were 
extracted and considered as potential predictors of ACL 
rupture. The MSE values and the corresponding lambda 
values are shown in Figure 3. The values of the coeffi-
cients and the corresponding lambda values are shown in 
Figure 4. Meanwhile, the sensitivity, specificity, accuracy, 
and AUC corresponding to random forest and SVM clas-
sifiers are listed in Table 3.

Table 1 The Demographic Characteristics of the Patients

Demographic Characteristics

Gender, male/female 30/38
Mean age, years 46.1 ± 15.3

Knee involvement, left/right 31/37

Trauma-history, yes/no 34/34
Diagnosis, ACL rupture/non- ACL rupture 26/42

Figure 2 The patients were divided into 5 groups, group 1 is represented as blue dots, group 2 is represented as green dots, group 3 is represented as black dots, group 4 
is represented as red dots, and group 5 is represented as yellow dots.
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We found that the combination of LASSO selection 
method and random forest classifier has the highest sensi-
tivity, specificity, accuracy, and AUC. The AUC of the 
four prediction models are shown in Figure 5. The 7 
radiomics features extracted by LASSO selection method 
are listed in Table 4, including 1 shape feature, 1 GLCM 
feature, 1 GLDM feature, 2 GLSZM features, and 2 
NGTDM features. The radiomics features’ weights are 
shown in Figure 6.

Discussion
Anterior cruciate ligament (ACL) rupture is a common and 
devastating knee injury.1,2 In this study, we validated the 
clinical application of unsupervised machine learning 

involving ACL rupture. Moreover, we found 7 radiomics 
features which were potential predictors of ACL rupture, 
by applying supervised machine learning. The prediction 
model (the combination of LASSO selection method and 
random forest classifier) has high sensitivity, specificity, 
accuracy, and AUC.

By applying the unsupervised machine learning algo-
rithm, we found that the highest incidence rate of left knee 
involvement followed by the highest incidence of ACL 
rupture, which indicated that left knee could be a risk 
factor for ACL rupture. In a study conducted by Westin 
et al., 339 alpine ski students were investigated, the major-
ity of ACL injuries significantly occurred in the left 
knee.33 Our study showed that the unsupervised machine 

Table 2 The Demographic Characteristics Among Groups

Group 1 Group 2 Group 3 Group 4 Group 5 P value

Gender, male/female 3/3 12/8 7/11 5/13 3/3 0.3519
Mean age, years 45.8 ±21.6 41.9 ± 15.7 45.7 ± 16.4 51.7 ± 11.2 44. 7 ± 15.5 0.4148

Knee involvement, left/right 3/3 1/19 6/12 15/3 6/0 0.0226

Trauma-history, yes/no 3/3 12/8 8/10 7/11 4/2 0.6842
Diagnosis, ACL rupture/non- ACL rupture 3/3 9/11 6/12 4/14 4/2 0.2956

Table 3 The Sensitivity, Specificity, Accuracy, and AUC of the Four Prediction Models

Feature 
Selection 
Method

Number of 
Radiomics 
Features

Random Forest SVM

Sensitivity Sensitivity Specificity AUC Sensitivity Specificity Accuracy AUC

t-test 43 0.67 0.92 0.62 0.85 0.33 0.75 0.54 0.90

LASSO 9 0.80 0.94 0.90 0.92 0.57 0.79 0.71 0.74

Abbreviations: LASSO, Least absolute shrinkage and selection operator; SVM, support vector machine; AUC, Area under the curve of receiver operating characteristic 
curves.

Figure 3 Different mean-squared error (MSE) values within the range of lambda, 
maximum lambda was selected with minimum MSE value.

Figure 4 The values of the coefficients and the corresponding lambda values, each 
curve represents each feature in the model.
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learning algorithm could be applied effectively in the 
research of ACL injury.

By applying supervised machine learning-derived 
radiomics, we found 7 radiomics features were poten-
tial predictors for ACL rupture, which indicated that 

radiomics could be a valuable method in the prediction 
of ACL rupture. So far, many deep learning algorithms 
have been proposed for identifying ACL rupture,17,18,34 

as far as we know, this is the first study to investigate 
machine learning-derived radiomics features for ACL 
rupture. Although the detection of ACL rupture is not 
a diagnostic challenge for specialized musculoskeletal 
radiologists and sports physicians, our study may be 
helpful for non-trained radiologists and non-sport phy-
sicians; especially, our study may provide a “second- 
reader opinion” in a rural area without access to sub-
specialty radiology or subspecialty radiology interpre-
tation is not readily available.

The limitations of our study include the relatively 
small numbers of patients and it being a retrospective 
single-center study. Due to the relatively small numbers 
of patients, we may not be able to screen out the most 
valuable and stable radiomics features, and the devel-
oped model may not be the most effective. A further 
larger, multicenter study was needed to confirm our 
findings.

Figure 5 The AUC of the four prediction models. (A) t-test and random forest, (B) t-test and SVM, (C) LASSO and random forest, (D) LASSO and SVM.

Table 4 The Radiomics Features Extracted by LASSO Selection 
Method

Radiomics Features Feature Class

Flatness Shape

Maximum Probability GLCM

Large Dependence High Gray Level Emphasis GLDM

Large Area Low Gray Level Emphasis GLSZM

Size Zone Non-Uniformity

Busyness NGTDM

Complexity

Abbreviations: GLCM, gray-level co-occurrence matrix; GLDM, gray-level depen-
dence matrix; GLSZM, gray-level size zone matrix; NGTDM, neighbouring gray 
tone difference matrix.
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Conclusion
We validated the clinical application of unsupervised 
machine learning involving ACL rupture. Moreover, we 
found 7 radiomics features which were potential predictors 
for ACL rupture. It indicated that radiomics could be 
a valuable method in the prediction of ACL rupture.
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