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Aim: Metabolic reprogramming has recently attracted extensive attention for understanding 
cancer development. We aimed to demonstrate a genomic and transcriptomic landscape of 
metabolic reprogramming underlying liver cancer cell lines.
Methods: We investigated metabolic aberrant at both the transcriptome and genome levels 
using transcriptome and whole-exome sequencing data from 12 human liver cancer cell lines 
(hLCCLs) and one normal liver cell line.
Results: Three subgroups of hLCCLs characterized from transcriptome sequencing data 
exhibit significantly different aberrations in various metabolic processes, including amino 
acid, lipid, energy, and carbohydrate metabolism. Furthermore, whole-exome sequencing 
revealed distinct mutational signatures among different subgroups of hLCCLs and identified 
a total of 19 known driver genes implicated in metabolism.
Conclusion: Our findings highlighted differential metabolic mechanisms in the develop-
ment of liver cancer and provided a resource for further investigating its metabolic 
mechanisms.
Keywords: human liver cancer cell lines (hLCCLs), transcriptome, whole-exome, 
sequencing, tumor metabolism

Introduction
Cancer cells may have a high glucose consumption rate and favor glycolysis to 
produce lactate to promote cell proliferation, even when oxygen is available, as 
posited in the Warburg effect.1 Accumulating evidence has demonstrated that meta-
bolic reprogramming – the ability of metabolic altered cells – is one of the hallmarks 
of cancer. Multiple metabolic pathways (eg, energy production, biosynthetic precur-
sor synthesis, and maintenance of redox balance) determine the survival and growth 
of cancer cells. Reprogrammed metabolic activities promote tumorigenesis by pro-
moting cell proliferation and metastasis and are associated with therapy resistance.2 

Alterations in metabolite levels significantly affect cellular signaling, epigenetics, and 
gene expression through posttranslational modifications, such as acetylation, methy-
lation, and thiol oxidation.3 Understanding metabolic reprogramming provides impli-
cations for identifying new therapeutic avenues in cancer.

Liver cancer is one of the most malignant tumors with the fourth most common 
cancer-related mortality worldwide.4 Risk factors for liver cancer included virus 
infection (eg, hepatitis B or C virus), toxins (eg, alcohol abuse and aflatoxin 
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exposure), immune factors and metabolic aberrant (eg, 
nonalcoholic fatty liver disease and diabetes).5 Liver can-
cer has been described as one of the most transcriptionally 
altered malignancies6 and demonstrates recurrently dysre-
gulated metabolism.7 DeMatteis et al8 characterized the 
roles of metabolic aberrations in the development of liver 
cancer, including increased uptake of glucose and lactate 
production, alterations in anabolic or catabolic lipid path-
ways, aberrant amino acid and protein metabolism, imbal-
ance of oxidative metabolism, and metabolic 
reprogramming of the microenvironment. However, under-
standing tumor metabolism processes in vivo and identify-
ing metabolic vulnerabilities susceptible to therapeutic 
targets remains challenging.9

Human cancer-derived cell lines have been widely 
used to model cancer development and understand under-
lying molecular mechanisms. Several initiatives, including 
NCI-60,10 Cancer Cell Line Encyclopedia,11 and 
Genomics of Drug Sensitivity in Cancer,12 have provided 
an avenue for determining the molecular environments 
associated with susceptibility to cancers, discovering can-
cer biomarkers, and revealing mechanisms of drug action. 
The liver cancer model repository with 81 human liver 
cancer cell lines (hLCCLs), representing the heterogeneity 
of genomic and transcriptomics of liver cancers, has pro-
vided a precious resource facilitating drug discovery.13 

However, the genomic and transcriptomic characterization 
of hLCCLs has yet to be fully characterized.

Here, we performed transcriptome and whole-exome 
sequencing in 12 hLCCLs and one normal hepatic cell 
line. We aimed to characterize different aberrations in 
metabolic processes, identify metabolism-associated driver 
events, and delineate the evolutionary relationship of these 
hLCCLs.

Materials and Methods
Human Liver Cancer Cell Lines (hLCCLs) 
and Cell Culture
We collected 12 hLCCLs and a normal hepatic cell line 
(LO2) (Table 1), including PLC-PRF-5, SK-HEP-1, 
HCCC9810, Hep3B, and Li-7 (FuHeng Biology Co. 
Ltd., Shanghai, China), MHCC97-H, MHCC97-L, and 
HCCLM3 (Labsystech Co. Ltd., Shanghai, China), 
SMMC-7721 and BEL7404 (Biowing Applied 
Biotechnology Co., Ltd., Shanghai, China), and HepG2, 
HuH-7, and LO2 (the Cell Bank of the Chinese 
Academy of Sciences, Shanghai, China). Information 

on these cell lines was obtained from the American 
Type Culture Collection (https://www.atcc.org/) 
(Table 1). All cell lines were confirmed free of myco-
plasma (MycoAlert plus kit; Lonza, Basel, Switzerland), 
and cell authentication was performed by short tandem 
repeat profiling. These cell lines were maintained in 
Dulbecco’s Modified Eagle’s Medium (Hyclone, Logan 
UT), supplemented with 10% fetal bovine serum (Gibco, 
Rockville MD) and 5% CO2 at 37°C.

RNA-Seq
We assessed the quality of total RNA extracted from 13 
cell lines for concentration, RNA purity, and integrity 
(Bioanalyzer 2100, Agilent Technologies, CA). Strand- 
specific RNA-seq libraries were constructed using the 
NEBNext Ultra RNA Library Prep Kit (New England 
Biolabs Inc., Beverly MA), which was then assessed for 
the quantification and insert size. Sequencing was con-
ducted on an HiSeq-4000 sequencing platform (Illumina, 
San Diego, CA) at the Annoroad Gene Technology 
Corporation (Beijing, China). Each cell line was 
sequenced in triplicate. A total of 261 GB of data 
(approximately 6.7 GB per cell line) were generated.

RNA-Seq Data Analysis
Quantification of Transcripts
We used the pipeline used in our previous study to perform 
RNA-seq data analysis.14 Briefly, sequencing reads were 
aligned to the human reference genome (hg38), resulting 
in an average of 99.4% of raw reads that were uniquely 
mapped to the reference. After removing duplicates, we 
quantified the expressional level for all transcripts accord-
ing to gene annotations from Gencode (v22), using the 
“union” model in HTSeq.

Consensus Clustering and Principal Component 
Analysis (PCA)
The raw count for transcripts was normalized by the med-
ian implemented in DESeq2 package.15 We performed an 
unsupervised consensus clustering for all hLCCLs using 
the top 5000 genes with the highest variance of expression 
levels using the ‘ConsensusClusterPlus’ package in R. The 
cluster was further confirmed by PCA (the “prcomp” 
package in R). To identify molecular features characterized 
in these subgroups, we compiled a list of marker genes for 
hepatocyte, liver fetal/progenitor, stem cell, epithelial– 
mesenchymal transition (EMT)/metastasis, and 
proliferation.16
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Gene Set Enrichment and Variation Analysis (GSEA 
and GSVA)
We identified gene sets associated with metabolic pro-
cesses using an in-house adaptation of GSEA and 
MSigDB (v6)17 by utilizing the average of the expression 
levels in triplicate, which was normalized by DESeq2 
from 12 hLCCLs and the normal hepatic cell line. The 
metabolism-associated gene sets were classified according 
to the Reactome Pathway Database (false discovery rate < 
0.05; abs (normalized enrichment score [NES]) > 1.5).18 

We also verified these findings using the “GSVA” package 
in R, a non-parametric unsupervised method for assessing 
gene set enrichment.

Weighted Gene Co-Expression Network Analysis 
(WGCNA)
We performed a WGCNA to identify the metabolism- 
associated gene network. We selected genes with 
a weight > 0.15 and identified the top ten genes with the 
highest degree of connectivity using cytoHubba in 
Cytoscape.

Validation in TCGA LIHC Cohort
We validated our findings using transcriptome sequencing 
data from The Cancer Genome Atlas (TCGA) LIHC 

cohort (https://xenabrowser.net/) and International Cancer 
Genome Consortium (ICGC) (https://icgc.org/). 
Differentially expressed genes in the TCGA LIHC cohort 
were identified using the “limma” package in R (false 
discovery rate < 0.05). Univariate analysis for the survival 
with expression levels of metabolism-associated genes was 
analyzed using the “survival” package in R.

Whole-Exome Sequencing
The quality of DNA extracted from all cell lines was 
assessed, and sequencing libraries were prepared using 
the SureSelect Target Enrichment System (Agilent, Santa 
Clara, CA). We performed whole-exome sequencing on 
Illumina HiSeq-4000 sequencing platform and generated 
30 GB of data (approximately 2.5 GB per cell line) with 
150 base paired-end sequences.

Whole-Exome Sequencing Data Analysis
Identification of Somatic Mutations
The somatic mutation calling pipeline was described in 
detail in our previous study.18 Briefly, sequencing reads 
were aligned to the human reference genome (hg38). 
According to the GATK best practice, we removed dupli-
cates, performed realignment around indels, and 

Table 1 A List of Human Hepatoma Cell Lines

Cell Line Gender Ethnicity Age Known Cancer Etiology or Other Characteristics

SK-HEP-1 M Caucasian 52 Identified as endothelial origin, with chromosome counts in the hypotriploid range

BEL7404 M NA 69 It was a rapidly growing and not well differentiated epithelial-like malignant cells

SMMC- 

7721

NA Asian NA NA

Li-7 M Asian 45 Established from nude mice transplanted in vitro

Hep3B M African 8 Contained a 2.3kb integrated hepatitis B virus genome fragment

MHCC97-L M Asian 39 It was growing slowly and showed lowly pulmonary metastatic rate compared with MHCC97-H

MHCC97- 

H

M Asian 39 High metastatic potential with smaller cell size and faster in vitro and in vivo growth rate compared 

with MHCC97-L

HCCLM3 M Asian 39 The progeny of MHCC97-H, consisting of polygonal epithelial cells with hypotriploid karyotype

HuH-7 M Japanese 57 A well-differentiated hepatocellular carcinoma

HCCC9810 F Asian NA NA

PLC/PRF/5 M African 24 Malignant liver cancer with HBsAg positive

LO2 NA NA NA A normal hepatic cell line

HepG2 M European 15 A well-differentiated hepatocellular carcinoma

Abbreviations: M, Male; F, Female
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recalibrated base quality. On average, approximately 
99.7% of these sequencing reads were mapped to the 
reference. We called somatic mutations for each hLCCL 
using a single tumor mode implemented in Mutect2, where 
only a single tumor sample was available without 
a matched normal. We filtered the raw somatic SNVs 
and small indels using “FilterMutectCalls,” which distin-
guished somatic mutations from all errors during sample 
preparation or alignment. We excluded potential germline 
mutations annotated in the Genome Aggregation Database 
(gnomAD; http://gnomad.broadinstitute.org/) and anno-
tated somatic mutations using the variant effect predic-
tor (VEP).

Mutational Signature Analysis
We analyzed the somatic mutational signatures to determine 
their relative contributions according to the known single 
base substitution (SBS) signatures. First, mutation signatures 
were calculated based on the 96-trinucleotide mutation 
count matrix. Then, we characterized the mutational patterns 
of SBS catalogs using the ‘MutationalPatterns’ package in 
R. The sigProfiler (ie, the reference SBS signatures) was 
available from the Catalogue of Somatic Mutations in 
Cancer (COSMIC) database.19

Statistical Burden Test
We hypothesized that different subgroups of hLCCLs 
might have different burdens for somatic mutations with 
high or moderate effects (ie, annotated using VEP) in 
metabolism-associated genes. We counted these mutations 
and performed Fisher test to determine if there was 
a greater burden of qualifying variants in any one of the 
subgroups as compared to the remaining two subgroups.

Phylogenetic Analysis
We used “treeomics” – a computational tool to reconstruct 
the phylogeny – to investigate the evolutionary relation-
ships of 12 hLCCLs. Nonsilent mutations were used in the 
Bayesian inference with a sequencing error rate of 0.01, 
targeted false-discovery rate was 0.05, and the driver 
genes list from a previous study.20

Results
RNA-Seq Characterized Three 
Subgroups of hLCCLs
Of the top 5000 genes with the highest variance in 12 
hLCCLs and one normal hepatic cell line (LO2) 
(Figure 1A), an unsupervised consensus clustering 

classified these cell lines into three differentiated sub-
groups (CL1-3) (Figure 1B), confirmed further by PCA 
(Figure 1C). CL1 included BEL7404, HCCLM3, SMMC- 
7721, and LO2, showing a mesenchymal-like signature 
accompanied by more invasive and proliferative beha-
viors; CL2 included HCCC9810, Li-7, MHCC97-H, 
MHCC97-L, and SK-HEP-1, demonstrating a mixed 
“epithelial-mesenchymal” signature; and CL3 contained 
Hep3B, HepG2, HuH-7, and PLC-PRF-5, exhibiting 
epithelial feature and hepatoblast-like appearance 
(Figure 1A and Figure S1). Of note, HCCC9810 and PLC- 
PRF-5 with cellular origins of intrahepatic cholangiocarci-
noma and the hepatoma Alexander cell were clustered into 
CL2 and CL3, respectively; as well as HCCLM3 and 
MHCCL97-H with significant metastatic potential were 
clustered into CL1 and CL2, respectively.

Varied Metabolic Processes Underlying 
Three Subgroups of hLCCLs
We then investigated whether the expression levels of 
metabolic gene sets differed significantly among these 
subgroups. GSEA demonstrated that 42 metabolism- 
associated gene sets defined in prior differed significantly 
(false discovery rate, FDR < 0.05). These sets included 
“cofactors and vitamins,” “energy,” “lipid,” “carbohy-
drate,” and “amino acid” (Figure 2). Overall, most of 
these gene sets showed negative normalized enrichment 
scores (NES) in CL1 and CL2 but positive in CL3, sug-
gesting that different subgroups may have undergone var-
ious metabolic aberrations (ie, either promotion or 
inhibition) in liver cancer development.

The subgroups of CL1 and CL2 showed the majority of 
down-regulated gene sets, eg, cofactors and vitamins, energy 
metabolism (CL1), and lipid metabolism (CL1 and CL2). 
The enrichment of up-regulated genes associated with gly-
colysis in CL1 was consistent with the Warburg effect. The 
aberration of lipid metabolism is essential for carcinogenesis 
that cholesterol biosynthesis maintains cancer cell survival 
and proliferation.21 The subgroup of CL3 exhibited the most 
up-regulated gene sets, such as cofactors and vitamins, lipid, 
and amino acid metabolism, but carbohydrate metabolism 
was down-regulated partly due to a reduced fructose meta-
bolism. Alanine aspartate and glutamate metabolisms were 
uniquely enriched in CL3, where glutamine is involved in 
various biosynthetic steps that make tumor cells proliferate.7 

Gene set variation analysis (GSVA) showed that most of the 
varied metabolism-associated gene sets were consistent with 
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those identified by GSEA (Figure 2). Similarly, most meta-
bolism-associated gene sets were up-regulated in CL3 but 
reversed in CL1 and CL2.

Metabolism-Associated Hub Genes 
Associated with Clinical Outcomes
Hub genes are correlated with genes in a given functional 
module, playing a vital role in biological processes. Using 
WGCNA, together with metabolic genes from the 
Reactome Pathway Database,22 we identified the top ten 
hub genes with the highest degree of connectivity 
(Figure 3A and Table 2). These genes included three 
apolipoproteins (APOA1, APOA2, and APOB), two asialo-
glycoprotein receptors (ASGR1 and ASGR2), one kinase in 
the rate-limiting step of glycolysis (PKLR), one amnion 
associated with transmembrane protein (AMN), and three 
genes related to coagulation (F7, FGG, and CPB2). The 
vast majority of these genes (except APOA2) were 

significantly down-regulated in the TCGA LIHC cohort 
(n=438) (Figure 3B). Three down-regulated genes (F7, 
CPB2, and APOA1) were significantly associated with 
poor survival (adjusted p < 0.05) (Figure 3C). However, 
none of these genes were associated with poor survival in 
the ICGC LIHC cohort.

The liver is the main organ for the synthesis, storage, 
transportation, and degradation of apolipoproteins. 
APOA1 and APOA2 are the major apolipoproteins of 
the high-density lipoproteins (HDL) and are associated 
with serum HDL-cholesterol levels. LIHC patients have 
significantly reduced serum levels of APOA1, and 
APOA2.23 APOB is a vital glycoprotein that transports 
very low-density lipoprotein (VLDL) and low-density 
lipoprotein (LDL) in the liver, which consumes a large 
amount of cellular energy by promoting VLDL secre-
tion. Inactivating mutations in APOB may promote 
energy transfer to cancer-related metabolic pathways.24 

A

B C

Figure 1 The classification of 12 hLCCLs and one normal hepatic cell line using transcriptome sequencing. (A) A heatmap for the top 5000 genes with the highest 
expression variance in all cell lines. Three subgroups (CL1, CL2, and CL3) were characterized by decreased mesenchymal and pluripotency/proliferation features as well as 
an increased epithelial feature; (B) The consensus clustering of mRNA expression profiles for the optimal number of clusters at k=3; and (C) Principal component analysis 
(PCA) confirmed the three subgroups.
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Asialoglycoprotein receptors (ASGRs) in the liver par-
enchymal cells participate in the serum protein metabo-
lism. In liver cancer, the decreased number of ASGRs 
has been considered as an index to evaluate liver 
function.25 Inhibition of ASGR1 expression promoted 
the migration and invasion of liver cancer cells in vivo 
and in vitro, and a lower ASGR1 expression was asso-
ciated with a higher TNM stage and poor prognosis in 
liver cancer patients.26 Liver diseases are invariably 
associated with coagulation disorders. The dysregulation 
of FGG – one of the three fibrinogen chains – has been 
identified in many malignant tumors. FGG plays an 
essential role in enhancing cancer motility and aggres-
siveness cells via EMT.27 CPB2 is known as 
a thrombin-activatable fibrinolysis inhibitor, and its inhi-
bition is related to liver fibrosis.28 F7 – the initiator of 
the extrinsic coagulation pathway – was reported to be 
associated with cancer and liver diseases, which 
reflected the metabolic, detoxification, and synthetic 
capacities of the liver.29 The protein encoded by AMN 
is a type I transmembrane protein, and the protein com-
plex formed by AMN and CUBN (cubilin) is required for 
efficient absorption of vitamin B1.30 However, no 

evidence has reported the association of AMN with 
liver cancer. PKLR is a driver gene on the cancer devel-
opment, playing a pivotal role in glycolysis by convert-
ing phosphoenolpyruvate to pyruvate.31 PKLR is also 
related to biological functions in lipid metabolism (eg, 
steroid biosynthesis, PPAR signaling pathway, fatty acid 
synthesis, and oxidation) and cell proliferation (eg, 
DNA replication, cell cycle, and p53 signaling), where 
the modulation of PKLR may affect the total fat content 
and cell viability.32

The Prevalence and Mutational Signatures 
of Nonsilent Somatic Mutations in 
hLCCLs
The prevalence of somatic mutations ranged from 356 to 
1393 (5.48 to 21.43 per MB) across 12 hLCCLs 
(Figure 4A), consistent with a prevalence of 251 to 
3203 in 13 primary hLCCLs.33 Nonnegative matrix fac-
torization (NMF) identified three dominant mutation 
signatures (Figure 4B), including signature 
A (characterized by T>C substitution), signature 
B (T>A), and signature C (C>A). Different subgroups 

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

Peptide hormone metabolism
Selenoamino acid metabolism

Arginine and proline metabolism
Glyoxylate metabolism and glycine degradation

Metabolism of amino acids and derivatives
Sialic acid metabolism

Alanine aspartate and glutamate metabolism
Cysteine and methionine metabolism

Sulfur amino acid metabolism
Ascorbate and aldarate metabolism

Glycolysis
Asparagine n linked glycosylation

O glycan biosynthesis
Fructose and mannose metabolism

Glycosaminoglycan biosynthesis chondroitin sulfate
Drug metabolism cytochrome p450

Metabolism of xenobiotics by cytochrome p450
Biological oxidations

Glucuronidation
Nitrogen metabolism

Integration of energy metabolism
Sphingolipid metabolism

Steroid hormone biosynthesis
Bile acid and bile salt metabolism

Recycling of bile acids and salts
Synthesis of bile acids and bile salts via 27 hydroxycholesterol

Synthesis of bile acids and bile salts via 7alpha hydroxycholesterol
Steroid biosynthesis

Cholesterol biosynthesis
Biosynthesis of unsaturated fatty acids

Linoleic acid metabolism
Primary bile acid biosynthesis

Fatty acid metabolism
Fatty acyl coa biosynthesis

Metabolism of steroids
Peroxisomal lipid metabolism

Regulation of cholesterol biosynthesis by srebp srebf
Retinol metabolism

Metabolism of vitamins and cofactors
Metabolism of water soluble vitamins and cofactors

Vitamin b5 pantothenate metabolism
Metabolism of fat soluble vitamins

Amino acid metabolism
Carbohydrate metabolism
Energy metabolism
Lipid metabolism
Metabolism of cofactors and vitamins

Figure 2 Aberrant metabolic pathways in three subgroups of hLCCLs. GSEA showed the metabolic gene sets enriched in each subgroup (FDR < 0.05), further verified using 
GSVA. 
Abbreviations: GSEA, gene set enrichment analysis; GSVA, gene set variation analysis.
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of hLCCLs demonstrated significantly different signa-
tures, eg, signature B was more associated with CL1, 
whereas signature A frequently contributed to CL2 and 
CL3. Of note, signature C occurred explicitly in the 
PLC-PRF-5 cell line (Figure 4C). Single base substitu-
tion (SBS) signatures from COSMIC (Figure 4D) 
showed that several signatures were related to exogen-
ous environment exposures, including SBS7a-d and 
SBS38, caused by ultraviolet light in all hLCCLs; 
SBS4 and SBS29, caused by tobacco smoking in 
HCCC9810, SMMC-7721, and PLC-PRF-5; and 
SBS24, caused by aflatoxin exposure in PLC-PRF-5. 
The majority of hLCCLs demonstrated SBSs of endo-
genous origin, including SBS3, because of defective 
homologous recombination-based double-strand break 
DNA repair due to BRCA1 or BRCA2 inactivation34 in 
eight hLCCLs (excluding BEL7404, SK-HEP-1, Hep3B, 
and PLC-PRF-5); SBS13, caused by APOBEC cytidine 
deaminase DNA-editing activity34 (excluding SK-HEP 
-1, Hep3B, and PLC-PRF-5); SBS30, due to deficiency 

in base excision repair due to inactivating mutations in 
NTHL1 in most of the cell lines except SMMC-7721, 
SK-HEP-1, HuH-7, and PLC-PRF-5, as well as SBS18, 
due to reactive oxygen species, in SMMC-7721, Li-7, 
Hep3B, and HuH-7. We also noted that several SBSs 
with an unknown origin were dominant, eg, a ubiquitous 
SBS39 in all hLCCLs, SBS40 in 11 hLCCLs, and SBS5 
in three hLCCLs, indicating that there may remain 
uncharacterized mutational etiologies underlying 
hepatocarcinogenesis.

PCA enabled the classification of these hLCCLs 
according to SBS signatures (Figure 4E). Overall, 
CL2 and CL3 were more similar compared with CL1. 
The PLC-PRF-5 – a hepatoma Alexander cell line 
producing hepatitis B antigen – indicated a different 
etiology.

We did not note that the burden of somatic muta-
tions in metabolic genes with high or moderate effects 
differed significantly in any subgroup compared to the 
remaining two subgroups under the dominant model.

C

A B

Figure 3 Metabolic hub genes identified from hLCCLs. (A) The constructed network based on metabolic genes and the top 10 hub genes was highlighted (https://gephi.org/); 
(B) difference of the expression levels of the ten hub genes in the TCGA LIHC cohort (n=373) and non-cancerous samples (n=50); and (C) An overall survival analysis for 
TCGA cohort. *, Adjusted p < 0.05; ***, Adjusted p < 0.001. 
Abbreviation: NS, not significant.
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Mutations in Driver Genes and Metabolic 
Genes Underlying Different Subgroups
We identified nonsilent somatic mutations in 60 out of 
330 driver genes characterized in the PanCancer study 
(Figure 5A).20 The three most significantly mutated 
genes were TP53, NOTCH1, and KMT2C. Of driver 
genes implicated in LIHC,33 mutations in TP53 were 
present in three hLCCLs (MHCC97-H, MHCC97-L, 
and PLC-PRF-5) but not in Li-7, HuH-7, and Hep3B, 
which was characterized previously.16 The vast majority 
of hLCCLs harbored mutations in multiple genes (eg, 
APOB, EYS, AXIN1, ARID1A, ARID2, TSC2, and 
TERT), highlighting that different drivers may underlie 
liver cancer development. The PLC-PRF-5 presented the 
most significant number of nonsilent mutations in driver 
genes.

Of the 19 metabolism-associated driver genes, we 
noted nonsilent somatic mutations in IDH1 and IDH2 
in HCCC9810 and SMMC-7721, respectively. 
Oncometabolite of D-2-hydroxyglutarate – a reduced 
form of the TCA cycle intermediate a-ketoglutarate – 

was generated by these two enzymes in several 
cancers.35 In PLC-PRF-5, nonsilent mutations in 
STK11 – encoding a member of the serine/threonine 
kinase family – may regulate cell polarity. The down- 
regulated APOB, as noted previously, harbored nonsilent 
mutations in HCCLM3. AXIN1 – mutated in CL3 – was 
a critical downstream target for WNT signaling.

Nonsilent mutations were identified in 71 metabolic 
genes in at least two hLCCLs (Figure S2), including 
the four most significantly mutated genes of ISCU, 
SSPO, MUC12, and TP53. A nonsense mutation in 
ISCU was identified in all hLCCLs, which plays 
a role in the de novo synthesis of iron-sulfur clusters 
within mitochondria.36 A frameshift indel in SSPO, 
which is involved in neuronal aggregation 
modulation,37 was identified in nine hLCCLs, MUC12 
harbored a nonsense mutation in eight hLCCLs, 
involved in epithelial cell protection, adhesion modula-
tion, and signaling.38 Nonsilent mutations in 
ADAMTS16, ASB11, and MPDU1 were uniquely iden-
tified in CL1.

Table 2 Information for Metabolic-Related Hub Genes

Symbol Classification Gene Function

APOA1 Apolipoprotein Participates in the reverse transport of cholesterol from tissues to the liver for excretion by promoting 
cholesterol efflux from tissues and by acting as a cofactor for the lecithin cholesterol acyltransferase

APOA2 Apolipoprotein May stabilize high-density lipoprotein (HDL) structure by its association with lipids and affect the HDL 
metabolism

APOB Apolipoprotein The main apolipoprotein of chylomicrons and low-density lipoproteins (LDL), and is the ligand for the LDL 
receptor

ASGR1 Asialoglycoprotein 

receptor

Mediates the endocytosis of plasma glycoproteins to which the terminal sialic acid residue on their complex 

carbohydrate moieties has been removed.

ASGR2 Asialoglycoprotein 

receptor

Homologous subunits of ASGR1, mediates the endocytosis of plasma glycoproteins

PKLR Rate-limiting enzyme of 

glycolysis

Encodes pyruvate kinase that catalyzes the transphosphorylation of phosphoenolpyruvate into pyruvate and 

ATP, which is the rate-limiting step of glycolysis

F7 Coagulation Initiates the extrinsic pathway of blood coagulation, encode coagulation factor VII which is a vitamin 

K-dependent factor essential for hemostasis

FGG Coagulation Together with fibrinogen alpha (FGA) and fibrinogen beta (FGB), polymerizes to form an insoluble fibrin 

matrix

CPB2 Coagulation Cleaves C-terminal arginine or lysine residues from biologically active peptides such as kinins or 

anaphylatoxins in the circulation thereby regulating their activities

AMN Amnion Modulates bone morphogenetic protein (BMP) receptor function by serving as an accessory or coreceptor, 

and thus facilitates or hinders BMP binding
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Phylogenetic Analysis
The phylogenetic analysis allowed us to reconstruct the 
evolutionary relationship of these hLCCLs (Figure 5B). 
Three distinct clades were identified, one clade consisting 
of HCCLM3, SMMC-7721, and BEL7404, consistent with 
CL1 characterized using RNA-seq data; the clade of 
MHCC97-H, MHCC97-L, SK-HEP-1, Li-7, and HepG2, 
similar with CL2; and the clade of HCCC9810, HuH-7, 
Hep3B, and PLC-PRF-5 were more consistent with CL3. 
It should be noted that HCCC9810 was classified in CL2 

and HepG2 in CL3 in transcriptome-based analysis. Our 
results suggested that evolutionary relationships among 
these hLCCLs were mainly associated with the groups 
characterized by transcriptome sequencing data.

Discussion
We characterized the metabolic aberrations for 12 hLCCLs 
at the genomic and transcriptomic levels in the present 
study. The 12 hLCCLs were classified into three sub-
groups according to metabolic features. Our results 

Figure 4 The mutational prevalence and signatures in 12 hLCCLs. (A) The prevalence of somatic mutations in 12 LCCLs; (B) the mutational signatures in the hLCCLs 
genome were shown according to the frequencies of 96 substitution types; (C) contribution of the three mutational signatures; (D) the single base substitution (SBS) 
signatures in 12 hLCCLs; and (E) PCA for the mutational signatures.
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provide implications for the classifications of LIHC in the 
context of metabolic aberrations.

An elegant review has summarized the alterations of 
glucose, nucleotide, urea cycle, amino acid, and lipid 
metabolism in liver cancer.7 We classified 12 hLCCLs 
based on their expressional profiles (Figure 1) and 
further investigated their differences in metabolic char-
acterization (Figure 2). Metabolic heterogeneity in dis-
tinct subgroups was evident, for example, subgroup CL3 
with a hepatoblast-like appearance demonstrated signifi-
cantly aberrant metabolic pathways. Increased glucose 
uptake and enhanced glycolysis rate represent the 
growth advantages of tumor cells in many cancers, as 

shown in CL1 with a mesenchymal-like signature that 
exhibited enhanced glycolysis, but opposite in CL3 with 
hepatoblast-like features. Another example is PKLR – 
encoding rate-limiting enzyme, pyruvate kinase, which 
plays key roles in several critical biological pathways, 
such as glycolysis and lipid metabolism.39 The repro-
gramming lipid metabolism plays a vital role in energy 
consumption, macromolecules for membrane synthesis, 
and lipid-mediated signaling during cancer 
progression.21 Glutamine metabolism that was up- 
regulated in CL3 and down-regulated in CL1 has been 
widely demonstrated in cancer proliferation and 
invasion.40
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We prioritized ten metabolic-associated hub genes 
(Figure 3), which have been shown to play significant 
roles in liver cancer. APOB is a key mediator of hepato-
cyte function in the secretion of VLDL and blood factors 
albumin, these functions require a large number of liver 
cell transcription, translation, and energy resources. Thus, 
malignant hepatocytes may inhibit this process by enhan-
cing cell division,41 and mutated APOB would transfer 
energy to cancer-related metabolic pathways.24 APOA1 
down-regulated in TCGA LIHC cohort may suggest its 
potential roles in LIHC. ASGR1 was associated with 
a poor prognosis in liver cancer patients;26 F7 reflected 
the metabolic capacities of the liver29 and CPB2 was 
associated with liver fibrosis. AMN was not reported to 
be associated with liver cancer, and further research is 
needed to investigate its roles in liver cancer. Three hub 
genes (F7, APOA1, and CPB2) were significantly asso-
ciated with poor survival, which may be taken as potential 
metabolic-associated biomarkers for liver cancer.

We characterized three mutational signatures underly-
ing these hLCCLs (Figure 4). One signature 
C (characterized C>A mutations) was predominant in 
CL3, whereas signature A was predominant in CL2 and 
signature B in CL1. These correlations may highlight the 
mutation diversity among subgroups, which significantly 
affect the composition and behavior of the tumor genome. 
Mutational signatures can provide substantial resources for 
exploring the mutational process during cancer develop-
ment. For example, the unknown origins of SBS39 and 
SBS40 were evident but not characterized previously in 
liver cancer.42 The mutational signature associated with 
uncharacterized mutational etiologies may have implica-
tions for our understanding of the mutation process in liver 
cancer.

Metabolism-associated genes drove liver cancer devel-
opment (Figure 5A). Satriano et al7 reported that genomic 
alterations such as mutations in TP53 (31% of patients), 
APOB (10%), and MYC (15%), as well as amplification in 
ALB (13%), could alter glycolysis, which further altered 
pentose phosphate pathway, lipid, and serine metabolism 
in liver cancer. Our study confirmed that nonsilent muta-
tions in TP53 (25%) and APOB (8%) contributed to glu-
cose and glutamine metabolism changes. AXIN1 – a key 
factor for Wnt signaling – is likely to function as a tumor 
suppressor, and its mutation (8%) was involved in 
hepatocarcinogenesis.43 Mutations in TSC2 could nega-
tively regulate mTORC1 signaling,44 contributing to car-
cinogenesis and metastasis,45 as noted that mutations in 

TSC2 (8%) occurred in CL3. We showed an increased 
mutational prevalence in NOTCH1 (25%) and KMT2C 
(17%). NOTCH1 was reported to induce pathways 
involved in proliferation, cell apoptosis and invasiveness 
of liver cancer.46 In mice, the expression of NOTCH1 was 
regulated by ABL1, and the loss or inhibition of ABL1 (eg, 
mutated) reduced the proliferation of liver cancer cells and 
delayed the tumor growth.47 KMT2C, epigenetic regula-
tors, which mutated more than 50% of LIHC, also mutated 
in liver metastases.48 Nonsilent mutations in the most 
significant metabolic genes (ISCU, SSPO, MUC12, and 
TP53) (Figure S2) suggested that these genes may be 
associated with liver cancer development.

A metabolic model illustrated the transcriptomic altera-
tions and somatic mutations that may underlie the liver 
cancer development based on the sequenced hLCCLs 
(Figure 6). The mutated metabolism-associated driver 
genes (eg, TP53, IDH1, and IDH2) may dramatically 
change the metabolic pathways. Glucose can provide car-
bon units for each significant building block by accelerat-
ing glycolysis, tricarboxylic acid cycle, and pentose 
phosphate pathway.49 Pyruvate – the production of fruc-
tose metabolism and glycolysis – can promote the invasion 
and migration of breast cancer cells.50 Similarly, the fruc-
tose metabolism and glycolysis were down-regulated in 
CL3 but up-regulated in CL1, indicating that the pyruvate 
may also promote the tumor invasion and proliferation in 
different ways. Cholesterol biosynthesis was down- 
regulated in CL2 but opposite in CL3, which was regu-
lated by SREBP, and its conversion to steroid hormones, 
vitamin D, bile acid and bile salt was down-regulated in 
CL1. The alteration of metabolism of amino acids was also 
demonstrated, eg, an increased cysteine belongs to sulfur 
and selenium amino acid in liver cancer. The sulfur amino 
acid and selenoamino acid metabolisms were up-regulated 
in CL3 and CL1, respectively. These findings highlighted 
that aberrant metabolic pathways in different subgroups 
may better understand the mechanisms that underlie can-
cer maintenance and progression.

There remained several limitations in the present study. 
First, only 12 hLCCLs were sequenced, and more hLCCLs 
should be included. However, most of these cell lines were 
generated decades ago, lacking proper control or clinical 
annotations, and new mutations were generated sponta-
neously in the passage.13 Second, identifying somatic 
mutations in cell lines remains challenging due to the 
lack of a paired normal sample, and filtering germline 
mutations may not be enough to guarantee the accuracy 

Journal of Hepatocellular Carcinoma 2021:8                                                                                      https://doi.org/10.2147/JHC.S318724                                                                                                                                                                                                                       

DovePress                                                                                                                         
833

Dovepress                                                                                                                                                              Sun et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=318724.docx
https://www.dovepress.com
https://www.dovepress.com


of the identified somatic mutations. Finally, more genetic 
features (eg, copy number variation, and metabonomic 
analysis) should be incorporated further.

Conclusion
We combined transcriptome and whole-exome sequencing 
to characterize the metabolic aberrant and identify somatic 
mutations in metabolism-associated driver genes in 
hLCCLs. We present a powerful resource for understand-
ing the metabolism of liver cancer and provide potential 
avenue for future therapeutic efforts.
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