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Purpose: Microsatellite instability (MSI) and mismatch repair deficiency (dMMR) are 
important biomarkers for predicting responses to immune checkpoint inhibitor (ICI) thera-
pies. Although PCR-based tests for high MSI (MSI-H) and dMMR yield highly concordant 
results in endometrial cancer (EC), it is unclear whether this is true for MSI-H and MMR 
detected by next-generation sequencing (NGS) and immunohistochemistry (IHC), respec-
tively. This study investigated whether EC with MSI-H identified by NGS and dMMR 
identified by IHC have similar tumor immune microenvironments.
Patients and Methods: EC tissue and corresponding peripheral blood lymphocyte samples 
were collected from 99 randomly selected patients. MSI status and tumor mutation burden 
(TMB) were examined by NGS. MMR protein and programmed death ligand (PD-L)1 
expression and tumor-infiltrating lymphocyte (TIL) abundance were evaluated by IHC.
Results: Of the 99 EC samples, 29 (29%) had dMMR by IHC, while 18 (18%) had MSI-H 
by NGS. MSI and MMR status identified by the two methods were discordant in the 99 EC 
patients, and 2/18 NGS-identified MSI-H patients (11%) retained MMR protein expression. 
MSI-H and dMMR endometrial tumors had similar numbers of cluster of differentiation 
(CD)3+ TILs (T cells) and CD8+ TILs (cytotoxic T cells) in the tumor center and periphery, 
which differed from those in microsatellite stable (MSS) and mismatch repair-proficient 
(pMMR) EC; they also showed similar TMB, PD-L1 expression, and TIL counts with higher 
TMB and PD-L1 expression than MSS and pMMR ECs. The abundance of CD3+ and CD8+ 
TILs was increased in PD-L1-positive EC.
Conclusion: NGS-identified MSI status and IHC-identified MMR status were inconsistent 
in EC, and 11% of NGS-identified MSI-H tumors retained MMR protein expression. 
Conversely, MSI and MMR status determined by the two methods provided similar data 
on TMB, PD-L1 expression, and TIL abundance, which can guide treatment decisions with 
ICIs.
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Introduction
The incidence of endometrial cancer (EC) is increasing yearly, and EC is one of the 
three most prevalent gynecologic tumors affecting women.1,2 Most patients with EC 
have a low risk of recurrence and can be managed by surgery alone.3 For metastatic and 
relapsed EC, chemotherapy and hormone therapy are the only available treatment 
options, but these are toxic and do not significantly improve 5-year overall survival, 
progression-free survival, or relapse rate.4,5 Many new targeted therapies have recently 
been evaluated in clinical trials, but only a few have improved survival and therapeutic 
responses. Therefore, it is important to identify molecular subgroups of EC that are 
likely to benefit from targeted therapies including immunotherapy.
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EC is a heterogeneous disease comprising multiple 
histotypes with different risk factors, clinical behaviors, 
and outcomes. In the 1970s, a traditional classification of 
EC into types 1 and 2 was proposed.6 The classification 
applied in clinical practice to guide therapeutic decision- 
making is based on histopathologic assessment of cell type 
and grade;7,8 however, this can be highly subjective, diffi-
cult to validate, and has limited utility for predicting 
responses to therapy.9,10 Thus, there is a need for a more 
reproducible, objective, and biologically informative clas-
sification system for EC. The Cancer Genome Atlas 
(TCGA) research network described four distinct prognos-
tic EC subtypes in 2013 based on genomic abnormalities 
that reflect EC tumor biology, which can provide more 
precise guidance for surgery, adjuvant therapy, and disease 
surveillance.11 One of these subtypes is high microsatellite 
instability (MSI-H) or a hypermutated phenotype resulting 
from a defective mismatch repair (MMR) mechanism 
(known as MMR-deficient [dMMR]), which is observed 
in approximately 30% of endometrial tumors.3,12

The algorithm for EC screening may include an immu-
nohistochemistry (IHC)-based test for MMR, PCR-based test 
for MSI, or both, as they are equally valid initial screening 
tools in EC. However, IHC is the preferred method because 
of the high false negative rates of MSI tests in EC.13–15 Next- 
generation sequencing (NGS) platforms use different tech-
nologies to decode the identity of nucleotides in DNA or 
detect covalent modifications such as methylated nucleo-
tides; a distinctive genomic signature for the high MSI 
(MSI-H) phenotype of EC was identified using a targeted 
NGS gene panel. Although PCR-based tests for MSI and 
MMR in EC have high concordance, there is little or no 
agreement between NGS gene panel results for MSI and 
IHC results for MMR.11,16 This is clinically significant, 
because tumor-infiltrating lymphocytes (TILs) are more 
abundant in the immune microenvironment of MSI-H EC 
compared to microsatellite-stable (MSS) EC.17 Additionally, 
programmed death ligand (PD-L)1 expression was elevated 
in dMMR EC compared to MMR-proficient (pMMR) cases. 
It is therefore important to compare the tumor immune 
microenvironment in EC with NGS-identified MSI-H and 
IHC-identified dMMR to determine whether there are any 
discrepancies that could influence decisions concerning 
immune checkpoint inhibitor (ICI) therapies.

In the present study we analyzed the degree of concor-
dance between NGS-identified MSI-H and IHC-identified 
dMMR ECs—specifically with respect to the tumor immune 
environment (eg, neoantigens, PD-L1 expression, and TIL 

levels)—with the aim of identifying EC subgroups that could 
potentially benefit from targeted immunotherapy regimens.

Materials and Methods
Patients and Tissues
We obtained EC tissues and corresponding peripheral blood 
lymphocyte samples from 99 randomly selected (in terms of 
age and personal or family history of cancer) patients who 
were treated at our institution between 2015 and 2018. Clinical 
information obtained from hospital records included age at 
diagnosis, surgical stage, adjuvant treatment, and disease sta-
tus. The patients were staged according to the International 
Federation of Gynecology and Obstetrics criteria. Tumor 
grade, histologic subtype, depth of myometrial invasion, and 
lymphovascular invasion were reviewed by a gynecologic 
pathologist based on the 2014 World Health Organization 
criteria. This study was approved by the Human 
Investigation Ethics Committee of the Shanghai First 
Maternity and Infant Hospital. Samples were collected from 
patients after they had provided written, informed consent.

IHC
Deparaffinized tissue sections were rehydrated in dewaxing 
solution (Maixin, Fuzhou, China) for 10 min, and antigens 
were retrieved by heating the sections in EDTA (pH 9.0) for 
20 min at 99°C. IHC was performed using a Titan S autostai-
ner (Lumatas Biosystems, Fremont, CA, USA) as follows. 
Endogenous peroxidase activity was blocked with H2O2 

(Maixin, Fuzhou, China) and the sections were incubated 
with primary antibodies diluted 1:100 or 1:200 (Table S1) at 
room temperature for 30 min, followed by incubation with 
secondary antibodies. The sections were stained with 3,3′- 
diaminobenzidine (DAB) as the chromogen (Maixin, 
Fuzhou, China) using the Elivision Super kit (Maixin, 
Fuzhou, China), followed by staining with prediluted anti– 
PD-L1 antibody (clone SP263; Ventana Medical Systems, 
Tucson, AZ, USA). The negative control was a matched rabbit 
IgG. The sections were assessed using an OptiView DAB IHC 
Detection Kit (Thermo Fisher Scientific, Waltham, MA, USA) 
on a BenchMark ULTRA automated staining platform 
(Roche, Basel, Switzerland). The specificity and sensitivity 
of the assay were evaluated using control placental tissue 
samples with known PD-L1 expression levels.

Evaluation of IHC Staining
Three pathologists who were blinded to the MSI status of 
patient samples independently reviewed the stained 
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sections. Nuclear staining of adjacent normal endometrial 
lymphocytes served as the internal positive control. We 
judged the complete absence of nuclear staining in the 
tumor cells as a loss of MMR protein expression, and 
manually counted TILs in the five areas with the highest 
lymphocyte aggregation within or adjacent to the tumor 
(Figure 1). The sections were scanned at 20× magnifica-
tion using an Aperio Scanscope AT Turbo scanner (Leica 
Biosystems, Nussloch, Germany) as previously described.-
17 Immune cells in the tumor periphery (Figure 1, green 
boxes) were defined as those that were +1 or −1 mm from 
the invasive tumor front or endometrium–myometrium 
interface. The center (Figure 1A, yellow boxes) was 
defined as the area >1 mm away from the invasive tumor 
front or endometrium–myometrium interface toward the 
luminal aspect (Figure 1B). The box with the highest 
signal intensity was considered as a hotspot (Figure 1C, 
red boxes). Intraepithelial TILs were counted in a 1-mm2 

area of tumor located within the boundary of tumor cell 
nests or glands. Stromal TILs were those in the stroma of 

the endometrial tumor. The numbers of positive cells in the 
periphery, center, hotspot, and intraepithelial and stromal 
areas were summed and divided by the number of cells in 
the total area (mm2). The results for cluster of differentia-
tion (CD)3 and CD8 cells are shown as positive cells/mm2.

PD-L1 was predominantly expressed at the margin or 
the infiltrating edge of the interface between the tumor and 
immune stroma (Supplementary Figure S1). PD-L1 
expression was evaluated in tumor cells and tumor-infil-
trating immune cells. The proportion of PD-L1–positive 
tumor cells was estimated as the ratio (%) of total tumor 
cells, and the ratio of PD-L1–positive tumor-infiltrating 
immune cells in tumors was also calculated. We chose 
1% and 5% cutoffs as the PD-L1–positive thresholds for 
tumor and immune cells, respectively (Supplementary 
Figure S2).

Detection of MSI-H by NGS
MSI status was determined by analyzing total genomic 
DNA extracted from formalin-fixed paraffin-embedded 
(FFPE) tumor tissues by NGS. Areas of interest with the 
highest tumor cellularity and viability (minimum 10% for 
both parameters) in sections stained with hematoxylin and 
eosin were selected. Tumor cellularity was enriched by 
macrodissection using a sterile 1-mm tissue punch. Total 
genomic DNA was extracted from tissue cores or 
unstained slides using the QIAamp DNA FFPE tissue kit 
(Qiagen, Valencia, CA, USA), and DNA concentrations 
were measured using Qubit dsDNA assays (Thermo Fisher 
Scientific). Fragments of DNA obtained using a Covaris 
M220 focused ultrasonicator (Covaris, Woburn, MA, 
USA), were selected using AMPure beads and the 
Agencourt AMPure XP kit (Beckman Coulter, Brea, CA, 
USA). The genetic profile of all tissue samples was 
assessed by capture-based targeted deep sequencing 
using the NGS genetic testing panel OncoScreen Plus 
(Burning Rock Dx, Guangzhou, China) with a modified 
Roche/Nimblegen SeqCap EZ method (Roche). This panel 
selects 520 genes that are associated with cancer patho-
genesis and targeted therapies via probe hybridization and 
high-throughput sequencing, including whole exon regions 
of 312 genes and hotspot mutation regions (exons, introns, 
and promoter regions) of 208 genes. The panel can com-
prehensively and accurately detect variations in gene 
mutations, amplifications, and fusions with clinical rele-
vance to tumors as well as biomarkers for response to ICIs 
such as the tumor mutation burden (TMB) and MSI. DNA 
quality and size were assessed using a high-sensitivity 

Figure 1 Strategy for quantifying TILs in endometrioid EC. (A) Representative H&E 
staining of endometrioid EC to define the tumor center and periphery. (B and C) 
Quantification of CD3+ cells (B) and CD8+ cells (C) in the tumor center and 
periphery. Red box, hotspot (single 1-mm2 box); green boxes, tumor periphery (five 
1-mm2 boxes); yellow boxes, central areas (five 1-mm2 boxes). Scale bars: 1 mm. 
Abbreviation: H&E, hematoxylin and eosin.
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DNA assay and bioanalyzer. All indexed samples were 
sequenced using a NovaSeq 6000 system (Illumina, San 
Diego, CA, USA) with paired-end reads.

TMB
TMB is reported as mutations per megabases of sequenced 
DNA and was calculated based on the number of somatic 
mutations identified by NGS to exclude any known single 
nucleotide polymorphisms in the database.18

Statistical Analysis
Statistical analyses were performed using SPSS v20.0 
(SPSS Inc, Chicago, IL, USA) and Prism v8.1.2 
(GraphPad, La Jolla, CA, USA). Categorical data are 
described as frequency and percentage, and quantitative 
variables are expressed as mean±SEM. Fisher’s exact test 
or the chi-squared test was used to compare categorical 
variables. The Student’s t test was used to compare para-
metric data with a normal distribution, and the Mann– 
Whitney U-test was used for nonparametric data. 
Differences with P<0.05 were considered significant.

Results
MSI Status of EC Determined by NGS 
and dMMR Detected by IHC
The clinical and pathologic characteristics of the 99 patients 
included in this study are summarized in Table S2. Most 
patients were diagnosed with grade 1 EC (Table 1). The                

MSI status of the patients as determined by NGS and IHC 
was compared (Table S4). The levels of the MMR proteins 
MutL homolog (MLH)1, MSH2, MSH6, and PMS1 homo-
log (PMS)2 in 99 endometrial tumors were assessed by IHC. 
Staining of MMR proteins was normal in 70 tumors with 
pMMR (78%), indicating MSS; 29 (29%) showed no immu-
noreactivity against one or two MMR proteins and were thus 
identified as dMMR, indicating MSI-H. Most of these tumors 
lacked expression of both MLH1 and PMS2 (Figure 2). The 
NGS results showed that 18/99 tumors (18%) had MSI; 2 of 
these (11%) retained MMR protein expression, and 16 (89%) 
were confirmed as dMMR by IHC. Additionally, 10 tumors 
(10%) had germline mutations in MMR-related genes, of 

Table 1 Clinical and Pathological Characteristics of the Study 
Population

Histology Grade Total Patients %

Endometrioid 1–3 88 88.89

1 66 66.67

2 16 16.16
3 6 6.06

Serous 3 3 3.03

Clear cell 3 1 1.01

Mixed carcinomas 3 1 1.01

Carcinosarcoma 3 6 6.06

Total 99 100

Figure 2 Detection of MMR protein expression by IHC. (A and B) Loss of MLH (A) and PSM2 (B) staining. (C and D) Intact MSH2 (C) and MSH6 (D) staining. Note the 
presence of nuclear staining in adjacent glands and benign stromal cells, validating the IHC method. Scale bars: 100 μm.
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which 6 (60%) had NGS-identified MSI-H (Table S3). A 
total of 26 tumors (26%) had somatic mutations in MMR- 
related genes and 11 of these had NGS-identified MSI-H 
(Table S4). Compared to the detection of MSI status by 
NGS, IHC-identified dMMR had a sensitivity of 55.2% 
(95% confidence interval [CI]: 37.07%, 73.27%), specificity 
of 97.1% (95% CI: 93.24%, 101.05%), positive predictive 
value of 88.9% (95% CI: 74.37%, 103.41%), and negative 
predictive value of 84.0% (95% CI: 75.96%, 91.94%) for 
detecting MSI status (Table 2).

TMB and PD-L1 Expression in MSI-H and 
dMMR EC
We next examined the relationship between TMB, MSI-H 
or dMMR, and PD-L1 expression. MSI-H tumors had high 
TMB (Figure 3A) and showed increased PD-L1 expres-
sion in tumor and immune cells compared to MSS tumors 
(Figures 3B and 4). Increased TMB (Figure 5A) and an 
increasing trend in PD-L1 expression in tumor and 
immune cells were observed in dMMR tumors compared 
to pMMR tumors (Figures 5B and 6). MSI-H tumors had 

Table 2 Classification of MSI by NGS Compared with Classification of MMR by IHC

IHC

MSI-H MSI-L/MSS

OncoScreen Plus (NGS) MSI-H 16 2 PPV=88.9%

MSI-L/MSS 13 68 NPV=84.0%
Accuracy Sensitivity = 55.2% Specificity = 97.1%

Abbreviations: IHC, immunohistochemistry; MSI-H, microsatellite instability-high; MSI-L, microsatellite instability-low; MSS, microsatellite stable; NPV, negative predictive 
value; PPV, positive predictive value.

Figure 3 Neoantigen load and PD-L1 expression level in MSI-H and MSS EC. (A) TMB per megabase in tumor DNA exons and introns detected by ColoSeq. Blue and green 
represent MSI-H and MSS tumors, respectively. (B–D) Average numbers of PD-L1–expressing tumor cells and TILs (B), CD3+ immune cells (C), and CD8+ immune cells 
(D) identified by IHC. NS, nonsignificant at p>0.05, *p<0.05, **p<0.01 (Mann–Whitney U-test). 
Abbreviation: HPF, high-power field.
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Figure 4 Upregulation of PD-L1 in MSI-H EC. (A–D) H&E staining and positive membrane staining for PD-L1 in MSI-H ECs. Scale bars: 60 μm. 
Abbreviation: H&E, hematoxylin and eosin.

Figure 5 Neoantigen load and PD-L1 expression level in dMMR and PMMR endometrial tumors. (A) TMB per megabase in tumor DNA exons and introns detected by 
ColoSeq. Red and black represent dMMR and PMMR tumors, respectively. (B) Average numbers of PD-L1–expressing tumor cells and TILs (B), CD3+ immune cells (C), and 
CD8+ immune cells (D) identified by IHC. NS, nonsignificant at p>0.05, *p<0.05, (Mann–Whitney U-test). 
Abbreviation: HPF, high-power field.
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TMB and PD-L1 expression levels similar to dMMR 
tumors (Figure 7A and B).

TILs in MSI-H and dMMR EC
To compare the tumor immune environments in EC iden-
tified as MSI-H by NGS and dMMR by IHC, we per-
formed IHC-based quantification of CD3+ and CD8+ 
TILs. CD3+ and CD8+ cells in the tumor center and 
periphery were counted in the tumor center (Figure 1, 
yellow boxes), hotspot (Figure 1, red boxes), and periph-
ery (Figure 1, green boxes) in areas of highest staining 
density in five fields with an area of 1 mm2. MSI-H and 
MSS EC had comparable numbers of CD3+ TILs (T cells) 
and CD8+ TILs (cytotoxic T cells) in the tumor center 
(CD3+: 558.2 vs 517.3, P=0.638; CD8+: 138.6 vs 148.5, 
P=0.428) and periphery (CD3+: 669.9 vs 549.9, P=0.270; 
CD8+: 163.5 vs 199.2, P=0.953) (Table 3 and Figure 3C 
and D); dMMR and pMMR EC also showed similar num-
bers of CD3+ TILs (T cells) and CD8+ TILs (cytotoxic T 
cells) in the tumor center (CD3+: 571.8 vs 531.6, P=0.734; 
CD8+: 97.0 vs 148.5, P=0.276) and periphery (CD3+: 
593.4 vs 555.5, P=0.270; CD8+: 124.1 vs 205.6, 
P=0.793) (Table 4 and Figure 5C and D). MSI-H tumors 
had similar numbers of CD3+ TILs and CD8+ TILs as 
dMMR tumors (Figure 7C and D).

TILs are Increased in PD-L1–Positive EC
PD-L1 expression was detected in tumor cells in 75/98 
tumors (76.5%) and immune cells in 93/98 tumors 

(94.9%) with the 1% cutoff (Tables 5 and 6); and in 
tumor cells in 52/98 tumors (53.1%) and immune cells 
in 82/98 tumors (83.7%) with the 5% cutoff (Tables 7 
and 8). PD-L1 expression increased significantly with 
CD3+ and CD8+ TIL numbers in the tumor microen-
vironment with both cutoff values (Tables 5–8). IHC 
analysis revealed that endometrial tumors with high 
PD-L1 expression had higher numbers of CD3+ and 
CD8+ TILs in the tumor microenvironment (Figure 8).

Discussion
MSI-H is an important biomarker for predicting 
response to ICI therapies, and defects in DNA MMR 
proteins are the primary cause of MSI.19 In our study, 
100% of IHC-identified dMMR and NGS-identified 
MSI-H endometrial tumors belonged to different sub-
groups but had similar TMB, PD-L1 expression, and 
TIL counts, which can be useful for predicting 
response to ICI therapies.

MSI-H is a tumor biomarker in a variety of tumors 
including colorectal and gastric cancers and EC,20–22 

and can be determined either by PCR with or without 
specific fragment sizes or by NGS depending on the 
individual tumor entity.23–25 DNA MMR is a critical 
DNA repair pathway that contributes to genomic 
stability,26 and tumors with dMMR—which is the pri-
mary cause of MSI-H9—have shown a remarkable 
response to immunotherapy in clinical trials.27 Gene 
mutations and slipped-strand mispairing contribute to 

Figure 6 Upregulation of PD-L1 expression in dMMR EC. (A–D) H&E staining and positive membrane staining for PD-L1 in dMMR ECs. H&E, hematoxylin and eosin. Scale 
bars: 60 μm.
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the instability of DNA strands during the replication of 
repeated DNA sequences and can also give rise to a 
strong mutator phenotype and MSI.9,28 The expression 

of MMR proteins corresponds to MSI-H detection 
results in >90% of cases, while approximately 6% of 
MSI-H tumors retain MMR protein expression.29,30 In 

Figure 7 Neoantigen load and PD-L1 expression level in dMMR and MSI-H endometrial tumors. (A) TMB per megabase in tumor DNA exons and introns detected by 
ColoSeq. Red and blue represent dMMR and pMMR tumors, respectively. (B) Average numbers of PD-L1–expressing tumor cells and TILs (B), CD3+ immune cells (C), and 
CD8+ immune cells (D) identified by IHC. NS, nonsignificant at p>0.05 (Mann–Whitney U-test). 
Abbreviation: HPF, high-power field.

Table 3 TILs in MSI-H and MSS ECs

Variable MSI-H (N = 17) MSS (N = 80) P

Mean (SD) Median Mean (SD) Median

Mean CD3 (cells/mm2)

Glands 166.4 (148.3) 111 143.1 (169.9) 90.5 0.234

Interstitium 517.3 (383.5) 433 448.2 (297.1) 405.5 0.413

Hotspot 872.6 (459.4) 843 749.7 (544.8) 685 0.389

Center 558.2 (390.6) 469 513.7 (343.6) 433 0.638

Periphery 669.9 (499.4) 494 549.9 (488.4) 424.5 0.27

Mean CD8 (cells/mm2)

Glands 60.8 (40.6) 58.5 57.5 (70.9) 35 0.13

Interstitium 120.8 (154.5) 72.5 156.5 (154.5) 90 0.271

Hotspot 243.2 (217.5) 175.5 254.3 (258.4) 164 0.761

Center 138.6 (93.2) 130.5 148.5 (158.7) 95 0.482

Periphery 163.5 (139.2) 122 199.2 (223.9) 119 0.953

Abbreviations: MSI-H, microsatellite instability-high; MSS, microsatellite stable.
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this study, 18% of tumors were identified as MSI-H by 
NGS and 29% as dMMR by IHC; 16% had both NGS- 
identified MSI-H and IHC-identified dMMR. The 
MMR and MSI status were discordant in all 99 endo-
metrial tumors, and two NGS-identified MSI-H cases 
(11%) retained MMR protein expression. Determining 
the level of agreement between MSI and MMR status 
is critical for predicting the response to ICI therapy 
in EC.

MSI-H and dMMR tumors usually harbor a large 
number of neoantigens that contribute to immune 

activation.31,32 Targeting checkpoints related to 
immune cell activation is the most effective way to 
activate the antitumor immune response.33 In advanced 
carcinomas, MSI-H is an established predictor of ther-
apeutic response to checkpoint-directed 
immunotherapies.34,35 Additionally, dMMR was 
shown to enhance the efficacy of ICIs in solid tumors. 
We determined that NGS-identified MSI-H and IHC- 
identified dMMR EC has similar TMB, PD-L1 expres-
sion, and TIL counts. TMB and PD-L1 expression were 
higher in NGS-identified MSI-H and IHC-identified 

Table 4 TILs in dMMR and PMMR ECs

Variable dMMR (N=12) PMMR (N=70) P

Mean (SD) Median Mean (SD) Median

Mean CD3 (cells/mm2)

Glands 204.4 (242.8) 113.5 152.5 (178.7) 92.5 0.281

Interstitium 433.0 (275.2) 275.2 459.6 (309.5) 409.5 0.781

Hotspot 774.3 (509.6) 509.6 759.9 (555.1) 673 0.933

Center 571.8 (458.7) 458.7 531.6 (360.8) 455.5 0.734

Periphery 593.4 (494.0) 494.1 555.5 (469.6) 424.5 0.799

Mean CD8 (cells/mm2)

Glands 54.9 (45.1) 43 59.9 (74.6) 34 0.508

Interstitium 76.6 (45.7) 70.5 164.2 (171.4) 91.5 0.081

Hotspot 163.4 (81.2) 157.5 257.9 (272.8) 149.5 0.713

Center 97.0 (79.7) 84 152.3 (162.2) 98.5 0.276

Periphery 124.1 (52.9) 122 205.6 (233.0) 119 0.793

Abbreviations: dMMR, deficient mismatch repair; PMMR, proficient mismatch repair.

Table 5 TILs in ECs with or without Positive PD-L1 Expression in Tumor Cells (Cutoff Value: 1%)

Variable PD-L1-Negative Tumor PD-L1-Positive Tumor P

N = 23 N = 75

Mean (SD) Median Mean (SD) Median

Mean CD3 (cells/mm2)

Glands 55.5 (41.2) 45.5 184.9 (197.2) 115.5 <0.0001

Interstitium 381.2 (363.5) 328 492.3 (300.6) 454 0.15

Hotspot 547.9 (509.0) 380.5 856.6 (539.1) 754.5 0.019

Centre 371.6 (315.2) 302 582.9 (374.1) 496 0.018

Periphery 444.8 (583.0) 310 627.6 (478.6) 537.5 0.02

Mean CD8 (cells/mm2)

Glands 39.1 (70.8) 18 63.6 (64.3) 47.5 0.001

Interstitium 118.7 (136.8) 72 159.7 (160.1) 94 0.054

Hotspot 168.5 (192.4) 116 277.7 (260.8) 191.5 0.005

Centre 110.9 (126.3) 83 157.2 (154.2) 109 0.03

Periphery 129.6 (166.4) 85 212.4 (220.3) 143.5 0.005

Abbreviations: TILs, tumor-infiltrating lymphocytes; EC, endometrial cancer.
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dMMR EC samples than in those with MSS and 
pMMR, respectively. There were no differences in 
CD3+ and CD8+ TIL counts between ECs with MSI- 
H and MSS identified by NGS or between ECs with 
dMMR and pMMR identified by IHC. The higher TMB 
and PD-L1 expression in MSI-H and dMMR endome-
trial tumors supports the clinical efficacy of pro-
grammed death (PD)-1 inhibitors in the treatment of 
solid tumors with MSI24 and dMMR.27,31,34 

Furthermore, PD-L1 expression increased with TIL 
abundance in the endometrial tumor microenvironment, 
indicating that PD-1 inhibitors can elicit an effective 
antitumor immune response in EC with high PD-L1 
expression.

Conclusion
NGS-identified MSI and IHC-identified MMR status 
was inconsistent in 100% of examined EC samples and 

Table 6 TILs in ECs with or without Positive PD-L1 Expression in Immune Cells (Cutoff Value: 1%)

Variable PD-L1-Negative Immune Cells PD-L1-Positive Immune Cells P

N = 5 N = 93

Mean (SD) Median Mean (SD) Median

Mean CD3 (cells/mm2)
Glands 34.5 (39.3) 20.5 160.5 (184.4) 95 0.015

Interstitium 131.8 (108.6) 128 481.4 (315.8) 422 0.03
Hotspot 132.8 (61.0) 124 814.3 (539.5) 715 0.014

Center 153.5 (139.1) 132.5 551.1 (369.1) 460 0.035

Periphery 162.5 (113.9) 139 604.1 (509.7) 496.5 0.025

Mean CD8 (cells/mm2)
Glands 12.2 (11.4) 7 60.3 (67.2) 40.5 0.003
Interstitium 102.8 (153.3) 34 152.5 (155.7) 91.5 0.085

Hotspot 68.6 (40.7) 58 261.8 (252.6) 174 0.005

Center 46.8 (40.9) 21 151.6 (150.7) 104.5 0.02
Periphery 44.6 (37.6) 27 200.8 (213.6) 131.5 0.003

Abbreviations: TILs, tumor-infiltrating lymphocytes; EC, endometrial cancer.

Table 7 TILs in ECs with or without Positive PD-L1 Expression in Tumor Cells (Cutoff Value: 5%)

Variable PD-L1-Negative Tumor Cells PD-L1-Positive Tumor Cells P

N = 46 N = 52

Mean (SD) Median Mean (SD) Median

Mean CD3 (cells/mm2)
Glands 94.1 (107.5) 53 209.1 (216.1) 131 0

Interstitium 377.1 (309.9) 335 546.0 (305.6) 475 0.009
Hotspot 589.2 (471.9) 462 959.4 (551.3) 860 0.001

Centre 410.8 (324.2) 341 643.7 (377.8) 607 0.002

Periphery 463.9 (508.1) 310 693.2 (486.0) 627 0.002

Mean CD8 (cells/mm2)
Glands 42.5 (55.8) 26.5 71.6 (72.4) 50 0.001
Interstitium 123.0 (114.6) 79.5 174.3 (182.1) 94 0.165

Hotspot 189.6 (174.1) 126 307.9 (292.8) 195 0.005

Centre 122.2 (115.4) 86 167.9 (171.8) 114 0.08
Periphery 147.0 (147.3) 100.5 233.9 (249.6) 149 0.008

Abbreviations: TILs, tumor-infiltrating lymphocytes; EC, endometrial cancer.
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11% of NGS-identified MSI-H cases retained MMR 
protein expression. Furthermore, MSI-H and dMMR 
endometrial tumors had similar tumor immune micro-
environments with comparable TMB, PD-L1 expression, 
and TIL abundance. A combination of MSI-H and 
dMMR may better reflect the pathologic status of EC 
patients and can facilitate clinical decision-making 
regarding ICI therapy.

Abbreviations
CD, cluster of differentiation; DAB, 3,3′-diaminobenzidine; 
dMMR, deficient mismatch repair; EC, endometrial cancer; 
FFPE, formalin-fixed paraffin-embedded; ICI, immune check-
point inhibitor; IHC, immunohistochemistry; MMR, mis-
match repair; MSI, microsatellite instability; MSI-H, high 
microsatellite instability; MSS, microsatellite-stable; NGS, 
next-generation sequencing; PD-1, programmed death 1; 

Table 8 TILs in ECs with or without Positive PD-L1 Expression in Immune Cells (Cutoff Value: 5%)

Variable PD-L1-Negative Immune Cells PD-L1-Positive Immune Cells P

N = 16 N = 82

Mean (SD) Median Mean (SD) Median

Mean CD3 (cells/mm2)
Glands 40.5 (24.8) 35 176.5 (190.9) 111 0

Interstitium 271.3 (204.0) 259 503.1 (322.4) 448 0.009
Hotspot 388.5 (282.0) 359 859.5 (551.7) 750 0.002

Centre 276.6 (196.1) 246 582.3 (376.5) 485 0.003

Periphery 233.7 (215.0) 188 650.9 (519.3) 536 0

Mean CD8 (cells/mm2)
Glands 20.0 (14.7) 15 65.2 (70.0) 47 0
Interstitium 78.1 (86.0) 56.5 164.2 (162.1) 94 0.003

Hotspot 93.3 (48.7) 85.5 283.1 (261.6) 195 0

Centre 61.4 (39.6) 60.5 163.0 (156.7) 114 0.001
Periphery 68.7 (43.7) 49.5 217.2 (222.2) 147 0

Abbreviations: TILs, tumor-infiltrating lymphocytes; EC, endometrial cancer.

Figure 8 Detection of PD-L1, CD3, and CD8 expression in the tumor center by IHC. (A) H&E staining. (B–D) Positive staining for PD-L1 (B), CD3 (C), and CD8 (D). 
Scale bars: 60 μm.
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PD-L1, programmed death ligand 1; pMMR, mismatch repair- 
proficient; TCGA, The Cancer Genome Atlas; TIL, tumor- 
infiltrating lymphocyte; TMB, tumor mutation burden.
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