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Abstract: In recent years, there has been a significant increase in media coverage of the 
putative actions of vitamin D as well as the possible health benefits that supplementation 
might deliver. However, the potential effect that medications may have on the vitamin D 
status is rarely taken into consideration. This literature review was undertaken to assess the 
degree to which vitamin D status may be affected by medication. Electronic databases were 
searched to identify literature relating to this subject, and study characteristics and conclu-
sions were scrutinized for evidence of potential associations. The following groups of drugs 
were identified in one or more studies to affect vitamin D status in some way: anti-epileptics, 
laxatives, metformin, loop diuretics, angiotensin-converting enzyme inhibitors, thiazide 
diuretics, statins, calcium channel blockers, antagonists of vitamin K, platelet aggregation 
inhibitors, digoxin, potassium-sparing diuretics, benzodiazepines, antidepressants, proton 
pump inhibitors, histamine H2-receptor antagonists, bile acid sequestrants, corticosteroids, 
antimicrobials, sulphonamides and urea derivatives, lipase inhibitors, hydroxychloroquine, 
highly active antiretroviral agents, and certain chemotherapeutic agents. Given that the 
quality of the data is heterogeneous, newer, more robustly designed studies are required to 
better define likely interactions between vitamin D and medications. This is especially so for 
cytochrome P450 3A4 enzyme (CYP3A4)-metabolized medications. Nevertheless, this 
review suggests that providers of health care ought to be alert to the potential of vitamin 
D depletions induced by medications, especially in elderly people exposed to multiple-drug 
therapy, and to provide supplementation if required. 
Keywords: ergocalciferol, cholecalciferol, vitamin D, medication interactions, drug 
interactions

Introduction
Classically, the function of fat-soluble vitamin D is considered to be regulating the 
absorption of calcium and management of its homeostasis, and hence its role in 
musculoskeletal health is well recognized. However, in recent years evidence has 
begun to appear that suggests that certain non-skeletal conditions, such as cardio-
vascular and coronary heart disease, diabetes, some cancers, multiple sclerosis, 
Parkinson’s disease, age-related cognitive decline, and arthritis, may be associated 
with suboptimal concentrations of 25-hydroxyvitamin D (25(OH)D) in the serum. 
But it remains unclear whether inadequate vitamin D could be the result or the 
cause of these disorders.1 Nevertheless, it is commonly understood that the vitamin 
facilitates absorption of calcium from the gastrointestinal tract, promotes miner-
alization of osteoid tissue in newly formed bone, and also performs a significant 
role in the function of muscle.2 A chronic deficiency in the vitamin is well 

Correspondence: Michael Wakeman  
Faculty of Health and Wellbeing, 
University of Sunderland, Chester Road, 
Sunderland, SR1 3SD, UK  
Tel +44 1335 350935  
Email mikepwakeman@gmail.com

Risk Management and Healthcare Policy 2021:14 3357–3381                                             3357
© 2021 Wakeman. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Risk Management and Healthcare Policy                                               Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 21 April 2021
Accepted: 12 July 2021
Published: 14 August 2021

R
is

k 
M

an
ag

em
en

t a
nd

 H
ea

lth
ca

re
 P

ol
ic

y 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0000-0002-9991-3648
mailto:mikepwakeman@gmail.com
http://www.dovepress.com/permissions.php
https://www.dovepress.com


recognized to be damaging to skeletal health, which can 
result in osteomalacia in adults or rickets in children.3 In 
these conditions, 25(OH)D serum concentrations are typi-
cally <20 nmol/L.4 Insufficiency of vitamin D – a situation 
where the deficiency is deemed to be less severe – has 
been shown to result in secondary hyperparathyroidism, 
along with higher levels of bone loss, and in older people, 
increased muscle weakness leading to falls and subsequent 
fragility fractures.2

The European Foods Standards Agency (EFSA) has 
approved health claims for vitamin D relating to

contribution to the normal function of the immune system; 
contribution to the maintenance of normal bones and teeth; 
normal growth and development of bone in children; nor-
mal absorption/utilisation of calcium and phosphorus; nor-
mal blood calcium concentrations and maintenance of 
normal muscle function.5–7 

However, despite there being a number of ongoing debates 
relating to specific requirements for the vitamin, its status, 
and subsequent effects on health, there is a consensus that 
the prevention of vitamin D deficiency is an important 
public health issue, especially since low levels appear to 
be prevalent in certain demographics, such as the institu-
tionalized elderly, various ethnic groups, pregnant women, 
and young children.8,9

Vitamin D is manufactured as a supplement, as either 
vitamin D2 (ergocalciferol) or vitamin D3 (cholecalci-
ferol). Cholecalciferol is endogenously formed in the 
skin following exposure to ultraviolet (UV) radiation. It 
is also present in liver, fish, and eggs. In the liver, hepatic 
25-hydoxylases (including cytochrome P450 (CYP) 
enzymes 3A4, 2R1, and 27A1) convert both ergocalciferol 
and cholecalciferol to the main circulating form, 25-hydro-
xycholecalciferol (25(OH)D3). In turn, the active species, 
1,25-dihydroxycholecalciferol (1,25(OH)2D), is converted 
via 1α-hydroxylase (CYP27B1) both in the kidney and at a 
local tissue level. The 24-hydroxylase enzyme (CYP24A1) 
is responsible for catabolism of vitamin D metabolites.

1,25-Dihydroxycholecalciferol (1,25(OH)2D) affects 
intracellular signalling, and can induce either rapid or 
slower genomic responses. In the former case, it can 
initiate membrane-associated signal transduction, and in 
the latter, it can affect expression of those genes that 
contain a response element for vitamin D through initia-
tion or inhibition of transcription.10 Studies show that 1,25 
(OH)2D can induce the transcription of specific enzymes 
involved in both phase 111 and phase 2 

biotransformations,12 and multidrug-resistant protein 1, 
p-glycoprotein,13 as well as enzymes that control the bioa-
vailability and metabolism of certain drugs.

Because 1,25(OH)2D is more metabolically active, its 
presence in tissues is tightly regulated, and it is present in 
only picomolar concentrations in the circulation; hence, in 
terms of assessing clinical vitamin D status, 25(OH)D3 is 
typically used as the chosen appropriate marker. However, 
the definition of sufficiency is still open to debate. Hence, 
some institutions propose concentrations of ≥20 ng/mL of 
25(OH)D in the serum as providing sufficiency, based 
specifically on levels thought to be required for the pre-
vention of osteoporosis,14 whereas others suggest a status 
of ≥30–32 ng/mL (75–80 nmol/L) to be optimal for popu-
lations of healthy individuals.15–17 There are also interin-
dividual issues which need to be taken into consideration 
in the interpretation of serum concentrations. For example, 
obese individuals are commonly reported to exhibit lower 
levels of 25(OH)D than subjects of normal weight. This 
has been suggested to be due to sequestration in adipose 
tissue, which is known to be a significant site for storage 
of the vitamin.18 During the winter months, UV intensity is 
not sufficient at latitudes >40° N to effect skin synthesis of 
cholecalciferol, leading to seasonal variation in vitamin D 
status in some individuals19 and one study suggests that 
higher concentrations of 25(OH)D occur in men, although 
reasons for this remain unknown.20 Other factors impact-
ing on vitamin D status include supplementation, dark 
skin, and increasing age.21,22

In vitro studies suggest that while around 50% of all 
medications are metabolized by the phase I biotransforma-
tion enzyme 25-hydroxylase CYP3A4, which also trans-
forms both supplemental forms of vitamin D to 25(OH)D, 
many other therapeutic entities may also inhibit or induce 
its activity.22,23 Given that CYP3A4 is active in both 
intestinal mucosal enterocytes and hepatocytes,24,25 it is 
likely that interactions with oral vitamin D consumption 
are of greater significance than those of intravenously 
administered drugs. Because the CYP3A4 gene has an 
element responsive to vitamin D, the presence of 1,25 
(OH)2D may up-regulate its expression, which, in turn, 
could affect the metabolism of medications that depend 
on CYP3A4 for activation.13,26,27 Other potential interac-
tions may result in an increased risk of hypercalcaemia 
when used together with calcium-sparing drugs, and/or 
limited absorption of vitamin D supplements if consumed 
alongside medications which either enhance the elimina-
tion of dietary fat or inhibit its absorption.
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That suboptimal vitamin D levels are a common issue, 
even in prosperous countries, is typified by an analysis in 
the UK that reported the lowest mean concentrations of 25 
(OH)D between January and March and the highest during 
July to September.28 The study also reveals that 24% of 
females aged 11–18, males aged 19–64, and females aged 
65 years and over have a year-round concentration below 
25 nmol/L plasma 25(OH)D, which is the World Health 
Organization (WHO) threshold for vitamin D deficiency, 
as do 22% of females aged between 19 and 64 and 17% of 
males aged 65 years and over. This increases to around 
40% in males aged 11–64 during January to March, and 
29% of males aged 65 years and over.

This paper aims to summarize the published literature 
on the potential effects of medication on vitamin D status 
and to consider the implications that these could have a 
further impact on populations that are likely to be already 
deficient or depleted, and where chronic exposure to poly-
pharmacy may further compromise this situation.

Methods
Studies published in peer-reviewed journals were con-
sidered for inclusion in the current review. The meth-
ods used and results obtained from the included papers 
were required to be well described, with appropriate 
data collection and analysis performed. The following 
electronic databases – MEDLINE via PubMed, 
Embase, Scopus, and CINAHL – were searched 
through to January 2021. Initially, this strategy was 
employed using keywords and the Medical Subject 
Headings (MeSH) “ergocalciferol”, “cholecalciferol”, 
“vitamin D”, “medication interactions”, and “drug 
interactions”. As a result of references identified in 
this primary search, additional terms including “statin”, 
“hydroxymethylglutaryl-CoA reductase inhibitors”, 
“colestyramine”, “cimetidine”, “antibiotics”, “glucocor-
ticoids”, “anticonvulsants”, “laxatives”, “diuretics”, 
“cyclosporins”, “thiazides”, “HIV protease inhibitors”, 
“histamine H2 antagonists”, “antidepressants”, “ACE 
inhibitors”, “calcium channel blockers”, “polyphar-
macy“, and “immunosuppressive agents” were added 
and subsequently searched. Study quality and findings 
were abstracted according to relevance. Additional 
references and/or review articles revealed as a result 
of the primary research were also reviewed. In total, 
576 titles were identified and 204 reports met the 
inclusion criteria.

Results
Medications Impacting on Vitamin D 
Status
A summary of the findings of key studies are presented in 
Table 1.

Anti-Epileptic Drugs (AEDs)
It has been recognized since the 1960s that there appears 
to be an association between metabolic bone abnormal-
ities, such as osteomalacia, and the use of antiepileptic 
drugs (AEDs). Subsequently, a number of prospective 
and cohort studies have demonstrated an association 
between their use and reduced bone mineral density 
(BMD), together with an elevated risk of fracture.

Enzyme-Inducing Anti-Epileptic Drugs 
(EIAEDs)
Carbamazepine, phenobarbital, and phenytoin all increase 
the hepatic catabolism of vitamin D to inactive metabo-
lites, thereby negatively affecting the absorption of 
calcium.29–31 This has been observed to result in hypocal-
caemia and osteomalacia, especially as a result of pro-
longed use, such as in patients taking carbamazepine for 
6 months or more, or where other enzyme-inducing antic-
onvulsants are co-prescribed, or when additional vitamin 
D deficiency risk factors occur, and these patients are 
likely to require calcium and vitamin D supplements as a 
result.29,31 The daily dose of vitamin D required to correct 
these deficits may differ, depending on the individual, 
from 10 µg (400 units) to 100 µg (4000 units), which 
necessitates that in high-risk patients, serum vitamin D 
and calcium status be monitored on a regular basis.32 

However, unfortunately, many studies combine data for a 
variety of patients using either different individual or 
multiple AEDs, and fail to adjust for either duration of 
treatment or dose.33–54

In the healthy kidney, CYP24A1 activity likely dom-
inates 1,25(OH)2D and 25(OH)D catabolism, whereas 
CYP3A4 activity is predominant in this metabolic process 
in the liver and small intestine. Between 10% and 30% of 
patients using phenobarbitone or phenytoin show radiolo-
gical or biochemical evidence of decreased vitamin D 
levels.55 Evidence of osteomalacia may occur within sev-
eral months after initiation of anticonvulsant therapy and it 
is likely that concurrent use of different anticonvulsants 
will result in additive effects induced by these enzymes in 
the liver. Here, the modifying effects of degree of sunlight 
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Table 1 Summary of the Findings of Key Studies

Medication Outcomes from Key Studies References

Antidiabetic Medications

Metformin Users of oral antidiabetics were observed in a cohort study to have on average lower 

mean 25(OH)D serum concentrations of 7.3 nmol/L compared with diabetics not 
using these drugs. 

In two similarly designed studies, with a total of over 11,500 patients, a negative 

association between vitamin D status and oral antidiabetic use was observed, and a 
further cross-sectional study identified a specific effect due to metformin only.

[76,78–80]

Thiazolidinediones (TDZs) The decrease in bone mineral density (BMD) and the increase in risk of fracture in 

type 2 diabetes (T2D) have been shown to be exacerbated as a result of prescription 

of TZDs to improve insulin sensitivity. 
A systematic review and meta-analysis suggests that TZD use may result in bone loss 

that may be specific and moderate in women. 

Chronic TZD treatment has been reported to elevate the risk of bone fracture more 
in those women already at a greater risk for bone loss, osteoporosis, and bone 

fracture, than in men. 

T2D patients on antidiabetic therapies are likely to have a reduced intake of nutrients 
essential for bone health, such as vitamin D, calcium, and magnesium.

[83–85,88–90]

Diuretics

Thiazide Diuretics Associations with vitamin D levels appear mixed. 

The combination of supplementation with vitamin D (which enhances absorption of 
intestinal calcium) and thiazide diuretics (which decrease calcium excretion in the 

urine) and may theoretically result in hypercalcaemia, or exacerbate it. None of four 

additional studies reported that thiazide treatment resulted in significant alterations 
in concentrations of 25(OH)D.

[91–96]

Loop Diuretics The use of loop diuretics resulted in associations with 25(OH)D being either negative 
or not present, whilst those with 1,25(OH)2D were similarly mixed. 

A randomized clinical trial comparing placebo with loop diuretic use showed 

elevation of both 1,25(OH)2D and serum parathyroid hormone (PTH) levels, 
together with an increased renal calcium excretion that may induce 

hyperparathyroidism, which, in turn, increases hydroxylation of 25(OH)D, resulting in 

increased concentrations of 1,25(OH)2D.

[76,91,97]

Potassium-Sparing Diuretics van Ortein-Luiten et al highlighted an inverse association between potassium-sparing 

diuretics and vitamin D in the elderly. 
Another cross-sectional study in patients of a similar demographic failed to replicate 

these findings.

[76,80]

Medications Used in 
Cardiovascular Disease

Calcium Channel Blockers In a cohort study of elderly individuals, the use of calcium channel blockers (such as 

verapamil and diltiazem) resulted in a reduction of 7.7 nmol/L in levels of 25(OH)D in 

serum in contrast to non-use. 
As verapamil and diltiazem are known to inhibit CYP3A4, the anabolism of 25(OH)D 

precursors in the skin through exposure to UV radiation may be decreased as a 

consequence, thus resulting in lower serum 25(OH)D. 
Drugs, such as nifedipine, which are ligands for the nuclear pregnane X receptor 

(PXR) can induce an increase in vitamin D catabolism.

[23,75,76,98–101]

(Continued)
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Table 1 (Continued). 

Medication Outcomes from Key Studies References

Angiotensin-Converting 
Enzyme (ACE) Inhibitors

ACE inhibitor use in a cohort of elderly patients resulted in a 7.6 nmol/L reduction in 

25(OH)D serum levels compared with those not prescribed this type of medication. 

German and Dutch cross-sectional studies also reported lower levels of 25(OH)D in 
those using these drugs. 

A further examination of the cohort in the Dutch study and two quasi-experimental 

studies showed no relationship. 
Another study identified higher concentrations in those prescribed quinapril, but 

reported no change in enalapril users.

[76,102–106]

Statins Statins exert their cholesterol-lowering effects by inhibiting the 

hydroxymethylglutaryl-coenzyme A reductase (HMG CoA reductase) enzyme, which 

is rate limiting in cholesterol synthesis; hence, it is thought that statins could also 
reduce the synthesis of vitamin D. 

Since simvastatin, lovastatin, and atorvastatin are primarily metabolized by CYP3A4, 

competition for this enzyme may present another route for drug–vitamin 
interactions. 

CYP2C9 primarily metabolizes rosuvastatin and fluvastatin, whereas pravastatin and 

pitavastatin interact minimally with hepatic enzymes, instead being degraded in the 
stomach. 

Reports from several groups have indicated that atorvastatin administration may 

increase circulating 25(OH)D concentrations. 
Two studies investigating the effects of pravastatin therapy on vitamin D status 

identified no significant differences in 25(OH)D levels. 

Rosuvastatin has been demonstrated to robustly increase levels of vitamin D. 
In a prospective cohort study in hyperlipidaemic patients, compared with baseline 

levels, statistically significant increases were observed in both 25-hydroxyvitamin D 

and 1,25-hydroxyvitamin D. 
The same authors later reported that 25-hydroxyvitamin D levels increased with 

rosuvastatin treatment compared to fluvastatin. 

Well-designed larger multicentre trials are required to resolve the issue.

[105,108– 

119,122,123]

Bile Acid Sequestrants Bile acid sequestrants may also bind with vitamin D, and since its metabolites are also 

present in bile, an elevated excretion of bile acids may also reduce levels of this and 
other fat-soluble vitamins. 

One trial in children with familial hypercholesterolaemia reported a significant 

decrease in vitamin D status in those taking 8 g colestyramine daily over the period of 
a year. 

The reduction in absorption of vitamin D induced by colestyramine can occasionally 

lead to osteomalacia in patients receiving daily doses of colestyramine of >32 g for 
prolonged periods of over 2 years. 

Three other studies on the same class of medications reported the opposite findings.

[116,128–135]

Vitamin K Antagonists Two cross-sectional studies from the Netherlands indicate that patients prescribed 

vitamin K antagonists experienced more greatly reduced concentrations of 25(OH)D 

than non-users. 
This was confirmed in a cross-sectional study from Germany of 7553 males. 

Four other studies did not report this effect.

[76,79,80,136–139]

Platelet Aggregation 
Inhibitors

Two cross-sectional studies failed to report an inverse relationship between the use 

of platelet aggregation inhibitors and vitamin D status. 

However, three other studies have found to the contrary.

[76,79,80,140,141]

(Continued)
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Table 1 (Continued). 

Medication Outcomes from Key Studies References

Heparin When used for 3 months or more, at a dose of ≥15,000 IU, unfractionated heparin 

has been demonstrated to be associated with osteoporotic fractures and reduced 

bone density, and vitamin D metabolism is also negatively affected. 
Low molecular weight heparins are unlikely to reduce bone density to the same 

extent as unfractionated heparin, but there is the possibility that these compounds 

may adversely affect vitamin D metabolism.

[206–214]

Digoxin In one Dutch cross-sectional study of geriatric patients, a negative, tending towards a 

statistically significant inverse relationship between digoxin and vitamin D was 
identified. 

Statistical significance was not confirmed in other studies.

[76,79,80]

CNS Medications

Benzodiazepines A lack of a significant effect of benzodiazepines has been reported in three cross- 
sectional studies. 

Sohl et al, in a subsequent subgroup analysis of participants in their study, did observe 

a significant inverse association between this category of drug and vitamin D.

[76,80,142]

Antidepressants The finding of an inverse relationship between the use of selective serotonin reuptake 

inhibitors (SSRIs) and 25(OH)D levels was reported in two cross-sectional studies.

[80,142]

Enzyme-Inducing 
Antiepileptic Drugs (AEDs)

A systematic review suggests that in adult patients treated with AEDs, vitamin D 

deficiency is commonly observed, with consequently reduced levels and frequency of 
deficiency differing according to the medication used.

[61]

Newer Antiepileptic Drugs A large retrospective cohort study of over 15,000 patients reported an elevated risk 
of bone fracture for gabapentin but none with lamotrigine, levetiracetam, or 

oxcarbazepine. 

However, a smaller, similarly retrospective, study of 560 patients concluded that 
there was no association between newer AEDs and lower BMD. 

Other studies are conflicting.

[63–70]

Gastrointestinal 
Medications

Proton Pump Inhibitors 
(PPIs)

Theoretically, the hypochlorhydria induced by this class of medication could result in 

malabsorption of calcium, with the suggestion that prolonged exposure to acid 

suppression might be a clinically relevant consequence contributing to increased 
osteoporosis risk. 

Vitamin D and calcium for the elderly where high-dose PPI therapy, especially over a 

long-term period, is being employed, is recommended.

[144–146]

Histamine H2-Receptor 
Antagonists

Preclinical studies demonstrate that cimetidine inhibits 25-hydroxylases. 
A small study of nine patients with cimetidine-treated gastric ulcers identified no 

significant decrease in 25(OH)D serum concentrations from baseline while patients 

were receiving the medication; however, levels rose significantly once cimetidine was 
discontinued. 

Preclinical models fail to identify the same interaction with ranitidine.

[147–150]

(Continued)
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Table 1 (Continued). 

Medication Outcomes from Key Studies References

Lipase Inhibitors Orlistat binds within the gastrointestinal tract to the active sites of pancreatic and 

gastric lipases and thereby blocks absorption of fats in the diet, thus limiting calorie 

intake; hence, vitamin D uptake and absorption from the diet and supplements may 
be inhibited. 

Three studies reported decreased concentrations of 25(OH)D in those receiving 

orlistat. However, decreases were similarly reported in the control groups, which 
may be attributable to a reduction in total fat intake.

[194–198]

Laxatives A reduction in absorption of vitamin D and calcium from food as a result of high 
doses and prolonged use of stimulant laxatives can lead to hypocalcaemia and 

osteomalacia.

[73]

Anti-Inflammatory 
Medications

Corticosteroids A commonly observed complication of corticosteroid therapy is osteoporosis, and 

the impact of this class of medication on vitamin D metabolism as a potential 

contributory factor has been the subject of a number of studies. 
The majority identified no significant differences in levels of 25(OH)D in comparison 

to pretreatment or in controls. 

Lems et al identified that treatment of healthy controls with low-dose prednisone 
reduced 25(OH)D levels. 

Lund et al similarly reported 25(OH)D concentrations to be significantly reduced in a 

study of patients with rheumatoid arthritis taking low-dose prednisone, but none was 
considered to be deficient. 

Two other centres reported a lack of significant differences in pre- versus post- 

treatment 25(OH)D concentrations with prednisolone. 
In the USA, those taking prednisolone ≥7.5 mg/day (or corresponding doses of other 

corticosteroids) for ≥6 months are advised to take a daily vitamin D supplement of 

800 IU and to maintain a calcium intake of 1500 mg each day.

[151–163,181]

Inhaled Corticosteroids 
(ICS)

One study failed to identify any effect of inhaled glucocorticosteroids (ICS) on serum 

25(OH)D 
Sohl et al, in a cohort study, reported a significant negative association with lower 25 

(OH)D in serum in men treated with this class of medication. 

One systematic review concluded that ICS use may affect markers of BMD and bone 
metabolism in asthmatic patients and those with COPD, as well as healthy adults. 

Another meta-analysis identified a significant relationship between greater doses of 

ICS and elevated turnover of bone in mild COPD as well as asthmatic patients, but 
this failed to reach significance at lower doses of ICS. 

A third meta-analysis reported no difference in BMD between asthma patients 

receiving long-term ICS treatment and healthy controls. 
A later systematic review and meta-analysis found no significant associations between 

BMD and fracture risk in asthmatic children and adults receiving long-term ICS 

treatment. 
Meta-analyses assessing the association between fracture risk in COPD patients and 

long-term ICS use have established a modest but significant, dose-dependent 

increase. 
In summary, the effect of long-term ICS use may negatively influence bone 

metabolism and BMD in certain patients, especially those with COPD.

[76,170,173–176,178– 

180]

(Continued)
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Table 1 (Continued). 

Medication Outcomes from Key Studies References

Bronchodilators In one case–control study, a greater risk of femur and hip fractures was reported for 

larger doses, but this was attenuated after adjusting for underlying disease and oral 

glucocorticoid use. 
This finding is supported by a 2-year randomized trial assessing BMD in patients 

receiving ICS compared to a non-corticosteroid group taking beta2-agonists.

[182,183]

Hydroxychloroquine One study assessing the predictors and prevalence of deficiency of vitamin D found it 

to be common in systemic lupus erythematosus patients. Those prescribed 

hydroxychloroquine had elevated concentrations of 25(OH)D in comparison with 
non-users.

[199]

Anti-infectives/Antivirals

Antimicrobials Six small studies investigated the possibility of an association between the use of 

rifampicin and/or isoniazidand vitamin D status. Of these, four reported a decrease in 
25(OH)D, one identified no change, and one demonstrated an increase. 

Osteomalacia has been reported after therapy prolonged for >1 year, especially when 

accompanied by low intake of vitamin D.

[184,185,189–193]

Sulphonamides and Urea 
Derivatives

A cross-sectional study of 892 community-living outpatients in the Netherlands 

identified a statistically significant negative effect of these medications on vitamin D 
status.

[80]

Highly Active Antiretroviral 
Therapy (HAART)

Of three clinical studies, two reported lower concentrations of 25(OH)D in serum in 
patients prescribed HAART compared with non-users, but this was only statistically 

significant in one study. 

Reduction of plasma levels of vitamin D has been reported within 6 months of 
initiation of therapy with favirenz-based antiretroviral therapy, but not after longer 

term use.

[202–205]

Medications Used in 
Malignancy

Chemotherapeutic Agents Many of these medications are metabolized by CYP3A4 and hence may interact with 

vitamin D. These include tamoxifen, docetaxel, paclitaxel, ifosfamide, etoposide, 

vinblastine, vincristine, cyclophosphamide, imatinib, and irinotecan. The effect of the 
use of docetaxel and anthracycline-based adjuvant chemotherapy on vitamin D plasma 

levels was investigated in a longitudinal evaluation of breast cancer patients with an 

early-stage diagnosis, and it was identified that 30–50% were vitamin D deficient at 
the initial diagnosis of their breast cancer. 

Two other studies of the same chemotherapy regimens failed to report a significant 

change in 25(OH)D concentrations; however, in both, patients received vitamin D 
supplements. 

Another study in a similar group of patients found that nearly all patients had 

insufficiency of vitamin D by the completion of neoadjuvant chemotherapy, 
accompanied by associated alterations in the calcium/ RANKL/OPG axis, which 

suggests a disruption of regulatory mechanisms at a functional level. 

Three other studies assessed vitamin D status during chemotherapy. These studies 
examined patients diagnosed with colorectal, breast, uterine, and ovarian cancers 

treated with a variety of chemotherapeutic drugs (5-fluorouracil, cisplatin, 

capecitabine, epirubicin, oxaliplatin, irinotecan, as well as a number of monoclonal 
antibodies) and reported a lack of significant changes in concentrations of 25(OH)D 

during treatment.

[215,216,218–223]

(Continued)
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exposure and dietary intake are also important to take into 
consideration.56 Supplementation with vitamin D has been 
demonstrated to result in improvements in the biochemical 
and radiological changes reported above.57–59

One study reported that irrespective of which antiepi-
leptic medication of this type is prescribed, subjects with 
concentrations of 25(OH)D considered to be within a 
“normal” range went into insufficiency and deficiency 
states upon initiation of treatment, and that this occurred 
even at subtherapeutic levels of the drug in serum.60 The 
authors therefore suggested that it is worthwhile to recom-
mend vitamin D and calcium supplementation prior to the 
commencement of any antiepileptic therapy of this type.

The primary finding in a previous systematic review is 
that in adult patients treated with these AEDs, vitamin D 
deficiency is commonly observed, with consequent levels 
and frequency of deficiency differing according to the 
medication used.61 However, the authors question whether 
the inherently suboptimal levels of vitamin D commonly 
observed in these patients might act as a confounder. One 
randomized trial identified that using higher dose vitamin 
D supplementation could help to stabilize the total hip and 
spine BMD compared with a lower dose of vitamin D in 
patients on these AEDs.62

Newer AEDs
Data are limited on newer AEDs and the specific effects 
on bone. A large retrospective cohort study of over 15,000 
patients reported an elevated risk of bone fracture for 
gabapentin, but not with lamotrigine, levetiracetam, or 
oxcarbazepine.63 However, a smaller, similarly retrospec-
tive, study of 560 patients concluded that there was no 
association between newer AEDs and lower BMD.64 

Likewise, other studies are conflicting.65–70 However, a 
preclinical study of levetiracetam suggests although bone 
density was not impaired, there was a negative effect on 
bone quality, which indicates that traditionally used mea-
sures of BMD may not necessarily identify all changes in 
bone health.71 Wu et al also demonstrated that patients 

with osteoporosis were more likely to have epilepsy and to 
have received EIAED or non-CYP450-inducing antiepi-
leptic drug (NEIAED) treatment.72 However, a later retro-
spective study of BMD and some of the more recently 
introduced anticonvulsants (topiramate, gabapentin, leve-
tiracetam) failed to identify any detrimental effects.64

Laxatives
Laxatives accelerate the movement of foods and liquids 
through the digestive tract, and this potentially reduced 
transit time may induce a negative impact on vitamin 
absorption, especially those that are fat soluble, such as 
vitamins A, D, E, and K, as well as minerals such as 
calcium, sodium, magnesium, and potassium. This reduc-
tion in absorption of vitamin D and calcium from food as a 
result of high doses and prolonged use of stimulant laxa-
tives can lead to hypocalcaemia and osteomalacia.73

Diabetes Medications
Metformin
Deficiency of vitamin D is associated with decreased insu-
lin secretion and increased resistance to insulin.74,75 Users 
of oral antidiabetics were observed in a cohort study to 
have, on average, lower mean 25(OH)D serum concentra-
tions of 7.3 nmol/L compared with diabetics not using 
these drugs.76 One group has suggested an intrinsic limita-
tion of this study to be that any potential effect of metfor-
min on lowering levels of vitamin D may have been 
confounded as a result of the use of supplements when 
deficiency was diagnosed.77 However, in two other simi-
larly designed studies, with a total of over 11,500 patients, 
a negative association between vitamin D status and oral 
antidiabetic use was observed, and a further cross-sec-
tional study identified a specific effect due to metformin 
only.78–80

Thiazolidinediones
It is well established that patients with type 2 diabetes 
(T2D) have a higher incidence of bone fractures in 

Table 1 (Continued). 

Medication Outcomes from Key Studies References

Others

Sunscreens Reduction of synthesis of vitamin D in the skin, and hence plasma levels, can occur as 
a result of extensive or frequent use of sunscreens, and there is concern that 

excessive use or overuse may result in deficiency.

[224–228]
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comparison to their non-diabetic counterparts, despite 
there being no significant differences in BMD between 
the two populations.81,82 The decrease in BMD and the 
increase in risk of fracture in T2D have also been shown to 
be exacerbated as a result of prescription of thiazolidine-
diones (TZDs) to improve insulin sensitivity.83–85 TZDs 
appear to affect mesenchymal stem cells, resulting in an 
increase in adipogenesis and a decrease in osteoblast 
formation.86,87

A systematic review and meta-analysis suggests that 
TZD use may result in bone loss that may be specific and 
moderate in women.88 Likewise, chronic TZD treatment 
has been reported to elevate the risk of bone fracture more 
in those women already at a greater risk for bone loss, 
osteoporosis, and bone fracture, than men.89 This situation 
is exacerbated by reports that T2D patients on antidiabetic 
therapies are likely to have a reduced intake of nutrients 
essential for bone health, such as vitamin D, calcium, and 
magnesium.90

Diuretics
Thiazide Diuretics
Associations between vitamin D levels and thiazide diure-
tics appear mixed.91 The combination of supplementation 
with vitamin D (which enhances the absorption of intest-
inal calcium) and thiazide diuretics (which decrease cal-
cium excretion in the urine) may theoretically result in 
hypercalcaemia, or exacerbate it.92 This is especially likely 
in those individuals considered to be at risk in these situa-
tions, such as those, typically elderly patients, with hyper-
parathyroidism or compromised renal function. None of 
four additional studies reported that thiazide treatment 
resulted in significant alterations in concentrations of 25 
(OH)D.93–96

Loop Diuretics
The use of loop diuretics resulted in associations with 25 
(OH)D being either negative or not present, whilst those 
with 1,25(OH)2D were similarly mixed.91 A randomized 
clinical trial comparing placebo with loop diuretic use 
showed elevation of both 1,25(OH)2D and serum parathyr-
oid hormone (PTH) levels, together with an increased 
renal calcium excretion that might induce hyperparathyr-
oidism, which, in turn, increases hydroxylation of 25(OH) 
D, resulting in increased concentrations of 1,25 
(OH)2D.76,97

Potassium-Sparing Diuretics
van Ortein-Luiten et al highlighted an inverse association 
between these medications and vitamin D in the elderly,80 

but another cross-sectional study in patients of a similar 
demographic failed to replicate these findings.76

Medications Used in Cardiovascular 
Disease
Calcium Channel Blockers
In a cohort study of elderly individuals, the use of calcium 
channel blockers (such as verapamil and diltiazem) 
resulted in a reduction of 7.7 nmol/L in levels of 25(OH) 
D in serum, in contrast to non-use.98 As verapamil and 
diltiazem are known to inhibit CYP3A4, the anabolism of 
25(OH)D precursors in the skin through exposure to UV 
radiation may be decreased as a consequence, thus result-
ing in lower serum 25(OH)D.23,75,99–101 It also appears 
that drugs, such as nifedipine, which are ligands for the 
nuclear pregnane X receptor (PXR) can induce an increase 
in vitamin D catabolism.76

Angiotensin-Converting Enzyme (ACE) Inhibitors
ACE inhibitor use in a cohort of elderly patients resulted 
in a 7.6 nmol/L reduction in 25(OH)D serum levels com-
pared with those not prescribed this type of medication.76 

However, the potential of polymorphisms in CYP enzymes 
metabolizing these drugs has also been suggested as a 
possible confounder.102 German and Dutch cross-sectional 
studies also reported lower levels of 25(OH)D in those 
using these drugs,103,104 whereas a further examination of 
the cohort in a Dutch study76 and in two quasi-experimen-
tal studies102,105 showed no relationship. Although another 
study identified higher concentrations in those prescribed 
quinapril, it reported no change in enalapril users.106 

However, as other authors point out,

it cannot be excluded that an inverse association reflects 
the inverse relationship between low 25(OH)D level and 
the indication for prescription: high blood pressure and 
associated comorbidities of diabetes.107 

Statins
Statins exert their cholesterol-lowering effects by inhibit-
ing the hydroxymethylglutaryl-coenzyme A reductase 
(HMG CoA reductase) enzyme, which is rate-limiting in 
cholesterol synthesis.108 Since cholesterol is a precursor of 
vitamin D, it is thought that statins could also reduce the 
synthesis of this vitamin.109,110 Because simvastatin, 
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lovastatin, and atorvastatin are primarily metabolized by 
CYP3A4, competition for this enzyme may also present 
another route for drug–vitamin interactions.111,112 In con-
trast, CYP2C9 primarily metabolizes rosuvastatin and flu-
vastatin, whereas pravastatin and pitavastatin interact 
minimally with hepatic enzymes, instead being degraded 
in the stomach.112,113

Despite these potentially detrimental effects on vitamin 
D status, reports from several groups have indicated that 
atorvastatin administration may increase circulating 25 
(OH)D concentrations.105,114–116 In one study, researchers 
identified that patients consuming a daily supplement con-
taining 800 IU of a vitamin D over 6 weeks had levels of 
atorvastatin or metabolites that were statistically signifi-
cantly lower than in subjects who were not receiving 
supplements (P<0.05).114 Nevertheless, cholesterol scores 
were reduced in the supplementation group, despite these 
lower atorvastatin concentrations. Both studies investigat-
ing the effects of pravastatin therapy on vitamin D status-
110,116 identified no significant differences in 25(OH)D 
levels. Rosuvastatin has been demonstrated to robustly 
increase levels of vitamin D, leading to the suggestion 
that the beneficial effects of this medication, as identified 
in the “Justification for the Use of statins in Prevention: an 
Intervention Trial Evaluating Rosuvastatin (JUPITER)” 
study, were partly related to this effect in a population 
that was vitamin D insufficient.117

These observations were supported in a prospective 
cohort study in hyperlipidaemic patients. Of the 91 
patients, 19% were diabetic and 47% were diagnosed 
with systemic hypertension, all of whom were statin treat-
ment naïve and were treated for 8 weeks with 
rosuvastatin.118 Compared with baseline levels, statisti-
cally significant increases were observed in both 25-hydro-
xyvitamin D and 1,25-hydroxyvitamin D. In a further trial 
of hyperlipidaemic patients, the same authors later 
reported that 25-hydroxyvitamin D levels increased with 
rosuvastatin treatment compared to fluvastatin.119 Their 
findings generated a great deal of controversy, with a 
number of authors highlighting potential issues,120,121 

thereby resulting in a consensus that well-designed larger 
multicentre trials are required to resolve the issue.122,123

It is clear that a complex and poorly elucidated rela-
tionship exists between statins and vitamin D. However, it 
is known that both affect the function and metabolism of 
skeletal muscle, with myalgia linked specifically with 
vitamin D deficiency.124 Certain authors suggest vitamin 
D deficiency is associated with increased intolerance to 

statins as a result of myopathy.125 This is supported by one 
study of 150 patients with hypercholesterolaemia, which 
identified that individuals who were intolerant to one statin 
as a result of myalgia also had low serum vitamin D.126 

These patients were subsequently supplemented with vita-
min D and then recommenced on statin therapy for 8 
months. Subsequently, 87% were reported to be free of 
myalgia and able to tolerate reinitiation of the statin.

Seven studies with 2420 patients were the subject of a 
systematic review and meta-analysis, which indicates that 
low vitamin D levels are indeed associated with myalgia in 
those receiving statins.127 It is suggested that a reversible 
relationship between deficiency of vitamin D and patients 
taking statins who experience skeletal muscle myopathy 
exists, which may be resolved as a result of correcting any 
underlying deficiency. Alternatively, in certain patients, 
statin myopathy or drug-unrelated myalgias may be poten-
tiated by deficiency of vitamin D. However, there is not 
sufficient evidence to support extensive vitamin D status 
testing in patients with myalgia thought to be the result of 
statin treatment. Nevertheless, where a patient is known to 
be deficient in vitamin D and where a history of intoler-
ance to a statin has been established, a rechallenge with a 
statin would appear to be a reasonable strategy once levels 
of vitamin D are confirmed to be replete.

Bile Acid Sequestrants
These drugs bind with bile acids in the gastrointestinal 
tract to prevent cholesterol reabsorption and thereby 
reduce its circulating levels. However, they may also 
bind with vitamin D, and since its metabolites are also 
present in bile, an elevated excretion of bile acids may also 
reduce levels of this and other fat-soluble vitamins.128–133 

One trial in children with familial hypercholesterolaemia 
reported a significant decrease in vitamin D status in those 
taking 8 g colestyramine daily over the period of a year.128 

The reduction in absorption of vitamin D induced by 
colestyramine can occasionally lead to osteomalacia in 
patients receiving daily doses of colestyramine of >32 g 
for prolonged periods of over 2 years.133 However, three 
other studies on the same class of medications reported 
opposite findings.116,134,135

Vitamin K Antagonists
Two cross-sectional studies from the Netherlands indicate 
that patients prescribed vitamin K antagonists experienced 
greater reductions in concentrations of 25(OH)D than non- 
users,76,80 an effect confirmed in a cross-sectional study 
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from Germany of 7553 males.79 However, four other stu-
dies did not report this effect.136–139

Platelet Aggregation Inhibitors
Whereas two cross-sectional studies76,80 failed to report an 
inverse relationship between the use of these drugs and 
vitamin D status, three others have done so.79,140,141 

However, it is suggested that confounding by indication 
may be a factor.133

Digoxin
In one Dutch cross-sectional study of geriatric patients, a 
negative, tending towards a statistically significant inverse 
relationship between digoxin use and vitamin D.80 

However, statistical significance was not confirmed in 
other studies.76,79

CNS Medications
Benzodiazepines
Whereas a lack of a significant effect of benzodiazepines 
on vitamin D status has been reported in three cross-sec-
tional studies,76,80,142 Sohl et al, in a subsequent subgroup 
analysis of participants in their study, did observe a sig-
nificant inverse association.76

Antidepressants
The finding of an inverse relationship between the use of 
selective serotonin reuptake inhibitors (SSRIs) and 25 
(OH)D levels was reported in two cross-sectional studies.-
80,142 This may be the result of a negative impact on 
synthesis of 25(OH)D, as the antidepressant drugs fluvox-
amine and fluoxetine are both reported to inhibit the meta-
bolism of CYP enzymes involved in this process.92 

However, the authors of the two above cross-sectional 
studies also acknowledged the association that has been 
reported to exist between depression and vitamin D 
levels,80,142 and this is confirmed by a prospective cohort 
study,143 which suggests that this indication might be 
considered as a confounding issue.

Disorders of Gastric Acid and Ulceration 
Medications
Proton Pump Inhibitors (PPIs)
Theoretically, the hypochlorhydria induced by this class of 
medication could result in malabsorption of calcium, with 
the suggestion that prolonged exposure to acid suppression 
may be a clinically relevant consequence contributing to 
increased osteoporosis risk.144,145 One review suggests 
that it may be advisable to consider supplementation 

with vitamin D and calcium for the elderly, where high- 
dose PPI therapy, especially over a long-term period, is 
being employed.146

Histamine H2-Receptor Antagonists (H2RAs)
H2RAs, such as cimetidine, inhibit the secretion of gastric 
acid by limiting the ability of gastric parietal cells to 
produce histamine. Preclinical studies demonstrate that 
cimetidine also inhibits 25-hydroxylases.147,148 A small 
study of nine patients with cimetidine-treated gastric 
ulcers identified no significant decrease in 25(OH)D 
serum concentrations from baseline while patients were 
receiving the medication; however, levels rose signifi-
cantly once cimetidine was discontinued.149 In contrast, 
preclinical models failed to identify the same interaction 
with ranitidine.150

Corticosteroids
A commonly observed complication of corticosteroid ther-
apy is osteoporosis, and the impact of this class of medi-
cation on vitamin D metabolism as a potential contributory 
factor has been the subject of a number of studies.151–161 

Here, the majority identified no significant differences in 
levels of 25(OH)D in comparison to those measured pre-
treatment, or in controls.152–154,157,158,160 However, Lems 
et al155 identified that treatment of healthy controls with 
low-dose prednisone reduced 25(OH)D levels, but since 
the study was undertaken in the autumn, the authors 
attributed this observation to seasonal effects. Lund et al159 

similarly reported 25(OH)D concentrations to be signifi-
cantly reduced in a study of patients with rheumatoid 
arthritis taking low-dose prednisone, but none was consid-
ered to be deficient. Two other centres reported a lack of 
significant differences in pre- versus post-treatment 25 
(OH)D concentrations with prednisolone.162,163

However, while some investigations reviewing this 
issue identify precisely the specific glucocorticoid that 
the patients were prescribed, this is not the case in many 
of the studies, making the conclusions unclear.164–167 In 
one study where this did occur, in adult rheumatoid arthri-
tis patients on daily doses of between 2.5 and 10 mg of 
prednisone equivalents over at least three months, it was 
identified that 25(OH)D concentrations were significantly 
reduced in corticosteroid users compared to those of 
healthy controls.165 Likewise, two studies in young adults 
and children identified that those with the most signifi-
cantly reduced levels of 25(OH)D were the ones with the 
highest cumulative exposure to glucocorticoids.168,169 A 
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limitation to most of these studies is the lack of reporting 
of any potential confounders, such as differences in body 
composition, supplemental or dietary vitamin D intake, 
and exposure to UV sunlight.

Whereas previous studies had not identified any effect 
of inhaled glucocorticosteroids (ICS) on serum 25(OH) 
D,170 Sohl et al, in a cohort study, reported a significant 
negative association with lower 25(OH)D in serum in men 
treated with this class of medication.76 Inhaled corticoster-
oids are also commonly used in chronic obstructive pul-
monary disease (COPD), where deficiency of vitamin D 
has a high prevalence and where serum concentrations 
seem to correlate directly with the severity of the condi-
tion. Hence, confounding by this indication may contribute 
to any observed associations between reduced 25(OH)D 
serum concentrations and inhaled corticosteroid use in this 
disease.171,172

The effects of long-term (>12 months) inhaled corti-
costeroid (ICS) use on bone are currently unclear.170 One 
systematic review concluded that ICS use may affect mar-
kers of BMD and bone metabolism in asthmatic patients 
and those with COPD, as well as healthy adults.173 This is 
supported by another meta-analysis, where a significant 
relationship between greater doses of ICS and elevated 
turnover of bone in mild COPD, as well as asthmatic 
patients, was observed.174 This failed to reach significance 
at lower doses of ICS. However, a third meta-analysis 
reported no difference in BMD between asthma patients 
receiving long-term ICS treatment and healthy controls.175 

Furthermore, a later systematic review and meta-analysis 
found no significant associations between BMD and frac-
ture risk in asthmatic children and adults receiving long- 
term ICS treatment.176

In COPD patients, the high prevalence of factors such 
as smoking, cachexia, and low-grade systemic 
inflammation176,177 is likely to negatively impact bone 
formation and would possibly have an effect on BMD. 
Nevertheless, meta-analyses assessing the association 
between fracture risk in COPD patients and long-term 
ICS use have established a modest but significant, dose- 
dependent increase.178,179 In summary, long-term ICS use 
may negatively influence bone metabolism and BMD in 
certain patients, especially those with COPD.180

In the USA, those taking prednisolone ≥7.5 mg/day (or 
corresponding doses of other corticosteroids) for 6 months 
or more are advised to take a daily vitamin D supplement 
of 800 IU and to maintain a calcium intake of 1500 mg 
each day.181

Bronchodilators
There are limited human studies investigating the effects 
of beta2-agonists on bone health. In one case–control 
study, a greater risk of femur and hip fractures was 
reported for larger doses, but this was attenuated after 
adjusting for underlying disease and oral glucocorticoid 
use.182 This finding is supported by a 2-year randomized 
trial assessing BMD in patients receiving ICS compared to 
a non-corticosteroid group taking beta2-agonists.183

Antimicrobials
The relationship between tuberculosis (TB) and vitamin D 
is complex but well established. Historically, exposure to 
sunshine and supplementation with vitamin D were the 
mainstays of treatment, prior to the introduction of effec-
tive antibiotic therapy. Vitamin D modulates the activity of 
macrophages and also increases production of cathelicidin, 
a protein with antimicrobial activity. Enhanced suscept-
ibility to infection with TB has been reported to be asso-
ciated with deficiency of vitamin D, as has reactivation of 
latent infections. As CYP3A4 is inhibited by isoniazid and 
induced by rifampicin, these drugs may affect vitamin D 
status.184–187

Six small studies investigated the possibility of an 
association between the use of rifampicin and/or isoniazid 
and vitamin D status.184,188–192 Of these, four reported a 
decrease in 25(OH)D,184,191,192 one identified no change, 
and one demonstrated an increase. Two of these studies 
reported that the patients had below-normal pretreatment 
concentrations of 25(OH)D,184,191 but confounders such as 
season of vitamin D status assessment, supplemental or 
dietary intake of vitamin D, and stratification by skin tone/ 
race, or UV exposure were poorly reported. Osteomalacia 
has been reported after prolonged therapy for more than 
one year, especially when accompanied by low intake of 
vitamin D.185,193

Sulphonamides and Urea Derivatives
A cross-sectional study of 892 community-living outpati-
ents in the Netherlands identified a statistically significant 
negative effect of these medications on vitamin D status.80

Lipase Inhibitors
The weight-loss medication orlistat binds within the gas-
trointestinal tract to the active sites of pancreatic and 
gastric lipases and thereby blocks the absorption of fats 
in the diet, thus limiting calorie intake.194 Because it is fat 
soluble, vitamin D uptake and absorption from the diet and 
supplements may be inhibited by orlistat.195 Three studies 

Risk Management and Healthcare Policy 2021:14                                                                              https://doi.org/10.2147/RMHP.S316897                                                                                                                                                                                                                       

DovePress                                                                                                                       
3369

Dovepress                                                                                                                                                             Wakeman

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


reported decreased concentrations of 25(OH)D in those 
receiving orlistat.196–198 However, decreases were simi-
larly reported in the control groups, which may be the 
result of a reduced total intake of dietary fat.

Hydroxychloroquine
Because patients with autoimmune conditions often 
experience photosensitivity, they commonly avoid expo-
sure to sunshine, leading to a concern that a deficiency of 
vitamin D might be prevalent in this cohort. One study 
with a comparison group assessed the predictors and pre-
valence of deficiency of vitamin D in 92 adults with 
systemic lupus erythematosus (SLE).199 Deficiency was 
found to be common in this cohort, being present in 
around 75% of patients, and those prescribed hydroxy-
chloroquine had elevated concentrations of 25(OH)D in 
comparison with non-users. The authors suggest that this 
may be a result of a limited conversion rate of 25(OH)D to 
1,25(OH)2D.

Highly Active Antiretroviral Agents
Highly active antiretroviral therapy (HAART) consists of 
several classes of antiretroviral medications that variously 
act by inhibiting different stages of the life cycle of the 
human immunodeficiency virus (HIV). They include pro-
tease inhibitors (PIs), nucleotide reverse transcriptase inhi-
bitors (NtRTIs), nucleoside reverse transcriptase inhibitors 
(NRTIs), non-nucleoside reverse transcriptase inhibitors 
(NNRTIs), and entry inhibitors.200 Reports indicate that 
these medications are metabolized by CYP3A4, either 
inducing or inhibiting its activity,92 and hence these effects 
could affect the rate of synthesis and degradation of 25 
(OH)D. This observation was confirmed by Cozzolino 
et al and others.201–203 Of four clinical studies,202–205 two 
reported lower concentrations of 25(OH)D in serum in 
patients prescribed HAART compared with non-users,-
202,204 but this was only statistically significant in one 
study.202 A reduction in plasma levels of vitamin D has 
been reported within 6 months of initiation of therapy with 
efavirenz-based antiretroviral therapy, but not after longer 
term use.205

Heparin
When used for 3 months or more at a dose of ≥15,000 IU, 
unfractionated heparin has been demonstrated to be asso-
ciated with osteoporotic fractures and reduced bone 
density.206–209 This is mainly the result of the direct effects 
of heparin reducing bone formation and increasing resorp-
tion, but vitamin D metabolism is also negatively 

affected,206,210,211 suggesting that patients on long-term 
therapy should consider supplements containing calcium 
and vitamin D. Although low molecular weight heparins 
are unlikely to reduce bone density to the same extent as 
unfractionated heparin, there is the possibility that these 
compounds may adversely affect vitamin D metabolism.-
212–214

Chemotherapeutic Agents
Many of these medications are metabolized by CYP3A4 
and hence may interact with vitamin D. These include 
tamoxifen, docetaxel, paclitaxel, ifosfamide etoposide, 
vinblastine, vincristine, cyclophosphamide, imatinib, and 
irinotecan.215

The effect of the use of docetaxel and anthracycline- 
based adjuvant chemotherapy on vitamin D plasma levels 
was investigated in a longitudinal evaluation of breast 
cancer patients with an early-stage diagnosis. It was iden-
tified that 30–50% were vitamin D deficient at the initial 
diagnosis of their breast cancer.216 Furthermore, a prospec-
tive cohort study identified an inverse association between 
breast cancer prognosis and serum levels of 25(OH)D.217 

However, since lower circulating levels of 25(OH)D can 
be attributed to increased storage in adipose tissue, it may 
be that the apparent reduction in plasma vitamin D levels 
is associated with increases in body mass index, which 
often occur in early-stage breast cancer patients receiving 
adjuvant chemotherapy.18 Two other studies of the same 
chemotherapy regimens failed to report a significant 
change in 25(OH)D concentrations; however, in both, 
patients received vitamin D supplements.218,219 Another 
study in a similar group of patients found that nearly all 
had insufficiency of vitamin D by the completion of 
neoadjuvant chemotherapy, accompanied by associated 
alterations in the calcium/RANKL/OPG axis, which sug-
gests a disruption of regulatory mechanisms at a functional 
level.220

Given that as they age, female breast cancer patients 
and survivors, in particular, experience elevated rates of 
bone loss, with a 15% increased fracture risk compared to 
their healthy counterparts, the preservation of bone health 
in breast cancer survivors is a key issue. Here, in a large 
cohort study of patients with early-stage breast cancer, 
univariate analyses identified that reduced levels of vita-
min D were significantly associated with elevated risks of 
both recurrence and death. Together, these findings suggest 
that supplementation with vitamin D appears advisable 
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both during chemotherapy and when treatment has been 
completed, unless specifically contraindicated.218

Three other studies221–223 assessed the vitamin D status 
during chemotherapy. These studies examined patients 
diagnosed with colorectal, breast, uterine, and ovarian 
cancers, treated with a variety of chemotherapeutic drugs 
(5-fluorouracil, cisplatin, capecitabine, epirubicin, oxali-
platin, irinotecan, as well as a number of monoclonal 
antibodies) and reported a lack of significant changes in 
concentrations of 25(OH)D during treatment. However, 
baseline vitamin D deficiency was common, especially in 
colorectal cancer patients, and more particularly in rectal 
cancer patients.

Sunscreens
Reduction of synthesis of vitamin D in the skin, and hence 
plasma levels, can occur as a result of the extensive or 
frequent use of sunscreens,224–226 and there is concern that 
excessive use or overuse may result in deficiency.227,228

Discussion
Interpretation of the Data
Most of the early research in this area consisted of case 
studies of adverse outcomes or investigated medications 
commonly associated with osteoporosis, as this evidence 
suggested that this may be the result of imbalances in the 
metabolism of vitamin D. However, more recent advances 
in the understanding of drug metabolism mediated by 
CYP3A4, and awareness of the role of vitamin D in gene 
expression of this enzyme, and of drugs metabolized by 
CYP2R1, CYP24, CYP27A, and CYP27B, have led to a 
more structured and systematic approach. Nevertheless, 
this review indicates that increased research is needed to 
better identify the impact of medications that affect the 
activity of CYP enzymes involved in the metabolism and 
regulation of vitamin D. For example, in vitro studies 
which demonstrate that classes of medications, such as 
the proton pump inhibitor omeprazole and the antimicro-
bial agent ketoconazole, which inhibit both CYP3A4229,230 

and CYP24,231 require evaluation in a clinical setting to 
establish their effect, if any, on vitamin D status in 
humans.

As discussed above, there are limitations in a number 
of the cited studies. Many are either individual case studies 
or observational in nature, involving small numbers of 
patients, or analyses of data collected for reasons other 
than originally intended, and some were hospital based, 
without a relevant comparison group. Evaluation of 

supplemental or additional dietary vitamin D intakes and 
sun exposure was limited in many, and the lack of con-
sideration of potential confounders, such as body compo-
sition and weight, as contributory to either vitamin D 
status or medication concentrations and drug response, 
makes it difficult to assess whether the reported impact 
on levels of vitamin D is the result of a lack of vitamin 
intake or actually caused by the medication in its own 
right.

Although not strictly within the remit of this review, 
the reported effect of smoking on vitamin D status also 
needs to be considered as an additional possible confoun-
der. Two studies found that smokers had concentrations of 
serum 25(OH)D which were reduced compared to non- 
smokers.232,233 Moreover, a large population study identi-
fied odds ratios of severe deficiency of vitamin D (25(OH) 
D <10 ng/mL) associated with daily smoking to be 1.47, 
and 1.36 for vitamin D deficiency (25(OH)D <20 ng/ 
mL).234 In contrast, other studies in men found that smok-
ing was not correlated with levels of 25(OH)D.235–237 

However, it may be that these inconsistencies are attribu-
table to differences in the way in which smoking was 
characterized, and/or smoking intensity, as well as due to 
inconsistencies in the methodologies used to measure 25 
(OH)D in serum. For example, one of the latter studies 
used electrochemiluminescence, which, it is suggested, 
delivers falsely high levels of 25(OH)D compared to liquid 
chromatography–tandem mass spectrometry.238

This highlights a very important issue, since determi-
nations of serum vitamin D from a technological perspec-
tive are challenging because it is highly hydrophobic and 
has a number of metabolites. Because methodologies for 
assessing vitamin D statushave improved significantly in 
recent years, it is possible that some of the data appearing 
in a number of the older studies reviewed above may be 
less accurate or difficult to interpret alongside more recent 
data. Clearly, in the future, larger and more robustly 
designed studies addressing this limitation are required to 
provide clarification about potential interactions between 
medications and vitamin D. These studies should also use 
assay methodologies that are standardized to current best 
practice and carried out in centres which participate in 
externally validated assessments of the technology specific 
to vitamin D.

COVID-19 and Vitamin D
Recently, there has been a significant number of studies 
from around the world examining the possible association 
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between vitamin D status and susceptibility to coronavirus 
disease 2019 (COVID-19) and its consequences. Many are 
retrospective cohort analyses, and some are prospective 
studies involving sufficiently different patient populations, 
with different degrees of severity of symptoms and prog-
noses, and indeed varying definitions of the state of vita-
min D sufficiency, to make meaningful systematic reviews 
and/or meta-analyses a difficult process. However, at least 
six systematic review and meta-analysis studies and two 
systematic reviews from around the world have appeared 
within the past 6 months, with a general consensus that it 
does appear that a higher vitamin D status is generally 
associated with a lower susceptibility to COVID-19, and 
better morbidity and mortality outcomes.239–246 

Nonetheless, the definitive degree of correlation, if any, 
remains to be established, as does the likely efficacy of 
vitamin D supplementation as an intervention. However, it 
is important to recognize that patients experiencing the 
worst outcomes from the COVID-19 virus tend to be 
overweight, and experiencing comorbidities such as dia-
betes and hypertension.247 Given that these conditions are 
typically treated with many of the medications discussed 
above, often using them concurrently, their potential 
impact on vitamin D status is likely to be additive. 
Indeed, many of these medications can also compromise 
other vitamins and minerals recognized to maintain and 
support a healthy immune system, which is clearly of 
benefit in the current pandemic,248 but this consequence 
does not appear to have been taken into consideration in 
any supplementation guidelines issued to overcome poten-
tial suboptimal levels or deficiencies in these patients.

Vitamin D Status and Supplementation
While experts and consumers strive to establish the valid-
ity of the conflicting reviews on vitamin D and COVID- 
19, it is important not to forget that still today, even in 
prosperous countries such as the UK, almost one in five 
adults aged 19–65 years is reported to have a low concen-
tration of serum vitamin D (<25 nmol/L, which is consid-
ered sufficiency by the UK Scientific Advisory Committee 
for Nutrition [SACN] in the National Diet and Nutrition 
Survey [NDNS]).249 This places them at a higher risk of 
the outcomes of a deficiency of vitamin D and conditions 
such as osteomalacia, rickets, falls, and possibly reduced 
muscle function and strength in those over 50 years of age.

It is also worth remembering the seasonality of this 
issue, as SACN reports that on average,250,251 around 
30–40% of individuals have vitamin D levels below 25 

nmol/L in winter and 2–13% below this level in summer. 
Moreover, even in summer, a significant proportion of 
certain cohorts failed to achieve a concentration ≥25 
nmol/L in plasma (16% adults in London, 17% adults in 
Scotland, 53% of females living in the south of England of 
South Asian origin, and 29% of pregnant women in 
London).

This demonstrates the real need to establish the optimal 
level of vitamin D supplementation in specific groups, as 
typified by the vulnerable elderly, who may require a more 
personalized dosage regimen, over and above the univer-
sally recommended dose of 10 µg in the UK, as a result of 
the effects of medication on the status of the vitamin, or 
who are not free-living individuals. For example, in this 
population, one UK trial assessed the effects of daily 
vitamin D supplementation compared to placebo over 
one year using serum measures of vitamin D to assess 
status.252 This randomized placebo-controlled trial was 
conducted in 305 community-dwelling subjects, 65 years 
of age or older. The results highlighted that 4000 IU (100 
µg) vitamin D3 taken on a daily basis is necessary to 
achieve serum concentrations associated with the lowest 
risks of disease. However, despite this situation, SACN 
has set the lowest level for establishing sufficiency (10 ng/ 
mL or 25 nmol/L) of any scientific society or national 
advisory body, and as a result recommends a daily supple-
mentation dose of 10 µg (400 IU). Here, a paper published 
by UK researchers in 2021 highlighted that a search for 
published evidence to support this recommendation was 
completely unsuccessful.253 They argue that

there is considerable evidence to support the higher level 
for sufficiency (20 ng/mL or 50 nmol/L) recommended by 
the European Food Safety Authority and the American 
Institute of Medicine and hence greater supplementation 
(20 micrograms or 800 IU per day) 

As already highlighted, given that in the UK serum levels 
of 25(OH)D typically diminish by around 50% during 
winter, these authors believe “that governments should 
urgently recommend supplementation with 20–25 micro-
grams (800–1,000 IU) per day”.

Although these higher recommendations, if adopted, 
should help to meet people’s needs on a population basis, 
there are arguments to suggest that without them, and even 
possibly with them, supplementation needs to be consid-
ered on a more personalized basis in order to achieve 
optimal status for certain individuals. Carlberg and Haq 
identified significant interindividual responses to 
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supplementation, which suggest that higher than currently 
recommended reference intakes may be needed, but which 
can only be identified as a result of monitoring status, 
which many observers consider unnecessary from a cost 
perspective.254 Without this, it is unlikely that these indi-
viduals will benefit as they might from the correct dose of 
vitamin D supplementation, thereby raising the question of 
the cost/benefit validity of vitamin status evaluations.

Polypharmacy and Vitamin D
Finally, in this context, it is highly relevant to note that the 
incidence of patients taking five or more prescription 
medications and/or over-the-counter products has risen 
significantly in recent years. For example, in the UK in 
the past two decades, the percentage of elderly people 
aged 65 and over taking five or more items increased 
four-fold, from 12% to 49%, while those not taking any 
medication decreased in the same period, to around one in 
13 from one in five255.This pattern also appears to be 
reflected in similar populations in the USA and 
Europe.256–259 Given that many of the medications listed 
above are extensively used, particularly in the elderly 
(where a high incidence of low vitamin D status seems 
to be prevalent), any likely incremental negative outcomes 
of polypharmacy on levels of vitamin D in this age group 
are of notable relevance and require special attention from 
health professionals. This view is supported by two studies 
performed in the elderly and examining precisely this 
issue, and cited in this current review.76,80 The latter, 
entitled “Vitamin D deficiency as adverse drug reaction”, 
identified an overall prevalence of polypharmacy (five or 
more medications used concomitantly) of 65% and a level 
of severe polypharmacy (10 or more medications) of 22% 
in a population of almost 1000 community-dwelling Dutch 
citizens. It identified a 49% level of vitamin D deficiency 
(<50 nmol/L), or 77% (<75 nmol/L) depending on the cut- 
off value used to determine insufficiency. If patients were 
using a vitamin D supplement, these figures fell to 17% 
and 49%, respectively. However, in non-users of vitamin 
D supplements, after adjustment for age and gender, the 
other main factor identified as being negatively associated 
with levels of the vitamin was the use of multiple medica-
tions. This was especially highly significant in male 
patients who had been prescribed severe polypharmacy.80 

A similar conclusion was reached in the study by Sohl 
et al, who examined these effects in two different cohorts 
of over 2000 elderly Dutch patients.76 Again, the study 
data showed that patients prescribed more than one 

medication had lower concentrations of 25(OH)D in 
serum than non-users, leading the authors to recommend 
that vitamin D supplementation ought to be considered in 
patients prescribed long-term medication regimens.

Conclusion
This review has highlighted both significant classes of 
medications that have the potential to impact on vitamin 
D status and the need for further research into this impor-
tant subject. However, until these data are available, all 
health-care professionals need to be cognizant of the 
potential for medication-induced effects on vitamin D 
status. Where appropriate, concentrations of 25(OH)D in 
serum should be monitored and, when necessary, vitamin 
D dietary supplements recommended, with the objective of 
achieving adequate levels of vitamin D while also optimiz-
ing the efficacy of treatment and limiting drug side-effects 
and toxicity.
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