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Purpose: Liver imaging reporting and data system (LI-RADS) classification, especially the 
identification of LR-3 to 5 lesions with hepatocellular carcinoma (HCC) probability, is of 
great significance to treatment strategy determination. We aimed to develop a semi-automatic 
LI-RADS grading system on multiphase gadoxetic acid-enhanced MRI using deep convolu-
tional neural networks (CNN).
Patients and Methods: An internal data set of 439 patients and external data set of 71 
patients with suspected HCC were included and underwent gadoxetic acid-enhanced MRI. 
The expert-guided LI-RADS grading system consisted of four deep 3D CNN models 
including a tumor segmentation model for automatic diameter estimation and three classifi-
cation models of LI-RADS major features including arterial phase hyper-enhancement 
(APHE), washout and enhancing capsule. An end-to-end learning system comprising single 
deep CNN model that directly classified the LI-RADS grade was developed for comparison.
Results: On internal testing set, the segmentation model reached a mean dice of 0.84, with 
the accuracy of mapped diameter intervals as 82.7% (95% CI: 74.4%, 91.7%). The area 
under the curves (AUCs) were 0.941 (95% CI: 0.914, 0.961), 0.859 (95% CI: 0.823, 0.890) 
and 0.712 (95% CI: 0.668, 0.754) for APHE, washout and capsule, respectively. The expert- 
guided system significantly outperformed the end-to-end system with a LI-RADS grading 
accuracy of 68.3% (95% CI: 60.8%, 76.5%) vs 55.6% (95% CI: 48.8%, 63.0%) (P<0.0001). 
On external testing set, the accuracy of mapped diameter intervals was 91.5% (95% CI: 
81.9%, 100.0%). The AUCs were 0.792 (95% CI: 0.745, 0.833), 0.654 (95% CI: 0.602, 
0.703) and 0.658 (95% CI: 0.606, 0.707) for APHE, washout and capsule, respectively. The 
expert-guided system achieved an overall grading accuracy of 66.2% (95% CI: 58.0%, 
75.2%), significantly higher than the end-to-end system of 50.1% (95% CI: 43.1%, 58.1%) 
(P<0.0001).
Conclusion: We developed a semi-automatic step-by-step expert-guided LI-RADS grading 
system (LR-3 to 5), superior to the conventional end-to-end learning system. This deep 
learning-based system may improve workflow efficiency for HCC diagnosis in clinical 
practice.
Keywords: liver imaging reporting and data system, LI-RADS, hepatocellular carcinoma, 
HCC, magnetic resonance imaging, MRI, deep learning

Plain Language Summary
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the fourth 
leading cause of cancer-related mortality worldwide. The standardized liver imaging report-
ing and data system (LI-RADS) classification, especially the identification of LR-3 to 5 
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lesions with HCC probability, is of great significance to treatment 
strategy determination. However, the in-depth analysis using LI- 
RADS increases the workload for radiologists with inevitable 
interpretation difference. Thus, we developed a semi-automatic 
step-by-step expert-guided LI-RADS grading system on multi-
phase gadoxetic acid-enhanced magnetic resonance imaging 
(MRI) using deep 3D convolutional neural networks (CNNs), 
and proved its superiority compared to the conventional end-to- 
end black box learning system. This deep learning-based system 
may improve workflow efficiency for HCC diagnosis in clinical 
practice.

Introduction
Hepatocellular carcinoma (HCC) is the most common 
primary liver cancer and the fourth leading cause of can-
cer-related mortality worldwide, which constitutes 
a major health problem worldwide.1 Imaging plays 
a critical role in HCC diagnosis, as the diagnosis can be 
established based on noninvasive imaging without pathol-
ogy confirmation according to the 2018 HCC clinical 
practice guidance by the American Association for the 
Study of Liver Diseases.2 The liver imaging reporting 
and data system (LI-RADS) is created for the standar-
dized interpretation of liver imaging findings in patients at 
risk for developing HCC, and under specific criteria, LI- 
RADS permits a definitive diagnosis of HCC.3 The prob-
ability of HCC associated with each LI-RADS category 
informs the best approach to a hepatic lesion. LR-1 and 
LR-2 indicate definitely and probably benign; LR-3, 4 and 
5 indicate an average probability of HCC of 33%, 80% 
and 96%, respectively.2 The cumulative incidence of pro-
gression of untreated observations rises with the increas-
ing LI-RADS grade: LR-3 lesions are less invasive than 
those for LR-4 and LR-5, which can be followed for 
stability with imaging; whereas up to 68% of untreated 
LR-4 lesions become LR-5 within 2 years, and LR-5 score 
indicates HCC diagnostic certainty and an aggressive 
treatment is necessary.2 Thus, in clinical practice, LI- 
RADS classification of hepatic lesions, especially the 
identification of LR-3 to 5 lesions with HCC probability 
is of great significance to treatment strategy determina-
tion. A diagnostic table with the combination of major 
features and observation size is used to determine whether 
a lesion is categorized as LR-3, LR-4 or LR-5 in LI- 
RADS v2018.3

However, the in-depth analysis using LI-RADS 
increases the workload for radiologists. Meanwhile, most 
studies demonstrated a substantial to moderate inter- 

observer consistency in LI-RADS categorization.4–6 

Thus, even though LI-RADS offers a standardized diag-
nostic algorithm, interpretation difference remains 
between inexperienced and expert radiologists. Deep- 
learning methods may help to solve these problems and 
improve workload efficiency.

Recently, deep learning technique based on convolu-
tional neural network (CNN) has gained great attention 
and rapid development in medical image processing,7–10 

with applications to multiple clinical tasks such as disease 
detection,11–13 tissue segmentation,14–16 lesion 
classification,17–19 diagnosis and evaluation.20–22 

Although promising progress has been made in such 
areas, deep learning-based techniques were still subject 
to several limitations that required further investigation.23 

Specifically, most of such CNN models demanded large- 
scale training data set and lacked sufficient interpretability 
of the network output, which might impede their clinical 
acceptance.24

The multiphase contrast-enhanced magnetic resonance 
imaging (MRI), especially the Gadoxetic acid-enhanced 
MRI is recommended as the most accurate imaging 
method for HCC diagnosis.25,26 To our knowledge, the 
deep-learning method has been rarely reported for auto-
matic LI-RADS grading based on MRI:27,28 Wu et al27 

employed MRI transfer learning to fine-tune the weights 
of pre-trained AlexNet CNN to distinguish LR-3 liver 
tumors from combined LR-4/5 tumors, with a small data 
set of 89 liver tumors in 59 patients. Yamashita et al28 

collected a data set comprising 314 hepatic observations 
(163 CT, 151 MRI) with manually-measured tumor dia-
meters and LI-RADS categories to develop two CNNs 
(transfer learning network derived from pre-trained 
VGG16 and custom-made network trained from scratch) 
for categorizing LR1/2, LR-3, LR-4 and LR-5. Similar to 
most other deep learning-based computer-aided diagnosis 
methods, both works developed the models in an end-to- 
end fashion by training the networks directly to predict the 
LR grades. In addition, both studies adopted 2D CNNs 
and required manual pre-selection of a representative 
tumor slice showing either the best lesion delineation27 

or the maximum observed lesion diameter.28 However, the 
use of single 2D image slice might cause information loss, 
leading to suboptimal network performance. Nie et al20 

demonstrated the advantages of using 3D CNN architec-
tures over traditional 2D CNN in their study on survival 
time prediction of brain tumor patients with multi-modal 
MRI images. Accordingly, 3D convolutional kernels 
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would be adopted in all CNNs development throughout 
this article. Relevant previous works29,30 also investigated 
fourteen different radiologic features associated with six 
types of hepatic lesions, but their work aimed to reveal the 
implicit correlation between liver lesion classification and 
presence of relevant radiologic features to make the lesion 
classification network more interpretable, without exploit-
ing such features to help improve the classification 
accuracy.

In this study, we aimed to develop a semi-automatic 
LI-RADS grading system on multiphase gadoxetic acid- 
enhanced MRI using deep 3D CNNs. The original con-
tributions of our work are mainly as follows: Firstly, we 
proposed an almost completely automated LI-RADS grad-
ing system with the only manual input as the region of 
interest (ROI) around the target tumor. Secondly, to alle-
viate the issue of limited size of annotated training data 
and provide better result interpretability, we would decom-
pose the task into several relatively easier sub-tasks 
including developing a liver tumor segmentation model 
for automatic tumor diameter estimation and three classi-
fication models of LI-RADS major features including non- 
rim arterial phase hyper-enhancement (APHE), non- 
peripheral washout and enhancing capsule. The LI-RADS 
category (LR-3, LR-4 and LR-5) were subsequently 
assigned according to the diagnostic table defined in LI- 
RADS v2018, as opposed to training an end-to-end LI- 
RADS classification model to directly assign LI-RADS 
categories. Moreover, we adopted 3D CNN models instead 
of 2D CNN, and the data set in this study was also larger 
than any of the previously published literature in the area. 
We assessed model performance in both internal and exter-
nal data sets.

Patients and Methods
Data sets
This retrospective study was approved by the institutional 
Ethical Review Committee (Approval Number: B2021- 
113R) and the requirement for written informed consent 
was waived. For model development and internal evalua-
tion, we searched the electronic health record system in 
Zhongshan Hospital, Fudan University, from August 2011 
to April 2020. For external validation, we searched the 
electronic health record system in No. 1 Affiliated 
Hospital, Suzhou University from April 2015 to 
January 2020. For both internal and external data sets, 
patients who were suspected of HCC without previous 

treatment and underwent baseline gadoxetic acid- 
enhanced MRI were included consecutively. Cases with 
poor image quality due to severe artifacts were excluded 
for analysis.

Imaging Acquisition
All patients were examined with 1.5 or 3.0 Tesla MR 
scanner (Magnetom Aera, Siemens, Erlangen, Germany; 
uMR 770, United Imaging Healthcare, Shanghai, China). 
Dynamic imaging was performed with a breath-hold T1- 
weighted 3-dimensional fat-suppressed gradient-echo 
sequence, before and after the intravenous administration 
of gadoxetic acid (Primovist; Bayer HealthCare, Berlin, 
Germany). Contrast was administered at a dose of 0.025 
mmol/kg at a rate of 2 mL/s, followed by a 20 mL saline 
flush using a power injector (Spectris; Medrad, Pittsburgh, 
PA, USA). The arterial phase (AP) acquisitions were trig-
gered automatically when contrast media reached the 
ascending aorta. For subsequent acquisitions, dynamic T1- 
weighted MRI at 60 s (portal venous phase, PVP) and 180 
s (transitional phase, TP) and 20 min (hepatobiliary phase) 
were performed. Other routine liver protocols consisted of 
a breath-hold T2-weighted fat-suppressed fast spin-echo 
sequence, T1-weighted in-phase and opposed-phase gradi-
ent echo sequence, and free-breathing diffusion-weighted 
imaging with transverse single-shot spin-echo echo-planar 
sequences (b values, 0, 50 and 500 s/mm2).

Imaging Analysis
MR images were independently evaluated by 3 radiolo-
gists (with 6, 8 and 13 years of experience in liver MRI, 
respectively) for internal data and another 3 radiologists 
(with 5, 9 and 15 years of experience in liver MRI, 
respectively) for external data using picture archiving 
and communication system (Pathspeed, GE Medical 
Systems Integrated Imaging Solutions, Prospect, IL, 
USA). The reviewers were aware that the patients had 
liver tumors, but were blinded to all other information, 
including patient history, laboratory results, and pathologic 
results. Inter-observer agreements were assessed, and 
when disagreement occurred, consensus review was 
made for final decisions as the reference standard. When 
multiple nodules were observed, only the largest nodule 
was analyzed.

Major features based on the LI-RADS version 2018 
diagnostic algorithm3 were evaluated as follows: non-rim 
APHE (non-rim like enhancement in AP unequivocally 
greater in whole or in part than liver); non-peripheral 
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washout (non-peripheral visually assessed temporal reduc-
tion in enhancement in whole or in part relative to composite 
liver tissue from earlier to PVP, resulting in hypo- 
enhancement); enhancing capsule (smooth, uniform, sharp 
border around most or all of an observation, unequivocally 
thicker or more conspicuous than fibrotic tissue around 
background nodules, and visible as an enhancing rim in 
PVP or TP). Lesion size was measured at the largest cross- 
sectional diameter (the maximum dimension) on the axial 
planes of TP.

Expert-Guided LI-RADS Grading System
The expert-guided LI-RADS grading system proposed in 
this article consisted of three modules as shown in 
Figure 1. The inputs to the system were the MRI images 
acquired at four different time points with specified bound-
ing boxes centering around the target tumor on each phase. 
The outputs of the system were the LI-RADS category 
assigned to the target tumor by the system, together with 
the intermediate results of automatic tumor segmentation as 
well as presence estimation of the three LI-RADS major 
imaging features.

Data Preprocessing
All MRI scans used in this work were provided with 
a bounding box centering around the target tumor on all 
phases. For the internal data set, the liver tumors were 
manually segmented to train and validate the automatic 
liver tumor segmentation model, thus the bounding boxes 
of the tumor can be obtained. For the external data set, the 
radiologist directly drew bounding boxes for liver tumors on 
each phase, to indicate the size and location of the tumor. To 
align it across all phases of one exam, cubic image patches 
of the same size were cropped around the tumor centroid of 
all four phases. The cubic patch size was selected as the 
largest dimension of the same tumor of all different phases, 
expanded by five millimeters along each axis to include 
a margin of peri-observation liver parenchyma, yet away 
from non-liver structures. The cropped cubic image patches 
of different tumors were all resized to 48×48×48 voxels and 
applied with simple z-score normalization.

CNN Architectures
Segmentation Model
In the expert-guided grading system, the segmentation 
model adopted an architecture as shown in Figure 2 by 
combining U-Net31 with multiple bottleneck layers. The 
U-Net architecture supplements conventional contracting 

network with successive expansive network to propagate 
both global image context and local image cues to higher 
resolution layers, achieving the state-of-the-art segmenta-
tion results. The bottleneck layer was introduced to reduce 
the number of feature maps, thereof the model complexity 
and operations, so the inference time and memory cost can 
be kept lower. As previously mentioned, only the TP was 
segmented to estimate the tumor diameter. The obtained 
tumor segmentation mask was used to derive the centroid 
and leading eigenvector of the covariance matrix. The 
leading eigenvector corresponds to the major axis of the 
tumor from which the maximum lesion diameter can be 
automatically measured by computing the distance 
between the boundary points along the major axis crossing 
the centroid.

Despite the fact that the segmentation model was only 
meant to segment the TP images, all phases including the 
pre-contrast phase, AP, PVP and TP were used to train the 
segmentation model which showed better segmentation 
accuracy compared to training with TP only.

Classification Models
The three imaging feature classification models were all 
based on the optimized 3D ResNet architecture with sig-
nificantly reduced layers to alleviate the over-fitting pro-
blem as shown in Figure 3. Given the fact that the 
presence of APHE and washout features needs to be 
determined by jointly observing multiple phases, i.e., 
APHE depends on the pre-contrast and AP, whereas for 
washout the AP and PVP are compared, the classification 
networks of these two features contained two CNN sub- 
networks and each sub-network extracted information 
from one phase input, which were then combined at 
a later stage of the network to make the final classification 
(Figure 3A). The feature maps from two separated CNN 
branches were fused by channel-wise concatenation, and 
the concatenated feature maps were fed to the next layer in 
the network as input. To compensate for the possible 
tumor misalignment due to respiratory motion across dif-
ferent phases, the phase specific sub-network consisted of 
downsampling blocks where the max pooling layers made 
the extracted information less sensitive to the exact spatial 
location.

Different from the previous two imaging features, the 
capsule feature is independently observed on the PVP and 
TP. In this study, the tumor was labelled as positive if the 
capsule feature was observed on either of the two phases, 
but without noting on which phase the feature was found. 
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In view of this, we adopted the approach of multiple 
instance learning32,33 to classify the capsule features. As 
shown in Figure 3B, the same network was shared by both 
PVP and TP. Denote the output probability of the tumor on 
PVP being capsule positive as pv1, and the positive prob-
ability on TP as pt1, then the joint probability of the tumor 
being capsule positive is 1 – (1– pv1) × (1 – pt1). The 
objective loss function was hence formulated to minimize 
the difference between the labels and this joint probability, 
instead of the probability of separate phases.

Model Training
All the models in the study were developed based on 
PyTorch version 1.4 (https://pytorch.org/)20 in Python 3.7 
(https://www.python.org/). The models were trained using 
the Adam34 optimizer with a momentum of 0.9, initial learn-
ing rate of 0.001 reduced by a factor of 10 after every 400 
epochs, a weight decay of 0.001, and a batch size of 24 to 
minimize the Dice loss (43) and Focal loss (44) for segmen-
tation and classification models, respectively. Training was 
stopped and the best model snapshot was selected based on 
tuning cohort randomly chosen from the training data. Data 
augmentation was applied including random translation up 
to 20% of the tumor diameter along each axis, rotation up to 
10 degrees around any rotation axis and a random scaling 

factor of the tumor margin width in the range of 0.8 to 1.2. 
All CNN models were trained on 4 NVidia Titan Xp GPUs 
each with 12 GB of GDDR5 memory.

Step-by-Step Expert-Guided System vs 
End-to-End Black Box System
For comparison, we trained a model of conventional end-to- 
end black box system to directly predict the LI-RADS cate-
gory using the same network architecture of Figure 3A, 
nevertheless extended to four sub-networks each processing 
a specified phase input. The black box network, shown in 
Figure S1, was trained with the same hyper-parameters and 
highly similar network as the expert-guided system, and 
validated both on the internal and external data set. In 
order to optimize the black box system, the same optimized 
ResNet architecture with weight decay and a variety of data 
augmentation methods as the expert-guided system was also 
employed to improve the model generalization performance.

ROI Scale Robustness
The final deep learning-based LI-RADS grading system in 
the article was almost completely automated with the only 
manual input as the ROI around the target tumor. The 
observers were required to crop a bounding box tightly 
surrounding the tumor when inter-observer errors could 

Figure 1 The proposed expert-guided LI-RADS grading system consisted of three modules: the data preprocessing module that cropped, resized and normalized the ROI 
centering around the target tumor; the CNN modules comprising the tumor segmentation model and three major imaging feature classification models; and the post- 
processing module which calculated the maximum tumor diameter from the segmentation mask and obtained the LI-RADS grade according to the diameter and inferred 
presence of the major features. 
Abbreviations: TP, transitional phase; pre, pre-contrast; AP, arterial phase; PVP, portal venous phase; FC, fully connected; APHE, arterial phase hyper-enhancement; PCA, 
principal component analysis.

Journal of Hepatocellular Carcinoma 2021:8                                                                                      https://doi.org/10.2147/JHC.S316385                                                                                                                                                                                                                       

DovePress                                                                                                                         
675

Dovepress                                                                                                                                                            Sheng et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://pytorch.org/
https://www.python.org/
https://www.dovepress.com/get_supplementary_file.php?f=316385.docx
https://www.dovepress.com
https://www.dovepress.com


occur during this manual process. To evaluate the impact 
of bounding box variation on the model performance, we 
simulated different ROIs by multiplying the 5mm margin 
width with a scale factor in the range of 0.6 to 1.6 with 
a step size of 0.2, which slightly exceeds the range of 0.8 
to 1.2 used in data augmentation aforementioned.

Multi-Phase Tumor Segmentation Models
As mentioned above, the tumor segmentation model used in 
this study, shown in Figure 2, was trained with MRI images 
of all four different phases mixed as the training data, which 
was denoted as the single mixed model. Given the fact that 
the tumor appearance might be different depending on the 
contrast phase, we also developed four segmentation models 
of the same architecture as shown in Figure 2, each being 
trained separately with MRI images of only a specific phase, 
namely, the phase-specific model. Furthermore, a joint seg-
mentation model was also developed by feeding images of all 
four phases in parallel to a single network using four input 
channels and simultaneously obtained the segmentation of all 
phases with four output channels, and this approach was 
named as the single joint model.

Statistical Analyses
All statistical analyses were performed using the SPSS 
software (version 22.0; Chicago, IL, USA) and MedCalc 
software (version 15.0; Mariakerke, Belgium). In order to 

analyze the reliability of the ground truth establishment of 
lesion LI-RADS category assigned by three radiologists, 
the inter-observer agreement was assessed by intraclass 
correlation coefficient (ICC) (ICC <0.50: poor; 0.50– 
0.75: moderate; 0.75–0.90: good; 0.90: excellent). In 
expert-guided LI-RADS grading system, the receiver oper-
ating characteristic (ROC) analysis and the area under the 
curve (AUC) were calculated to evaluate the performance 
of three CNN classification models for three major ima-
ging features, respectively. The AUCs among these three 
models were compared using DeLong’s method. The CNN 
segmentation models were evaluated using Dice 
coefficient35 and the average absolute error of obtained 
tumor diameters was computed. Finally, to evaluate the 
grading performance of both step-by-step LI-RADS sys-
tem and end-to-end system, the overall accuracy was cal-
culated for the 3-class classification (LR-3, LR-4, LR-5), 
and the McNemar’s test was performed to compare the 
final LI-RADS category accuracy between the two sys-
tems. A of P value less than 0.05 indicated statistically 
significant difference.

Results
Data sets
The internal data set comprised 439 patients (370 males 
and 69 females) with a mean age of 53.9 ± 11.6 years. The 

Figure 2 The convolutional neural network architecture of liver tumor segmentation model, which combines U-Net with bottleneck layer (BL). 
Abbreviations: Conv, convolution; BN, batch normalization; RELU, rectified linear unit.
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mean diameter of all 439 tumors was 20.58 ± 15.52 mm. 
The external data set consisted of 71 patients (53 males 
and 18 females) with a mean age of 57.8 ± 13.5 years. The 
mean diameter of all 71 tumors was 56.3 ± 37.3 mm.

The detailed distributions of tumor diameters, presence 
of three major imaging features, and LI-RADS categories 
assigned therefrom of both internal and external data set 
were listed in Table 1. The internal data set was randomly 
split into five folds with roughly equivalent ratios of each 
LI-RADS category across each fold. The tumor diameters 
were mapped into three discrete intervals of (0, 10), [10, 
20) and [20, +∞) according to LI-RADS v2018.

Internal Data set Analyses
Segmentation Model and Diameter Calculation
The Dice coefficient was used to evaluate the segmenta-
tion model in this study, a mean dice of 0.85 on training 
set and 0.84 on testing set were achieved. The mean 

absolute error of diameter was 2.75 ± 5.6 mm on training 
set and 2.71 ± 5.6 mm on testing set. The continuous 
diameter values were mapped into three intervals as spe-
cified in LI-RADS v2018, and the accuracy of the mapped 
diameter intervals reached 82.2% (95% CI: 78.0%, 86.5%) 
on the training data set and 82.7% (95% CI: 74.4%, 
91.7%) on the testing set. In particular, the confusion 
matrices across the three diameter intervals are given in 
Table S1, it shows that the accuracy of estimated diameter 
increased with the size of the tumors.

Classification Model
The classification models of three major imaging features 
were trained with the same data set and hyper-parameters 
such as epochs and learning rates. The obtained ROC 
curves were plotted in Figure 4A. The sensitivity and 
specificity of the three models under the threshold of 0.5 
were listed in Table 2. Considerable performance 

Figure 3 The convolutional neural network architectures of classification models: (A) the models for arterial phase hyper-enhancement and washout, (B) the model for 
capsule feature. 
Abbreviations: Conv, convolution; BN, batch normalization; RELU, rectified linear unit; GAP, global average pooling; FC, fully connected; MP, maximum pooling.
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difference was observed across the three feature classifica-
tion models. Specifically, the model of the APHE accom-
plished the highest AUC of 0.941 (95% CI: 0.914, 0.961) 
on the testing data set, better than the washout model with 
the AUC of 0.859 (95% CI: 0.823, 0.890) (P = 0.0012), 
and the capsule model with the AUC of 0.712 (95% CI: 
0.668, 0.754) which was the lowest among all three mod-
els (P < 0.0001). The consistency among the three radi-
ologists were 0.946 (95% CI 0.937, 0.954), 0.952 (95% CI 
0.944, 0.960), and 0.917 (95% CI 0.903, 0.930) for APHE, 
washout and capsule, respectively.

LI-RADS Grade
Once the maximum tumor diameter and presence of imaging 
features were obtained, the LI-RADS categories (LR-3, LR- 
4 and LR-5) could be easily assigned according to the 
diagnostic table defined in LI-RADS v2018. The proposed 
system achieved an overall LI-RADS category accuracy of 
90.9% (95% CI: 86.5%, 95.5%) on training data set and 
68.3% (95% CI: 60.8%, 76.5%) on testing data set. From the 
resulting confusion matrices shown in Table S2, most of LI- 
RADS grading errors occurred between two neighboring 
categories, which was reasonable considering the continuous 
transition between the neighboring LI-RADS categories.

External Data Set Analyses
Segmentation Model and Diameter Calculation
The mean diameter error was 5.2 ± 4.5 mm, which was greater 
than the internal data set, but the overall accuracy of diameters 
mapped to three intervals was much higher as 91.5% (95% CI: 
81.9%, 100.0%). The confusion matrix on external data the set 
is shown in Table S3, the diameter calculation achieved rela-
tively better accuracy for larger tumors.

Classification Model
The ROC curves of the three feature classification models on 
the external data set were plotted in Figure 4B, with the 
sensitivity and specificity of each model under the threshold 
of 0.5 given in Table 3. All three models were subject to 
performance downgrades on the external data set, the APHE 
model still considerably outperformed the washout and cap-
sule models, achieving the highest AUC of 0.792 (95% CI: 
0.745, 0.833) compared to 0.654 (95% CI: 0.602, 0.703) for 
washout (P = 0.0148) and 0.658 (95% CI: 0.606, 0.707) for 
capsule (P = 0.0188). The consistency among the 3 radiol-
ogists were 0.974 (95% CI 0.961, 0.983), 0.960 (95% CI 
0.940, 0.973), and 0.965 (95% CI 0.949, 0.977) for APHE, 
washout and capsule, respectively.

LI-RADS Grade
The obtained LI-RADS category classification accuracy 
was 66.2% (95% CI: 58.0%, 75.2%) and the confusion 
matrix are shown in Table S4. The LI-RADS grading 
accuracy was subject to the same performance drop due 
to the downgrade of the three feature classification models 
on the external data set.

Step-by-Step Expert-Guided System vs 
End-to-End Black Box System
The resulting confusion matrices of the end-to-end black 
box LI-RADS grading system on both internal and external 
data set are shown in Table S5, demonstrating that the 
proposed expert-guided system outperformed the black box 
model on both internal testing data with grading accuracy of 
68.3% (95% CI: 60.8%, 76.5%) vs 55.6% (95% CI: 48.8%, 
63.0%) (P < 0.0001), and the external testing data as well 
with accuracy of 66.2% (95% CI: 58.0%, 75.2%) vs 50.1% 
(95% CI: 43.1%, 58.1%) (P < 0.0001).

ROI Scale Robustness
Figure S2 demonstrated the robustness of the trained 
models against the variation of the cropped ROI size. 
On the testing data, the AUC of three imaging feature 
models fluctuated slightly in the range of 0.92 to 0.95, 
0.84 to 0.86, and 0.69 to 0.72 for APHE, washout and 
capsule, respectively. The accuracy of estimated lesion 
diameter intervals ranged from 80.0% to 82.6%, with 
the final LI-RADS category classification accuracy in 
the range of 66.3% to 69.0%. It can be observed that 
the difference of the model performance was even more 
negligible when the scale factor varied between 0.8 
and 1.2.

Multi-Phase Tumor Segmentation Models
The resulting dice coefficient of all three different seg-
mentation models were compared in Table 4. As shown 
in the table, on the testing data, the single mixed model 
achieved the best segmentation accuracy on all four 
different phases. On the other hand, the phase-specific 
model achieved the best segmentation results on the 
training data for all phases. The single joint model 
performed the worst of all models. Moreover, all seg-
mentation models obtained the lowest segmentation 
accuracy on the PVP images for both the training and 
testing sets.
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Discussion
In this study, we developed a deep learning-based LI- 
RADS grading system on multiphase gadoxetic acid- 
enhanced MRI, comprising four deep 3D CNN models 
including a tumor segmentation network and three major 
imaging feature classification networks. The system was 
almost completely automated without the need of lesion 
size measurement or manual selection of the optimal axial 
slice. Furthermore, the step-by-step expert-guided system 

devised in this study outperformed the conventional end-to 
-end black box network.

We firstly developed an almost automated tumor seg-
mentation network with the only manual input as an ROI 
around the target tumor, and we proved that the impact of 
bounding box variation on the model performance was 
negligible. By using this automated segmentation method, 
we achieved satisfied accuracy for the mapped diameter 
intervals. The accuracy increased with the size of the 

Table 1 The Distribution of Tumor Diameters, Presence of Major Features and Assigned LI-RADS Categories for Both Internal and 
External Data Set

Internal Data 
Set

APHE Washout Capsule Diameter (mm) LI-RADS Grade

Negative Positive Negative Positive Negative Positive <10 [10, 20) ≥20 LR-3 LR-4 LR-5

Fold-1 13 75 26 62 43 45 10 46 32 17 18 53

Fold-2 10 77 31 56 35 52 9 44 34 18 17 52

Fold-3 11 77 24 64 35 53 16 30 42 13 23 52

Fold-4 14 74 35 53 41 47 16 40 32 22 21 45

Fold-5 19 69 34 54 44 44 11 43 34 23 19 46

Total 67 372 150 289 198 241 62 203 174 93 98 248

External Data 
Set

APHE Washout Capsule Diameter (mm) LI-RADS Grade

Negative Positive Negative Positive Negative Positive <10 [10, 20) ≥20 LR-3 LR-4 LR-5

Total 5 66 32 39 27 44 1 14 56 10 12 49

Abbreviation: APHE, arterial phase hyper-enhancement.

Figure 4 The ROC curves of three major imaging feature classification models on (A) internal data set and (B) external data set. The blue, red and green lines represented 
arterial phase hyper-enhancement (APHE), washout and capsule, respectively. The solid lines stand for the training data set and the dashed lines stand for the testing data set. 
Abbreviation: AUC, area under the curve.
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tumors, possibly because the diameter computation was 
less sensitive to the segmentation errors for larger lesions, 
and also larger tumors were in general more visually 
distinguishable with better enhanced boundaries and less 
affected by potential artifacts. Besides, the mean diameter 
error of the external data set was greater than the internal 
data set, although the overall accuracy of diameters 
mapped to three intervals was high (91.5%), this may 
result from the much greater percentage of large tumors 
(≥ 20 mm) in the external group (78.9%), larger diameter 
may lead to relatively larger absolute errors in value.

Moreover, we made a comparison study of three multi- 
phase tumor segmentation models, i.e., the single mixed 
model, the phase-specific model, and the single joint 
model. On the testing data, the single mixed model 
achieved the best segmentation accuracy on all four dif-
ferent phases. It is suggested that in the case of limited 
training data size, in spite of the difference across phases, 

the mixed use of training images of all phases can boost 
the data size, thus benefit the generalization performance 
of the model, which is possibly due to partly common 
imaging characteristic shared across phases.31 On the 
other hand, the phase-specific model achieved the best 
segmentation results on the training data for all phases, 
indicating the over-fitting problem for this approach 
because the model was trained only with data of single 
phase. However, given sufficient training data, the phase- 
specific model is expected to outperform the single mixed 
model eventually. The single joint model performed the 
worst of all models, which was possibly caused by the 
lesion misalignment across phases as mentioned above. 
Meanwhile, it was noted that all segmentation models 
obtained the lowest segmentation accuracy on PVP for 
both training and testing set. To a large extent, it was 
attributed to the lower contrast between HCC and liver 
parenchyma on PVP. Because of continued contrast med-
ium uptake and progressively increasing enhancement of 
the adjacent liver parenchyma in the late dynamic phase, 
the contrast of HCC on PVP was usually lower than TP.36 

In addition, previous results also showed that the contrast 
of HCC on PVP was lower for EOB than extracellular 
agent.37,38

We subsequently developed three imaging feature clas-
sification networks, including APHE, washout, and cap-
sule. Considerable performance differences were observed 
across the three major feature classification models, even 
though all three networks were of similar architecture and 
trained with the same amount of training data and same 
hyper-parameters. APHE performed the best, followed by 
washout, and capsule performing the worst. The results 
implied possible different levels of ambiguity of the three 
imaging features and well fit the consistency observed 
among the manual labels individually rated by the three 
radiologists. The capsule performed the worst and pre-
sented the lowest consistency across the raters, consistent 
with previous studies.5,30,36,37 Earlier researches showed 
a lower detection rate of enhancing capsule with EOB than 
with extracellular agent, as with EOB-MRI, early contrast 
uptake by the adjacent hepatocytes led to strong liver 
parenchyma enhancement on TP; thus, a capsule became 
less conspicuous and the visual contrast between the liver 
and capsule was diminished.36,37,39 Meanwhile, the perfor-
mance in the training data outperformed the testing data, 
the possible reason is that compared to tumor segmenta-
tion, classification models may be more prone to the over- 
fitting problem given the same limited size of the training 

Table 2 The Sensitivity and Specificity of Three Feature 
Classification Models on Internal Data Set

APHE Washout Capsule

Training 
Set

Sensitivity 

(95% CI)

99.9% 

(94.9%, 

100.0%)

98.5% 

(92.9%, 

100.0%)

97.8% 

(91.7%, 

100.0%)

Specificity 

(95% CI)

100.0% 

(88.4%, 
100.0%)

98.5% 

(90.7%, 
100.0%)

97.2% 

(90.5%, 
100.0%)

Testing 
Set

Sensitivity 

(95% CI)

94.6% 

(85.0%, 

100.0%)

84.8% 

(74.5%, 

100.0%)

68.9% 

(58.8%, 

80.2%)

Specificity 

(95% CI)

79.1% 

(59.3%, 
100.0%)

64.7% 

(52.4%, 
78.9%)

61.1% 

(50.7%, 
73.0%)

Abbreviation: APHE, arterial phase hyper-enhancement.

Table 3 The Sensitivity and Specificity of Three Feature 
Classification Models on External Data Set

APHE Washout Capsule

Testing 
Set

Sensitivity 

(95% CI)

74.6% 

(65.5%, 
84.5%)

59.0% 

(48.7%, 
70.8%)

75.9% 

(64.8%, 
88.3%)

Specificity 
(95% CI)

80.0% 
(48.9%, 

100.0%)

62.5% 
(50.9%, 

76.0%)

50.3% 
(39.1%, 

63.9%)

Abbreviation: APHE, arterial phase hyper-enhancement.
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data. It was partly caused by the disparate difficulty of two 
tasks, and also possibly because each voxel in the image 
contributed as a training sample for segmentation problem 
while the whole image was counted as one sample for the 
classification model. The LI-RADS grading accuracy was 
subject to the same performance drop due to the down-
grade of the three feature classification models on the 
testing data set. Due to the over-fitting problem mentioned 
above, both feature classification models and the LI-RADS 
grading system showed certain performance downgrades 
on the external data set, the data differences between 
internal and external data sets as well as the limited train-
ing data volume may also lead to the poor generalization 
performance of the model on external data set. Despite all 
the endeavors such as various data augmentation and net-
work depth reduction, over-fitting problem still occurred 
due to the limitation of the training data size, further 
research with a larger sample size and an attempt of 
other techniques such as transfer learning may be of help 
to improve the generalization performance of the models.

Different from most prevailing deep learning methods 
where the network was trained end-to-end directly for 
a specific task, namely, LI-RADS grading in this study; 
we proposed a step-by-step deep learning-based LI-RADS 
grading system comprising several models which were 
trained to segment the tumor and infer three major ima-
ging features respectively, the obtained results were 

subsequently easily joined to estimate the LR category. 
By decomposing the complex task into several more intui-
tive and easier sub-tasks, such separate knowledge is more 
visually perceivable and interpretable than LR grades, thus 
plausibly easier to learn by the network especially when 
the data set size is relatively small. It was assumed that the 
proposed system may be superior to the conventional 
black box network with limited training sample size. Our 
research confirmed this hypothesis, and concluded that the 
step-by-step expert-guided system outperformed the end- 
to-end black box model; furthermore, our experiment 
results revealed that under the same circumstances, the 
end-to-end CNN network was more prone to the over- 
fitting problem than the step-by-step CNN, given the lim-
ited amount of training data.

This study had several limitations. Firstly, the data set, 
albeit larger than any of previous reported studies is this 
area, was still small for deep learning methods. Even in the 
proposed system, drastic over-fitting problem was still 
observed, and the feature classification models were 
more susceptible to a small data set than the segmentation 
model. A larger data set, preferably collected from multi-
ple institutions, was critical to improve the generalization 
performance of the models, and techniques such as trans-
fer learning may also be employed in the proposed system 
when the data size is small. Secondly, we focused on the 
major features of lesion size, APHE, washout and capsule 
and categorized LI-RADS grading 3 to 5 in this study. 
Future work accounting the numerous ancillary features 
and threshold growth is warranted. Thirdly, the proposed 
system still required manual input of the tumor bounding 
boxes on all four phases. It is desirable to develop focal 
liver lesion detection and registration models to automati-
cally locate the lesions across phases, thus the whole LI- 
RADS grading system would become completely auto-
mated. Lastly, it remains to evaluate the LI-RADS cate-
gories automatically assigned by the deep learning models 
using the pathology test results as the ground truth.

Conclusions
In conclusion, we developed a step-by-step expert-guided 
LI-RADS grading system (LR-3, LR-4 and LR-5) on 
multiphase gadoxetic acid-enhanced MRI, using 3D CNN 
models including a tumor segmentation model for auto-
matic tumor diameter estimation and three major feature 
classification models, superior to the conventional end-to- 
end black box system. This deep learning-based system 

Table 4 The Dice Coefficient of Three Segmentation Models on 
All Phase Images of the Internal Data Set

Training Set Single Mixed Phase-Specific Single Joint

Mean 0.85 0.87 0.82

Pre 0.86 0.87 0.83

AP 0.85 0.87 0.81

PVP 0.84 0.85 0.81

TP 0.85 0.87 0.83

Testing Set Single Mixed Phase-Specific Single Joint

Mean 0.83 0.81 0.79

Pre 0.84 0.82 0.81

AP 0.82 0.80 0.78

PVP 0.82 0.78 0.77

TP 0.84 0.82 0.78

Abbreviations: AP, arterial phase; PVP, portal venous phase; TP, transitional phase.
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may improve workflow efficiency for HCC diagnosis in 
clinical practice.

Abbreviations
HCC, hepatocellular carcinoma; LI-RADS, liver imaging 
reporting and data system; CNN, convolutional neural net-
work; MRI, magnetic resonance imaging; ROI, region of 
interest; APHE, arterial phase hyper-enhancement; AP, 
arterial phase; PVP, portal venous phase; TP, transitional 
phase; ICC, intraclass correlation coefficient; ROC, recei-
ver operating characteristic; AUC, area under the curve.
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