
O R I G I N A L  R E S E A R C H

Signature Panel of 11 Methylated mRNAs and 3 
Methylated lncRNAs for Prediction of 
Recurrence-Free Survival in Prostate Cancer 
Patients

Jiarong Cai 1,* 
Fei Yang 1,* 
Xuelian Chen1 

He Huang2 

Bin Miao3

1Department of Urology, the Third 
Affiliated Hospital of Sun Yat-Sen 
University, Guangzhou, Guangdong, 
510630, People’s Republic of China; 
2General Surgery Department, the Third 
Affiliated Hospital of Sun Yat-sen 
University, Guangzhou, Guangdong, 
510630, People’s Republic of China; 
3Department of Organ Transplantation, the 
Third Affiliated Hospital of Sun Yat-Sen 
University, Guangzhou, Guangdong, 
510630, People’s Republic of China  

*These authors contributed equally to this 
work  

Background: Radical prostatectomy is the main treatment for prostate cancer (PCa), 
a common cancer type among men. Recurrence frequently occurs in a proportion of patients. 
Therefore, there is a great need to early screen those patients to specifically schedule 
adjuvant therapy to improve the recurrence-free survival (RFS) rate. This study aims to 
develop a biomarker to predict RFS for patients with PCa based on the data of methylation, 
an important heritable contributor to carcinogenesis.
Methods: Methylation expression data of PCa patients were downloaded from The Cancer 
Genome Atlas (TCGA), Gene Expression Omnibus database (GSE26126), and the European 
Bioinformatics Institute (E-MTAB-6131). The stable co-methylation modules were identified 
by weighted gene co-expression network analysis. The genes in modules were overlapped 
with differentially methylated RNAs (DMRs) screened by MetaDE package in three datasets, 
which were used to screen the prognostic genes using least absolute shrinkage and selection 
operator analyses. The prognostic performance of the prognostic signature was assessed by 
survival curve analysis.
Results: Five co-methylation modules were considered preserved in three datasets. A total of 192 
genes in these 5 modules were overlapped with 985 DMRs, from which a signature panel of 11 
methylated messenger RNAs and 3 methylated long non-coding RNAs was identified. This 
signature panel could independently predict the 5-year RFS of PCa patients, with an area under 
the receiver operating characteristic curve (AUC) of 0.969 for the training TCGA dataset and 0.811 
for the testing E-MTAB-6131 dataset, both of which were higher than the predictive accuracy of 
Gleason score (AUC = 0.689). Also, the patients with the same Gleason score (6–7 or 8–10) could 
be further divided into the high-risk group and the low-risk group.
Conclusion: These results suggest that our prognostic model may be a promising biomarker 
for clinical prediction of RFS in PCa patients.
Keywords: prostate cancer, recurrence-free survival, methylation, prognostic signature

Introduction
Prostate cancer (PCa) is one of the most common cancers among men. It was 
estimated that there were 248,530 new cases and 34,130 deaths in the United States 
in 2021.1 Radical prostatectomy is considered as the first-line treatment option for 
PCa patients, but recurrence (biochemical, BCR; or clinical) frequently occurs in 
10–40% of patients after curative surgery,2–4 which leads to the cumulative 5-year 
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recurrence-free survival (RFS) rate of only about 65%.3,5 

Clinically, prostate-specific antigen (PSA) level,6 Gleason 
score,7 and tumor, node, metastasis (TNM) staging8 are 
widely used to predict tumor recurrence. Nevertheless, 
their prediction accuracy remains unsatisfactory (<70%).9 

Therefore, there is a great need to identify more effective 
biomarkers for early screening patients who will possess 
poor RFS and then specifically scheduling postoperative 
radiotherapy and chemotherapy for them to reduce the 
probability of recurrence.10

Recent accumulating evidence pinpoints that epige-
netic modifications are heritable contributors to the carci-
nogenesis of PCa;11,12 among them, DNA methylation is 
one of the most important epigenetic modifications of the 
genome,13 indicating methylated genes may represent 
potential biomarkers for the prediction of RFS in PCa 
patients. This hypothesis has been confirmed in some 
studies as following. Protocadherin (PCDH)-10 and 
PCDH17 methylation were detected in patients with PCa, 
but not in controls.14,15 The high methylation levels of 
PCDH10 and PCDH17 were significantly associated with 
poor BCR-free survival.14,15 A meta-analysis of seven 
studies showed that the 5-year BCR-free survival for 
patients with a high methylation status in the paired-like 
homeodomain transcription factor 2 (PITX2) gene was 
significantly lower than that for patients with a low methy-
lation status (71% vs 90%).16 Xu et al reported that 
patients with a lower methylation level of the long inter-
spersed nucleotide elements (LINE-1) gene [hazard ratios 
(HR) = 3.34, 95% confidence interval (CI) = 1.32–8.45] 
and a higher methylation level of DNA repeats D4Z4 gene 
[HR = 4.12, 95% CI = 1.32–12.86] exhibited markedly 
increased risks of BCR and significantly shorter BCR-free 
survival time.17 Stott-Miller et al found the presence of 
promoter hypermethylation of the homeobox D3 
(HOXD3) gene in patients with PCa recurrence compared 
with those without recurrence. The median time for RFS 
was shorter in the high methylation group than that in the 
HOXD3 low methylation group.18 Analysis of The Cancer 
Genome Atlas (TCGA) data demonstrated that the methy-
lation status in the gene of programmed death-1 receptor 
(PDCD1)19 or solute carrier organic anion transporter 
family member 4C1 (SLCO4C1)20 was an independent 
prognostic biomarker for poor RFS in patients with PCa. 
Combination with a 52-gene methylation signature was 
also indicated to improve the prediction power of standard 
clinical-pathological parameters for RFS [the area under 
the receiver operating characteristic (ROC) curve (AUC): 

0.78 vs 0.73].21 However, effective epigenetic biomarkers 
for RFS prediction remain lacking in PCa.

Our purpose in this study was to develop and validate 
a novel methylation signature panel to identify patients at 
a high risk of poor RFS using the TCGA dataset and data 
collected from Gene Expression Omnibus (GEO) or 
European Bioinformatics Institute (EMBL-EBI) databases. 
The superior prognostic performance of this signature 
panel to clinical parameters was evaluated comprehen-
sively, including AUC, concordance index (C-index), and 
stratification analyses. Compared with the study of 
Geybels et al,21 our methylation signature not only 
included protein-encoding messenger RNAs (mRNAs), 
but also long non-coding RNAs (lncRNAs). Previous stu-
dies suggested that the prognostic power of methylated 
lncRNAs-22 or lncRNA-mRNA-based23 prognostic signa-
ture was higher than that of mRNA alone. Accordingly, 
our signature may be more helpful for predicting prognosis 
and guiding the individualized treatment of PCa patients.

Materials and Methods
Data Collection and Preprocessing
Matched methylation (platform, Illumina Human 
Methylation 450), level 3 mRNA-seq (platform, Illumina 
HiSeq 2000 RNA Sequencing), and corresponding clinical 
data of PCa patients were obtained from the TCGA data-
base (https://portal.gdc.cancer.gov/) on October 25, 2019, 
in which 51 samples were normal controls and 495 were 
PCa (375 samples reported the recurrence status, including 
47 from patients with recurrence and 328 from patients 
without recurrence). Furthermore, methylation datasets of 
PCa were also downloaded from GEO (http://www.ncbi. 
nlm.nih.gov/geo/) or EMBL-EBI database (https://www. 
ebi.ac.uk). A total of 83 samples reporting the status of 
recurrence (recurrence, n = 17; non-recurrence, n = 68) 
were included in the GSE26126 dataset (platform, 
Illumina HumanMethylation27 BeadChip),24 which was 
used for the validation of modules; there were 108 samples 
(recurrence, n = 15; non-recurrence, n = 93) in the 
E-MTAB-6131 dataset (platform, Illumina Human 
Methylation 450), which was used for validations of both 
module and survival results.

The annotations of lncRNAs and mRNAs in each data-
set were performed using the HUGO Gene Nomenclature 
Committee (http://www.genenames.org/).25 RNAs with 
a median expression value of 0 were deleted. The 
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overlapped lncRNAs and mRNAs in all three datasets 
were used for the following analyses.

Identification of Co-Methylation Modules
Based on all shared methylated RNAs in TCGA (training), 
GSE26126 (testing), and E-MTAB-6131 (testing) datasets, 
co-methylation networks were constructed using the 
weighted gene co-expression network analysis 
(WGCNA) software (v1.61; https://cran.r-project.org/ 
web/packages/WGCNA/index.html).26 Briefly, the 
verboseScatterplot function was conducted to explore the 
correlations in the methylation level and the connectivity 
of all RNAs between any two datasets to confirm their 
comparability. Based on the criterion of scale-free topol-
ogy, the pickSoftThreshold function was used to select an 
appropriate soft-thresholding power (β) to construct the 
weighted adjacency matrix which was subsequently trans-
formed into a topological overlap matrix (TOM), 
a measure for the correlations between the methylation 
levels of two genes. The hierarchical clustering dendro-
gram was obtained based on the TOM-based dissimilarity. 
The DynamicTreeCut function27 was applied to identify 
modules with cutHeight = 0.995 and minSize = 100. The 
modulePreservation function28 was carried out to assess 
the preservation of identified modules between the training 
set and two testing sets, with Z-score >5 as the statistical 
threshold. In addition, moduleTraitCor and 
moduleTraitPvalue algorithms were chosen to calculate 
the correlation between module eigengenes and clinical 
traits in the TCGA dataset.

Identification of Differentially Methylated 
RNAs (DMRs) and Expressed RNAs 
(DERs)
The DMRs, including differentially methylated lncRNAs 
(DMLs) and differentially methylated genes (DMGs) 
between recurrence and non-recurrence PCa samples, 
were identified using the MetaDE.ES function in the 
MetaDE package (v1.0.5, https://cran.r-project.org/web/ 
packages/MetaDE/). Briefly, the heterogeneity was 
assessed across three datasets (TCGA, GSE26126, and 
E-MTAB-6131) using tau2 statistic and Chi-square-based 
Q-test. Genes with tau2 = 0 and Qpval >0.05 were con-
sidered to be homogeneous and used for the differential 
analysis. The gene expression difference was determined 
by the MetaDE.pvalue algorithm, with a false discovery 
rate (FDR) <0.05 selected as the significance threshold. 

The expression consistency of DMLs and DMGs in three 
datasets was detected by calculating the log2FC(fold 
change). The heatmap.sig.genes function in the MetaDE 
package was used to plot the heatmap of DMRs in three 
datasets.

The differentially expressed RNAs (DERs) between 
recurrence and non-recurrence PCa samples or between 
PCa and normal controls were identified using limma 
package in R (v3.34.7; https://bioconductor.org/packages/ 
release/bioc/html/limma.html).29 A p-value of <0.05 was 
considered as the statistical threshold.

Development and Validation of 
a Prognostic Scoring Model Based on 
DMRs
A Venn diagram (http://bioinformatics.psb.ugent.be/webt 
ools/Venn/) was constructed to screen the overlap 
between co-methylation module RNAs and DMRs. The 
shared genes were used for survival analysis. Based on 
the survival information of patients in the TCGA dataset, 
univariate Cox regression analysis in the “survival” 
package of R (v2.41–1; http://bioconductor.org/ 
packages/survivalr/) was used to evaluate the association 
between the methylation levels of DMRs and RFS. 
Significant DMRs with a log-rank p < 0.05 were selected 
for multivariate Cox regression analysis. The signature 
identified by multivariate analysis was further set as 
input for an L1 penalized (Least Absolute Selection 
and Shrinkage Operator, LASSO) Cox-proportional 
hazard model analysis (penalized package, v0.9–5; 
http://bioconductor.org/packages/penalized/)30,31 to 
obtain an optimal signature panel for prognosis predic-
tion. The prognostic risk scoring model was constructed 
based on the methylation levels of prognostic RNAs 
(MethyDMRs) and their LASSO coefficients (βDMRs):

Risk score = βDML1 × ExpDML1 … + βDMLn × ExpDMLn 

+ βDMG1 × ExpDMG1 + ….βDMGn × ExpDMGn

The risk score was calculated for each patient in the 
TCGA dataset. Patients were divided into a low-risk group 
(risk score below the median value) and a high-risk group 
(risk score above the median value). Kaplan–Meier survi-
val curve analysis and the Log rank test were used to 
estimate the RFS time of two risk groups. ROC analysis 
with calculation of AUC was used to evaluate the prog-
nostic ability of the risk scoring model. The prognostic 
robustness of the risk scoring system was validated in the 
testing set (E-MTAB-6131).
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Furthermore, univariate and multivariate Cox regres-
sion and stratification analyses were conducted to estimate 
the independent prognostic ability of the risk scoring 
model from clinical characteristics, with p < 0.05 as the 
statistical significance. The superior predictive efficiency 
of the risk score for RFS compared with other clinical 
characteristics was determined by time-dependent ROC 
curve and C-index analyses.

Function Enrichment Analyses of the 
Prognostic RNAs
To explore the function of prognostic mRNAs, public web 
servers gProfiler (http://biit.cs.ut.ee/gprofiler/gost)32 and 
The Database for Annotation, Visualization and 
Integrated Discovery (DAVID; v6.8; https://david.ncifcrf. 
gov) were searched. Data sources included Gene Ontology 
(GO) terms, Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Reactome, and Wiki pathways. A p-value <0.05 
was selected as the statistical threshold.

The functions of lncRNAs or some mRNAs were pre-
dicted according to their co-expressed mRNAs. The cor. 
test function (https://stat.ethz.ch/R-manual/R-devel/ 
library/stats/html/cor.test.html) in R was used to calculate 
the Pearson correlation coefficients (PCC) between prog-
nostic lncRNAs and stable module mRNAs or between 
module mRNAs using expression and methylation data, 
respectively. The co-expression pairs with the PCC > 0.4 
were used to construct the co-expression network which 
was visualized in the Cytoscape software (v3.6.1; www. 
cytoscape.org/).

Results
Identification of Co-Methylation Modules
A total of 9745 RNAs were found to be in interaction with 
three datasets (TCGA, GSE26126, and E-MTAB-6131). 
Thus, methylation levels of these RNAs were collected for 
the WGCNA analysis to mine PCa-associated co-methylation 
modules. The methylation levels of these RNAs were posi-
tively correlated between any two datasets (TCGA- 
GSE26126, cor = 0.84, p < 1e-200; TCGA-E-MTAB-6131, 
cor = 0.86, p < 1e-200; GSE26126-E-MTAB-6131, cor = 0.9, 
p < 1e-200), indicating a good comparability between these 
datasets. The soft-threshold power of β was selected as 8 to 
construct a scale-free network (scale-free R2 = 0.9, 
Figure 1A; mean connectivity = 1, Figure 1B). Genes in the 
TCGA dataset were clustered into 10 co-methylation modules 
represented by branches with different colors in the 

dendrogram (black, blue, brown, green, grey, magenta, pink, 
red, turquoise, and yellow) (Figure 1C; Table 1). These co- 
methylation modules were also formed in the analysis of 
GSE26126 (Figure 1D) and E-MTAB-6131 (Figure 1E) data-
sets using the same manner as the TCGA dataset. Among 
these 10 modules, the black, blue, brown, yellow, and tur-
quoise modules were considered to be preserved (Z-score >5; 
Table 1). These five preserved modules were also proved to 
be significantly associated with crucial clinical characteristics 
of PCa patients, such as recurrence (turquoise, blue: nega-
tively associated; black, brown, yellow: positively associated) 
(Figure 1F). These findings suggest that the genes (including 
39 lncRNAs and 2531 mRNAs) in these five modules may be 
PCa recurrence-associated.

Identification of DMRs in PCa Recurrence 
Samples
Using the metaDE method, 985 DMRs (including 888 DMGs 
and 7 DMLs) were identified in PCa recurrence samples 
compared with non-recurrence tissues, including 577 hypo-
methylated and 318 hypermethylated (Figure 2A). A total of 
192 DMRs (including 5 lncRNAs and 187 mRNAs) were 
shared with the genes in the five preserved modules 
(Figure 2B), consisting of 16 (all were mRNAs) in the 
black module, 30 (including two lncRNAs and 28 mRNAs) 
in the blue module, 25 (all were mRNAs) in the brown 
module, 101 (including three lncRNAs and 98 mRNAs) in 
the turquoise module and 20 (all were mRNAs) in the yellow 
module (Figure 2C). These findings indicate that these 192 
DMRs may represent epigenetic biomarkers for PCa recur-
rence and were used for the following survival analysis.

Identification of an Epigenetic Signature 
Panel and Development of a Risk Scoring 
Model for RFS Prediction in PCa Patients
Univariate Cox regression analysis identified the expres-
sions of 42 DMRs (including four DMLs and 38 DMGs) 
were significantly associated with RFS of PCa patients 
(log-rank p < 0.05). Multivariable Cox regression model 
demonstrated that fifteen of them (including four DMLs 
and 11 DMGs) were independent prognostic factors. 
LASSO modelling further filtered 14 DMRs as the optimal 
prognostic panel [DMLs: MEG3 (maternally expressed 3), 
DSCR9 (Down syndrome critical region 9), HCP5; 
DMGs: MMP7 (matrix metallopeptidase 7), SLCO3A1 
(solute carrier organic anion transporter family member 
3A1), KCNF1 (potassium voltage-gated channel modifier 
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Figure 1 WGCNA analysis. (A) soft-threshold power β selected when the R2 reached 0.9 for the first time; (B) the mean connectivity corresponding to different power β 
values; C-E, clustering dendrogram of co-methylation modules from TCGA (C), GSE26126 (D) and EMBL-EBI (E); (F) the correlations between modules and clinical traits.
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subfamily F member 1), RFXAP (regulatory factor 
X associated protein), NTRK3 (neurotrophic receptor tyr-
osine kinase 3), NAV1 (neuron navigator 1), HOXA13 
(homeobox A13), HAS2 (hyaluronan synthase 2), CBX2 
(chromobox 2), HIST1H2AJ (H2A clustered histone 14), 
SNX4 (sorting nexin 4)] (Table 2). Six prognostic genes 
(MEG3, MMP7, SLCO3A1, KCNF1, RFXAP, and 
NTRK3) had positive LASSO coefficient and HR > 1, 
suggesting patients with the high methylation levels of 
these genes may have poor RFS, while the other eight 
genes (DSCR9, HCP5, NAV1, HOXA13, HAS2, CBX2, 
HIST1H2AJ, and SNX4) had negative LASSO coefficient 
and HR < 1, implying the high methylation levels may 
play a protective role against recurrence and caused death 
(Table 2).

A risk scoring model was established based on the 
methylation levels of the above 14 genes and their corre-
sponding LASSO coefficients (Table 2). Using the median 
risk score in each dataset as the cut-off, patients were 
assigned to the low-risk group and the high-risk group. 
Obviously, more patients in the high-risk group developed 
recurrence (44/187 vs 3/188, p < 0.001). Kaplan–Meier 
curves showed that the high-risk group had a significantly 
shorter RFS rate compared with the low-risk group 
(TCGA: HR = 18.72, 95% CI = 5.800–60.43, p = 
3.521e-13, Figure 3A; E-MTAB-6131: HR = 3.455, 95% 
CI = 1.089–10.90, p = 2.417e-02, Figure 3B). ROC curve 
analysis showed that AUC of the training cohort was 
0.987, 0.947, and 0.969 in predicting 1-, 3- and 5-year 
RFS, respectively (Figure 3C); while it was 0.851, 0.789, 
and 0.811 for the testing dataset in predicting 1-, 3- and 
5-year RFS, respectively (Figure 3D). These findings 

indicate that our epigenetic signature panel had high accu-
racy in predicting RFS for patients with PCa.

To explore whether our epigenetic signature panel was 
independent of clinical pathological characteristics for 
RFS prediction, univariate and multivariate Cox regres-
sion analyses were performed. As a result, Pathologic_T, 
Radiation therapy, Targeted molecular therapy, Gleason 
score (Figure 4A), PSA, and the risk score status exhib-
ited significant associations with RFS in univariate Cox 
regression analysis, but only Gleason score and the risk 
score status remained significant in multivariate Cox 
regression analysis (Table 3), revealing these two vari-
ables were independent prognostic factors. To investigate 
whether the risk score was superior to Gleason score for 
RFS prediction, stratification, time-dependent ROC 
curve, and C-index analyses were then conducted. 
Stratification analysis showed that patients with the 
same Gleason score [(6–7) (Figure 4B) or (8–10) 
(Figure 4C)] could be further divided into the high-risk 
group and the low-risk group according to their risk 
score. Similarly, AUC (0.959 vs 0.689) and C-index 
(0.885 vs 0.723) of Gleason score were lower than those 
of the risk score (Figure 4D). These findings implied an 
improved prognostic power of our epigenetic signature 
panel. Thereby, our signature panel can be integrated with 
the Gleason score model to obtain better prognostic 
effects in clinic. This theory is verified in Figure 4D, in 
which AUC and C-index for the combined model were 
higher than those of Gleason score (AUC = 0.984 vs 
0.689; C-index = 0.898 vs 0.723) and risk score (AUC 
= 0.984 vs 0.959; C-index = 0.898 vs 0.885) alone, 
respectively.

Table 1 Co-Methylation Modules Identified by WGCNA

ID Color Module Size Number of mRNAs Number of lncRNAs Preservation Z-score

Module 1 Black 206 206 0 6.6439
Module 2 Blue 374 362 12 8.5168
Module 3 Brown 302 295 7 7.8463
Module 4 Green 234 234 0 0.6804
Module 5 Grey 1902 1868 34 2.9263

Module 6 Magenta 124 124 0 2.4207

Module 7 Pink 203 203 0 4.6150
Module 8 Red 233 224 9 4.2880

Module 9 Turquoise 1438 1427 11 20.7257
Module 10 Yellow 250 241 9 7.4672

Note: Bold indicated the preserved modules identified in three datasets. 
Abbreviations: WGCNA, weighted gene co-expression network analysis; mRNAs, messenger RNAs; lncRNAs, long non-coding RNAs.
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Function Analysis of Prognostic Genes
To obtain the possible functions of prognostic genes, 888 
DMGs were used as the input to search the gProfiler and 
DAVID databases. The results showed the prognostic genes 
were mainly involved in GO:0042127~regulation of cell 
population proliferation (NTRK3), GO:0006915~apoptotic 
process (NTRK3), GO:0022407~ regulation of cell–cell 
adhesion (HAS2) (Table S1), GO:0045893~positive 

regulation of transcription, DNA-templated (RFXAP), 
GO:0030335~positive regulation of cell migration 
(NTRK3, HAS2), GO:0043065~positive regulation of apop-
totic process (NTRK3), GO:0000122~negative regulation of 
transcription from RNA polymerase II promoter (CBX2), 
and hsa04310:Wnt signaling pathway (MMP7) (Table S2). 
All these biological processes were carcinogenesis-related, 
further confirming their importance for PCa.

Figure 2 Identification of differentially methylated genes. (A) Heat map of differentially methylated RNAs in three datasets; (B) Venn diagram to obtain the overlap between 
differentially methylated RNAs and module genes; (C) the module distribution of the overlapped genes.
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A total of 148 co-expression pairs were obtained 
between prognostic lncRNAs and module mRNAs accord-
ing to their mRNA expression (Figure 5), from which 
MEG3 was shown to co-express with RFXAP (cor = 
0.78); DSCR9 could co-express with CBX2 (cor = 0.61). 
Thus, the functions of lncRNAs MEG3 and DSCR9 may 
be associated with the functions of RFXAP and CBX2, 
respectively. Furthermore, the co-expression methylation 
relationships were calculated for genes in each module, 
from which HCP5 were found to interact with 
HIST1H2AJ (cor = 0.31); while HIST1H2AJ may interact 
with CBX2 (cor = 0.03). Thus, the functions of HCP5 and 
HIST1H2AJ may also be similar to CBX2.

Validation of the RNA Expression Levels 
of Prognostic Genes
A total of 115 DERs were identified between recurrence 
and non-recurrence PCa samples. Among them, prog-
nostic MEG3, NTRK3, NAV1, CBX2, and SNX4 were 
found to be DERs and their RNA expression levels were 
opposite to their methylation levels (Table 4). 
Furthermore, 169 DERs were obtained between PCa 
and normal controls, among which SLCO3A1, KCNF1, 
RFXAP, NTRK3 (downregulated), CBX2, HIST1H2AJ, 
and SNX4 (upregulated) were opposite to their methyla-
tion levels (Table 4). These findings revealed that 
mRNA expressions of these genes may be driven by 
their methylation levels.

Discussion
In the present study, we first mined PCa recurrence-related 
co-methylation modules using the WGCNA method and 
then used the intersection between module genes and 
recurrent-associated DMRs to construct the prognostic 
signature. Thus, the performance of our signature panel 
for RFS prediction may be better than that of the 52-gene 
methylation signature reported by Geybels et al21 which 
only used DMRs between patients with high (8–10) and 
low (≤6) Gleason scores. In line with this hypothesis, we 
developed a signature panel of 11 methylated mRNAs 
(MMP7, SLCO3A1, KCNF1, RFXAP, NTRK3, NAV1, 
HOXA13, HAS2, CBX2, HIST1H2AJ, SNX4) and 3 
methylated lncRNAs (MEG3, DSCR9, and HCP5). This 
signature was shown to independently predict the 5-year 
RFS of PCa patients, with AUC of 0.969 for the training 
TCGA dataset and AUC of 0.811 for the testing E-MTAB- 
6131, both of which were higher than the predictive accu-
racy of the combined model of 52-gene methylation sig-
nature and clinical features (AUC = 0.78) in the study of 
Geybels et al.21 Similar to the reports by Zeng et al,23 our 
lncRNA-mRNA-based methylation signature was demon-
strated to have a higher prognostic power than the 
lncRNA- (AUC = 0.959 vs 0.743; C-index = 0.885 vs 
0.723) and mRNA-based signature (AUC =0.959 vs 
0.93; C-index = 0.885 vs 0.864). The superiority of our 
methylation signature to clinical features for RFS predic-
tion was also evidence: TNM and PSA were even not 

Table 2 The Optimal Methylation Signature Panel for Prognosis Prediction

Symbol Type Module Methylation Level Univariate Cox Regression Analysis LASSO Coefficient

HR 95% CI P-value

MEG3 lncRNA Blue Downregulated 1.180 1.034–4.021 1.19E-02 0.2901

MMP7 mRNA Turquoise Upregulated 1.631 1.045–7.561 2.80E-03 0.4701
SLCO3A1 mRNA Turquoise Upregulated 5.852 1.018–7.363 4.80E-02 0.4693

KCNF1 mRNA Turquoise Upregulated 2.260 1.203–3.129 8.70E-03 0.3800

RFXAP mRNA Black Upregulated 1.693 1.034–4.108 7.10E-03 0.3384
NTRK3 mRNA Turquoise Upregulated 4.930 1.260–6.929 2.20E-02 0.2656

DSCR9 lncRNA Turquoise Upregulated 0.541 0.169–0.815 4.41E-02 −0.0112

HCP5 lncRNA Turquoise Downregulated 0.367 0.095–0.423 1.05E-02 −0.1128
NAV1 mRNA Turquoise Downregulated 0.117 0.0184–0.739 2.30E-02 −0.1493

HOXA13 mRNA Turquoise Downregulated 0.224 0.0509–0.987 4.80E-02 −0.2229

HAS2 mRNA Turquoise Downregulated 0.170 0.0308–0.938 4.20E-02 −0.5077
CBX2 mRNA Turquoise Downregulated 0.011 0.000507–0.216 3.10E-03 −0.6602

HIST1H2AJ mRNA Turquoise Downregulated 0.002 0.000844–0.503 2.70E-02 −1.0755

SNX4 mRNA Yellow Downregulated 0.755 0.138–0.941 2.30E-02 −2.3318

Abbreviations: HR, hazard ratio; CI, confidence interval; LASSO, least absolute shrinkage, and selection operator.
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identified to be associated with RFS in the multivariate 
analysis; patients with the same Gleason score (especially 
those with Gleason score lower than 8 who were usually 
considered to have a favorable prognosis in clinic33) could 

also be further divided into the high-risk group and the 
low-risk group. These results suggest that our prognostic 
model may be a promising biomarker for clinical predic-
tion of RFS in PCa patients.

Figure 3 The prediction performance of our 14-DMRs-based risk score system for recurrence-free survival. (A) Kaplan-Meier survival curve analysis of the TCGA dataset; 
(B) Kaplan-Meier survival curve analysis of the EMBL-EBI dataset; (C) receiver operator characteristic (ROC) curve analysis of the TCGA dataset; (D) receiver operator 
characteristic curve analysis of the EMBL-EBI dataset. 
Abbreviations: HR, hazard ratio; AUC, area under the ROC curve.
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Of these 14 prognostic mRNAs or lncRNAs, the 
methylation of 3 RNAs (MEG3, SLCO3A1, and 
NTRK3) was previously demonstrated to be associated 

with the prognosis of cancer patients: Zhang et al reported 
that hypermethylation of MEG3 in plasma was associated 
with worse RFS and overall survival (OS) in cervical 

Figure 4 The superiority of our 14-DMRs-based risk score system to clinical indicators. (A) Kaplan-Meier survival curve analysis to show the association of Gleason score 
with recurrence-free survival; (B) stratification analysis for Gleason score (6–7) using the risk score; (C) stratification analysis for Gleason score (8–10) using the risk score; 
(D) time-dependent ROC curve analysis constructed according to various models. 
Abbreviations: HR, hazard ratio; AUC, area under the receiver operator characteristic curve; C-index, concordance index.

Table 3 Univariate and Multivariate Cox Regression of Clinical Features and Risk Score

Variables TCGA (N=375) Univariate Analysis Multivariate Analysis

HR 95% CI P-value HR 95% CI P-value

Age (years, mean ± SD) 60.85 ± 6.84 1.023 0.979–1.068 3.02E-01 - - -

Pathologic_M (M0/M1/-) 354/2/19 6.115 0.893–16.35 8.49E-01 - - -

Pathologic_N (N0/N1/-) 273/54/48 1.691 0.853–3.353 1.51E-01 - - -
Pathologic_T (T2/T3/T4/-) 144/219/6/6 2.865 1.586–5.177 4.22E-04 0.976 0.457–2.085 9.51E-01

Radiation therapy (Yes/No/-) 50/317/8 2.189 1.080–4.438 4.40E-02 1.006 0.424–2.388 9.88E-01

Targeted molecular therapy (Yes/No/-) 324/42/9 2.522 1.276–4.986 5.85E-03 0.761 0.325–1.776 5.26E-01
Gleason score (6/7/8/9/10) 37/181/55/98/4 2.57 1.858–3.554 4.89E-10 2.196 1.451–3.322 1.99E-04
Prostate-specific antigen 1.51 ± 3.17 1.057 1.020–1.095 4.43E-04 1.016 0.978–1.055 4.16E-01

Risk score status (High/Low) 187/188 18.72 5.800–60.43 3.52E-13 12.67 3.845–41.82 3.02E-05

Note: Bold indicated the statistical results met the significance threshold of p-value < 0.05. 
Abbreviations: SD, standard deviation; M, metastasis; N, node; T, tumor; HR, hazard ratio; CI, confidence interval; TCGA, The Cancer Genome Atlas.
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cancer patients.34 Gao et al identified that hypermethyla-
tion of MEG3 promoter in retinoblastoma tissues was 
highly associated with poor survival of retinoblastoma 
patients.35 Li et al observed that the high methylation 
rate of MEG3 indicated poor prognosis of breast cancer 
patients (HR: 2.14).36 DNA hypermethylation in the 
SLCO3A1 promoter region was detected in a small subset 

of colorectal cancer patients and in HCT116 and Caco-2 
cell lines.37 Higher methylation level of SLCO3A1 (also 
known as OATP3A1) was associated with shorter post- 
treatment survival of patients with chronic lymphocytic 
leukaemia.38 Univariate Cox regression and Kaplan– 
Meier survival analyses showed that high methylation 
located in NTRK3 gene was significantly associated with 

Figure 5 The co-expression network between differentially methylated lncRNAs and mRNAs identified unstable modules. The color indicated the corresponding module.

Table 4 The RNA Expression Levels of Prognostic Genes

Symbol Type Recurrence vs Non-Recurrence Tumor vs Control

Log2FC P-value FDR Log2FC P-value FDR

MEG3 lncRNA 0.166016 0.0313 0.2537 −0.35998 1.04E-03 0.008423

MMP7 mRNA −0.00127 0.122 0.990023 0.007234 1.15E-01 0.931766
SLCO3A1 mRNA 0.07484 0.0618 0.500229 −0.84417 1.74E-16 1.41E-15

KCNF1 mRNA −0.09793 0.0817 0.661785 −1.66242 2.98E-06 2.41E-05

RFXAP mRNA 0.032439 0.0552 0.447327 −0.05774 6.40E-03 0.051835
NTRK3 mRNA −0.36891 0.00523 0.042399 −1.04021 1.15E-07 9.35E-07

DSCR9 lncRNA 0.372407 0.0162 0.131543 0.832172 3.69E-11 2.99E-10

HCP5 lncRNA 0.019159 0.0984 0.796839 −0.07392 4.06E-02 0.32906
NAV1 mRNA 0.247454 0.0029 0.02352 −0.13033 1.24E-02 0.100329

HOXA13 mRNA 0.007909 0.108 0.873183 −0.19936 3.49E-06 2.83E-05

HAS2 mRNA 0.140339 0.068 0.551047 −0.87177 1.51E-04 0.001222
CBX2 mRNA 0.613398 2.81E-05 0.000228 1.083018 1.36E-16 1.10E-15

HIST1H2AJ mRNA −0.06935 0.103 0.830599 1.24546 2.18E-03 0.017627

SNX4 mRNA 0.02881 0.0218 0.1768 0.088201 6.30E-04 0.005108

Notes: Bold indicate the genes with p-value < 0.05 and their mRNA expression trend was opposite to their methylation levels in table 2. 
Abbreviations: FC, fold change; FDR, false discovery rate.
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poor prognosis in patients with esophageal squamous cell 
carcinoma (HR = 1.79).39 In agreement with these studies, 
we also found that patients with a high methylation level 
of MEG3 (HR = 1.18), SLCO3A1 (HR = 5.852) and 
NTRK3 (HR = 4.930) were at a higher risk of having 
unfavorable RFS.

Usually, high CpG island methylation is associated 
with silencing of tumor suppressor genes, while low 
methylation results in elevated expression of proto- 
oncogenes, which ultimately influence the malignant char-
acteristics of tumor cells. This theory has also been vali-
dated for some prognostic genes in our risk scoring model: 
hypermethylation of MEG3 promoter was highly asso-
ciated with low MEG3 expression in retinoblastoma 
tissues.35 The use of DNA methyltransferase inhibitor 
5-aza-2-deoxycytidine (5-Aza-dC) significantly increased 
the expression level of MEG3 in retinoblastoma35 and 
esophageal cancer.40 Hypermethylated MEG3 significantly 
reduced cancer cell proliferation,35,41 invasiveness,40 and 
promoted apoptosis35 by depressing MEG3 expression and 
then activating the activity of the Wnt/β-catenin pathway. 
The force of 5-Aza-dC36 or pcDNA3.1-MEG336,42 slowed 
down cell viability and migration of breast cancer or PCa 
cells in vitro. The transcript of SLCO3A1 was also 
observed to be increased following treatment with 5-Aza- 
dC.38 NTRK3 methylation silenced NTRK3 expression 
which induced neoplastic transformation in vitro and 
tumor growth in vivo; reconstitution of NTRK3 induced 
apoptosis in colorectal cancers.43 DNA methylation profil-
ing analysis and validation experiments showed that NAV1 
was significantly hypomethylated in breast cancers;44 

while overexpression of members of the neuron navigator 
gene family was reported to promote invasion and predict 
poor prognosis.45,46 The breast tumours that overexpressed 
CBX2 had a clear reduction in DNA methylation.47 

Elevated CBX2 expression was correlated with poor clin-
ical outcome in breast cancer47 and PCa cohorts.48 

Depletion of CBX2 abrogated cell viability and induced 
caspase 3-mediated apoptosis in metastatic PCa cell 
lines.48 In line with these studies, we found a negative 
association between the methylation level and expression 
level of MEG3, NTRK3, NAV1, and CBX2 in PCa sam-
ples. High methylation of NAV1 and CBX2 was also 
identified to exert a protective role against recurrence in 
favor of RFS in PCa patients.

Although the expression of some genes was not 
directly implied to be methylation-related previously, 
their roles in cancer progression may indirectly explain 

the resultant functions of methylation: Bayesian network 
analysis of GEO microarray datasets found low expressed 
KCNF1 was a predictor of the risk for site-specific metas-
tasis of breast cancer.49 RFXAP expression was relatively 
lower in pancreatic adenocarcinoma tissues and pancreatic 
cancer-cell lines than that in normal pancreatic tissues or 
normal pancreatic ductal epithelial cell line. Its low 
expression level was positively correlated with high 
tumor stage and poor survival.50 RFXAP silencing was 
also proved to enhance cell viability of pancreatic adeno-
carcinoma cells.50 Histone family gene HIST1H2AJ was 
upregulated in gynecological tumors.51 Similar to these 
studies, we also identified that KCNF1 and RFXAP were 
downregulated, while HIST1H2AJ was upregulated in 
PCa samples compared with controls.

Our dry data analysis revealed that the mRNA expres-
sions of HCP5, HOXA13 and HAS2 were not significant in 
PCa samples. However, some wet experiments obtained sig-
nificant results. Hu et al found that HCP5 was highly 
expressed in PCa tissues.52 High expression of HCP5 was 
positively correlated with the metastasis status of PCa 
patients.52 Knockdown of HCP5 inhibited the proliferation, 
colony formation and induced apoptosis of PCa cells.52 Dong 
et al reported that HOXA13 expression was sharply 
increased in carcinoma tissues and independently associated 
with poor prognosis of PCa patients. Forced expression of 
HOXA13 promoted the proliferation, migration, and inva-
sion, whereas inhibited the apoptosis of PCa cells.53 HAS2 is 
a gene encoding the hyaluronan synthase, which is 
a structural component of extracellular matrices and thus 
plays important roles in cell proliferation and motility. 
Inhibition of HAS2 by antisense54 or 4--
Methylumbelliferone55 reduced the growth rate and sup-
pressed invasion and chemotactic motility of PCa cells. The 
high mRNA expression level was opposite to the low methy-
lation level identified in our study, indirectly indicating that 
these genes may also be methylation-driven in PCa.

Of the three prognostic lncRNAs, only the functional 
mechanisms of HCP5 and MEG3 were previously explored 
in PCa. Proto-oncogenic HCP5 was shown to act as 
a competing endogenous RNA (ceRNA) to sponge 
microRNA (miR)-4656 and then led to the upregulation of 
miR-4656 target gene cell migration inducing hyaluronidase 
1 (CEMIP),52 MEG3 functioned as a ceRNA to modulate 
miR-9-5p/Quaking protein 5 (QKI-5) axis56 or directly 
bound to EZH2.42 However, their functions remain unclear. 
In this study, we predicted HCP5 and MEG3 may, respec-
tively, be co-expressed with HIST1H2AJ and RFXAP, 
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which may represent novel mechanisms to explain the roles 
of HCP5 and MEG3 in PCa recurrence. Except the study by 
Yegnasubramanian et al that showed DSCR9 was hyper-
methylated in PCa compared to control cells,57 no scholars 
attempted to explore its function mechanism. In this study, 
we newly predicted that there was an interaction between 
DSCR9 and CBX2.

Some limitations should be acknowledged in this study. 
First, this is a study to develop and validate the predictive 
power of our methylation signature panel for RFS predic-
tion using three independent retrospective data down-
loaded from publicly available dataset. There was 
unavoidable bias in these three datasets (such as patient 
selection), which led to slight differences in the predictive 
results (ie AUCs in the training cohort were higher than 
those in the testing dataset; the separation between the 
high-risk and low-risk categories is better in the training 
set than in the testing set). In the future, several cohorts of 
patients in our hospital should be prospectively collected 
to reconfirm the methylation level of signature genes and 
their prediction ability for RFS (especially for patients 
with a subdivided Gleason score of 3+4, 4+3, 4+5, 5+4; 
or specific postoperative treatments; these were not avail-
able in the retrospective TCGA data). Second, the associa-
tions between methylation and mRNA expression of all 
our prognostic genes were only estimated by their expres-
sion trend and previous studies in other cancers. 
Methylation inhibitor 5-aza-dC should be used to treat 
PCa cells to directly verify whether the expression of 
these signature genes was methylation-mediated and their 
roles in the progression of PCa. Third, the co-expression 
relationship between HCP5/MEG3/DSCR9 and their co- 
expressed mRNAs should be investigated by immunopre-
cipitation or biotin-labeled RNA pull-down assays.

Conclusion
In summary, we identified and developed a novel 14- 
DMRs-based risk score system for predicting RFS in 
PCa patients. This risk scoring model could independently 
and accurately classify patients into high-risk and low-risk 
groups and its prognostic power was higher than the clin-
ical Gleason score. Thus, the signature panel may poten-
tially serve as a promising biomarker for guiding 
individualized treatment of PCa patients. Although methy-
lation of some genes was predicted to involve PCa recur-
rence by changing their mRNA expression levels, further 
in vitro and in vivo studies are needed to confirm our 
hypothesis.
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