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Abstract: Streptococcus pneumoniae can cause severe infections among children and the 

elderly. Molecular capsule typing is being investigated extensively as a replacement of con-

ventional serotyping using antisera. We focused on the glycosyltransferase (GT) genes in 

the capsular polysaccharide synthesis (cps) gene cluster of S. pneumoniae for classification 

of capsular types. The Sanger Institute provided sequences of the cps loci of 90 serotypes 

of S. pneumoniae. Each cps locus contained 1–6 putative GT genes per strain, for a total of 

352 GT genes. Phylogenetic analysis of GT gene polymorphisms distinguished 90 serotypes 

into 64  phylogenetic groups. However, the sequence data contained only one sample from each 

serotype. Therefore, we selected six clinical isolates belonging to serogroup 6 and seven clinical 

isolates belonging to serotype 19F by antisera and sequenced GT genes. From phylogenetic 

analysis, these sequences were very similar to those of the Sanger Institute, and we can use 

GT genes as serotype-specific genes.
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Introduction
Streptococcus pneumoniae is a common Gram-positive pathogen that colonizes the 

upper respiratory tract. The bacterium can cause severe infections, such as otitis media 

and sinusitis, and more life-threatening diseases, such as pneumonia, bacteremia, 

and meningitis if it gains access to the lower respiratory tract or the bloodstream.1 

S. pneumoniae can be divided into .90 serotypes based on differences in the com-

position of the capsular polysaccharides.2,3 However, only seven serotypes (4, 6B, 

9V, 14, 18C, 19F, and 23F) are responsible for 65% of all cases of pneumococcal 

disease4 and 23 serotypes for 90% of cases.5 The emergence of antibiotic resistance 

and the spread of resistant strains have increased the importance of vaccines as a 

primary prevention. The serotypes of S. pneumoniae most commonly isolated from 

patients with invasive pneumococcal disease vary in different age groups and geo-

graphic locations.6 Therefore, continued surveillance is critical in order to monitor 

vaccine efficacy and changes in incidence and distribution of colonizing and invasive 

serotypes. Any increase in disease caused by previously uncommon nonvaccine 

serotypes could necessitate a change in vaccine composition. Various methods are 

currently used to identify pneumococcal serogroup and serotype using large panels of 

expensive antisera. These methods include the capsular swelling (Quellung) reaction, 

latex agglutination, and coagglutination.7–9 Cross-reactions between serotypes and 

discrepancies between methods can occur and some strains are nonserotypable.7,10,11 
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Molecular typing has the potential to improve discrimination 

and provide additional information.

With the exception of serotypes 3 and 37, which are 

produced by the synthase pathway, pneumococcal capsular 

polysaccharides (CPSs) are generally synthesized by the 

Wzx/Wzy-dependent pathway.12 The genes for the latter 

pathway are located at the same chromosomal locus (cps), 

between dexB and aliA.13 The DNA sequences of the 90 

pneumococcal cps loci have been determined by the Sanger 

Institute.12 There are four conserved genes (wzg, wzh, wzd, 

and wze) at the 5′ end of all S. pneumoniae cps loci that use 

the Wzy pathway. The cps loci also include genes whose 

products are involved in the biosynthesis of nonhouskeep-

ing components (cps-specific biosynthesis pathway genes), 

initiation of capsule biosynthesis (initial sugar transferase 

genes), and transfer of sugar moieties and their assembly in 

the repeat unit (glycosyltransferase [GT], acetyltransferase, 

sugar phosphate transferase, and pyruvyltransferase genes).14 

GT proteins catalyze the formation of glycosidic bonds 

between the lipid-linked glycan precursor (acceptor) and a 

nucleotide-activated sugar (donor). Therefore, GT proteins 

determine the sequence of components in the repeating poly-

saccharide units that comprise pneumococcal capsules.

The GT genes in the cps loci were examined to determine 

their utility in using phylogenetic analysis to classify the 

serotypes of S. pneumoniae.

Materials and methods
Phylogenetic analysis
The nucleotide sequences of the GT genes in S. pneumoniae 

cps loci were retrieved from the database of the Sanger Insti-

tute (accession numbers CR931632-CR931722; see http://

www.sanger.ac.uk/Projects/S_pneumoniae/CPS/). A phylo-

genetic tree was made by the neighbor-joining method using 

program Clustal_X15 and visualized with Njplot.16

clinical isolates and growth conditions
Clinical specimens were selected from isolates submitted to 

hospital laboratories in Japan from 1998 to 2007. The isolates 

were frozen at -80°C in brain–heart infusion broth (Eiken, 

Tokyo, Japan) supplemented with 0.3% yeast extract (Becton 

Dickinson, Boston, MA) (BHI-Y) with 80% glycerol. Frozen 

isolates were subcultured on blood agar medium containing 

sheep erythrocytes (Denka Seiken, Tokyo, Japan) or grown 

in BHI-Y for 24 h at 37°C in 5% CO
2
.

The isolates were identified as S. pneumoniae by colony 

morphology, alpha hemolysis, and optochin susceptibility 

in the clinical laboratories that isolated each strain. Six 

pneumococcal strains representing serogroup 6 (D11, D12, 

D13, D14, D19, and D25) and seven representing serotype 

19F (D5, D15, D20, D28, D33, D50, and D53) were chosen 

for study.

Serotyping was performed by a slide agglutination test 

(Denka Seiken, Tokyo, Japan) or by the Quellung reaction 

(Statens Serum Institut, Copenhagen, Denmark).

genomic DnA extraction
S. pneumoniae isolates were grown in BHI-Y at 37°C in the 

presence of 5% CO
2
 for 24 hours. Following sedimentation, 

the cells were resuspended in 450 µL of 50 mM EDTA and 

12 µL of lysozyme (100 mg/mL). The cells were incubated 

for 1 hour at 37°C before genomic DNA was extracted 

using a Wizard Genomic DNA Purification Kit (Promega, 

Madison, WI).

Gene amplification, sequencing,  
and alignment
The primers were designed to target two GT genes: wciP 

of serotype 6B and wchQ of serotype 19F. Sequences of 

the targeted genes were retrieved from the website of the 

Sanger Institute. All primers were synthesized by Invitro-

gen (Tokyo, Japan). The primer designations, sequences, 

product sizes, and numbered base positions are shown in 

Table 1.

Thermal cycling was performed in the GeneAmp PCR 

System 9700 (Applied Biosystems) under the following 

conditions: 94°C for 5 minutes followed by 30 amplifica-

tion cycles of 94°C for 30 seconds, 55°C for 30 seconds, 

and 72°C for 1 minute, then a final extension at 72°C for 

7  minutes. The PCR amplicons were extracted after  agarose 

Table 1 Oligonucleotide primers used in this study

Serotype GT gene Primer name Primer sequence (5′→3′) Nucleotide positiona Product size (bp)

6B wciP 6B-wciP-F aat act ata aaa ata ctg gc 8021 1233
6B-wciP-r ccc tca aat aat ata aat gt 9253

19F wchQ 19F-wchQ-F ara aag tat gat tgg aaa aa 9752 1196
19F-wchQ-r wtr aaa gca aar aaa tag aa 10947

Note: astart position of each primer are represented. 
Abbreviation: gT, glycosyltransferase.
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Table 2 glycosyltransferase genes of each serotype

Serotype GT genes included in cps locus Serotype GT genes included in cps locus

1 wchB wchD 19c wchO wchQ wchS wchU
2 wchF wchG wchH wchI 20 wciB whaJ wciL wcwK wciD whaF
3 wchE 21 wchF wcwA wcwK wcyT wcyU
4 wciJ wciK wciL 22F wchF wcwA wcwV whaB
5 wciJ whaC whaD 22A wchF wcwA wcwV whaB
6A wciN wciP 23F wchF wchV wchW
6B wciN wciP 23A wchF wchV wchW
7F wchF wcwA wcwF wcwG wcwH 23B wchF wchV wchW
7A wchF wcwA wcwF wcwG wcwH 24F wchF wcxI wcxJ
7B wchF wcwI wcwL wcwK wcxU 24A wchF wcxI wcxJ
7c wchF wcwI wcwL wcwK wcxU 24B wchF wcxI wcxJ
8 wciO wciR wciS wciT 25F wcyA wcyB wcyC wcyD wcyE
9A wchO wcjA wcjB wcjC 25A wcyA wcyB wcyC wcyD wcyE
9V wchO wcjA wcjB wcjC 27 wchF whaK wcyS
9L wchO wcjA wcjB wcjC 28F wchF wciU wcxN
9n wchO wcjA wcjB wcjC 28A wchF wciU wcxN
10F wciB wcrC wcrD wciF wcrH 29 wciB wcrM wcrH
10A wciB wcrC wcrD wciF wcrG 31 wciB wcrP wcrR wcrW wcrX
10B wciB wcrC wcrD wciF wcrG 32F wchF wchQ wcyS
10c wciB wcrC wcrD wciF wcrH 32A wchF wchQ wcyS
11F wchK wcyK wcrL 33F wciB wciC wciD wciE wciF
11A wchK wcyK wcrL 33A wciB wciC wciD wciE wciF
11D wchK wcyK wcrL 33B wciN wcrC wciD wciE wciF
11B wchK wcyK wcrL 33c wciN wcrC wcrD wciF
11c wchK wcyK wcrL 33D wciN wcrC wciD wciE wciF
12F wciJ wcxB wcxD wcxE wcxF 34 wciB wcrC wcrD
12A wciJ wcxB wcxD wcxE wcxF 35F wciB wcrC wcrD
12B wciJ wcxB wcxD wcxE wcxF 35A wciB wcrI wcrK wcrH
13 wchK wciF wcrD 35B wciB wcrM wcrH
14 wchK wchL wchM wchN 35c wciB wcrI wcrK wcrH
15F wchK wchL wchM wchN 36 wchO wcjA wciF wcrH
15A wchK wchL wchM wchN 37 wciB wciC wciD wciE wciF
15B wchK wchL wchM wchN 38 wcyA wcyB wcyC wcyD wcyV
15c wchK wchL wchM wchN 39 wciB wciE wcrC wcrD wciF wcrG
16F wchF wciU wcxN 40 wchF wcwI wcwL wcwK wcxU
16A wchK wcyK wcxS wciB 41F wciB wcrP wcrQ wcrR wcrX
17F wchF wciP wcrV 41A wciB wcrP wcrQ wcrR wcrX
17A wciB wcrP wcrQ wcrR wcrV 42 wciB wcrI wcrK wcrH
18F wchF wciU wciV wciW 43 wciB wciE wcrC wcyM wcyN wcrH
18A wchF wciU wciV wciW 44 wciJ wcxB wcxD wcxE wcxF
18B wchF wciU wciV wciW 45 wciJ wcxB wciL wcxS
18c wchF wciU wciV wciW 46 wciJ wcxB wcxD wcxE wcxF
19F wchO wchQ 47F wciB wcrC wcrD
19A wchO wchQ 47A wciB wcrC wcyM wcyN whaM
19B wchO wchQ wchS 48 wchF wcyS

Abbreviations: cps, capsular polysaccharide synthesis; gT, glycosyltransferase.

gel  electrophoresis and purified with the QIAprep Spin Mini-

prep Kit (250) (Qiagen, Tokyo, Japan).

The PCR products were sequenced using dye terminator 

cycle sequencing with the CEQ8000 DNA Analysis System 

(Beckman Coulter, Fullerton, CA). The corresponding ampli-

fication primers or inner primers were used as sequencing 

primers.

DNA sequences were aligned and edited using Sequencher 

software (Gene Codes, Ann Arbor, MI).

Multiple-sequence alignments were performed with the 

Genetyx program (Genetyx, Tokyo, Japan).

Results
Phylogenetic analysis of the gT gene 
sequences
The assignment of gene functions predicted by the 

Sanger Institute found 352 putative GT genes (including 

pseudogenes) in the cps loci of 90 S. pneumoniae. Each 
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cps contained 1 to 6 GT genes (Table 2). A phylogenetic 

tree was constructed to explore the sequence diversity 

and relatedness of the GT genes in each cps locus. The 

nucleotide sequences from the Sanger Institute inserted 

into Clustal_X produced a phylogenetic tree showing that 

GT genes are highly variable and are therefore suitable 

targets for serotype/serogroup identification (Figure 1). 

A comparison of the sequences of neighboring GT genes 

showed that some were highly similar while others shared 

partial similarity. For example, according to the Sanger 

database, two serotypes in serogroup 6 (6A and 6B) have 

two GT genes, wciN and wciP. The phylogenetic tree and 

sequence alignment showed that while the wciN nucleotide 

sequences of the two serotypes were almost identical, they 

shared only partial similarity with wciN from serotype 33D 

(Figure 2A). Therefore, serogroup 6 and serotype 33D were 

distinguishable based on the nucleotide sequence of wciN. 

Another GT gene in serogroup 6, wciP, shared a minor 

similarity with wciP in serotype 17F, therefore, the nucle-

otide sequence of wciP could be used to separate serogroup 

6 and serotype 17F (Figure 2B). Further analysis of GT 

gene sequences revealed that 90 S.  pneumoniae serotypes 
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Figure 1 Phylogenetic tree generated from glycosyltransferase gene sequences in the capsular polysaccharide synthesis locus of 90 S. pneumoniae serotypes from the sanger 
Institute database. All nucleotide sites were used to construct the tree using the neighbor-joining method. The sequence names are given as SPC-serotype-Sanger Institute 
database gene number.
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Figure 2 Partial view of the glycosyltransferase (GT) phylogenetic tree. The sequence names are given as SPC-serotype-Sanger Institute database gene number. The GT gene 
name given by the sanger institute is shown in red.

were separated into 64 phylogenetic groups (Table 3). For 

example, strains belonging to serogroup 19 were divided 

into 4 groups (serotype 19F, 19A, 19B, and 19C) since these 

groups had different GT gene number and the sequences 

were  distinguishable. On the other hand, strains belonging 

to serogroup 6 (serotype 6A and 6B) had very similar GT 

genes, so that they were indistinguishable and put into 

same group.

Sequencing GT genes of clinical isolates 
and phylogenetic analysis
Because the Sanger Institute used a single strain for each sero-

type when sequencing the cps locus, we assessed sequence 

conservation among the GT gene of several representative 

strains of two serogroups. Six clinical isolates were selected 

from serogroup 6 and seven from serotype 19F by antiserum 

testing. The wciP of serogroup 6 and wchQ of serotype 19F 
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were sequenced. All of the wciP sequences from clinical 

samples were similar to those taken from the Sanger data-

base (Figure 3A). Likewise, the wchQ sequences perfectly 

matched the web data for serotype 19F (Figure 3B).

Discussion
Several molecular capsular-typing methods of S. pneumoniae 

have been developed based on serotype-specific sequences.17–26 

In this study, we focused on the GT genes due to their role 

in forming capsular polysaccharides. Each serotype contains 

various sets of GT genes in the cps locus. A phylogenetic 

tree based on nucleotide sequences was made to explore 

the sequence diversity and relatedness of the GT genes in 

each cps locus (Figure 1). The structure of the tree showed 

that 90 serotypes used for this study could be divided into 

64  phylogenetic groups on the basis of GT gene sequence, and 

that these sequences can be used to differentiate serotype. The 

management of pneumococcal disease has become more dif-

ficult because of the rapid increase of antimicrobial resistance. 

It is generally agreed that the use of an effective pneumococcal 

vaccine during infancy could significantly reduce the morbidity 

and mortality associated with pneumococcal infections among 

young children. A 7-valent anti-pneumococcal vaccine is 

already licensed in several countries and has shown promising 

results.27–30 Thus, clinical monitoring of the disease preven-

tive effects of the anti-pneumococcal vaccine, is increasingly 

important. In particular, surveillance of the emergence of new 

capsular types following vaccination aids the development of 

new vaccines. Our bioinformatic approach will help survey the 

emergence of new S. pneumoniae capsular types. Sequencing 

the GT genes of a clinical sample and placing that data into 

our phylogenetic tree will reveal if this sample has any of the 

known GT genes of a particular serogroup or serotype. If GT 

gene sequence differs from that of known GT genes, the sample 

could contain an emergent S. pneumoniae CPS.

The clinical samples that were classified as serogroup 

6 also grouped with the serogroup 6 in the Sanger Insti-

tute database. However, serological assays further divide 

serogroup 6 into serotype 6A, 6B, and 6C.31 The cps loci 

of serotypes 6A and 6B are almost identical, except for 

a single nucleotide polymorphism in wciP.32 Serotype 

6C appears to have originated from a single recombina-

tion event in which the 6A wciN gene was replaced by a 

different wciN gene of unknown origin.33 These results 

indicate that sequencing the GT genes of clinical isolates 

of S. pneumoniae and knowing the differences in these 

sequences by phylogenetic analysis will help to identify 

new capsular type of S. pneumoniae.
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Table 3 grouping of 90 serotypes into 64 groups using 
glycosyltransferase gene sequence polymorphisms

1 10c 18B/18c 16F/28F/28A 41F
2 11F 19F 31 41A
3 11A/11D 19A 32F/32A 42
4 11B/11c 19B 33F/33A/37 43
5 12F/12A/12B/44/46 19c 33B 45
6A/6B 13 20 33c 47F
7F/7A 14 21 33D 47A
7B/7c/40 15F/15A 22F/22A 34 48
8 15B/15c 23F/23A 35F
9A/9V 16A 23B 35A/35c
9L/9n 17F 24F/24A/24B 35B
10F 17A 25F/25A 36
10A 18F 27 38
10B 18A 29 39

D11_wciP

D14_wciP

D25_wciP

D13_wciP

SPC06B_wciP (Sanger data-base)

SPC06A_wciP (Sanger data-base)

D19_wciP

D12_wciP

SPC17F_wciP (Sanger data-base)

0.02A

Figure 3 Phylogenetic trees of glycosyltransferase gene sequences using web data 
and clinical isolates. A) Phylogenetic tree of wciP. B) Phylogenetic tree of wchQ.

SPC19B_wchQ (Sanger data-base)
SPC19C_wchQ (Sanger data-base)
SPC19A_wchQ (Sanger data-base)

D50_wchQ
D53_wchQ
D33_wchQ
D28_wchQ
D20_wchQ
D15_wchQ
SPC19F_wchQ (Sanger data-base)
D5_wchQ
SPC32F_wchQ (Sanger data-base)
SPC32A_wchQ (Sanger data-base)

0.02B
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