
O R I G I N A L  R E S E A R C H

Artificial Intelligence Analysis of Mandibular 
Movements Enables Accurate Detection of Phasic 
Sleep Bruxism in OSA Patients: A Pilot Study

Jean-Benoit Martinot 1,2 

Nhat-Nam Le-Dong3 

Valérie Cuthbert1 

Stéphane Denison3 

David Gozal4 

Gilles Lavigne5 

Jean-Louis Pépin 6

1Sleep Laboratory, CHU Université Catholique 
de Louvain (UCL) Namur Site Sainte-Elisabeth, 
Namur, 5000, Belgium; 2Institute of Experimental 
and Clinical Research, UCL Bruxelles Woluwe, 
Brussels, 1200, Belgium; 3Sunrise, Namur, 5101, 
Belgium; 4Department of Child Health and Child 
Health Research Institute, University of Missouri, 
Columbia, MO, 65201, USA; 5Faculté de 
médecine dentaire, Université de Montréal, 
Montréal, Québec, H3C 3J7, Canada; 6HP2 
Laboratory, Inserm U1042, University Grenoble 
Alpes, Grenoble, 38000, France 

Purpose: Sleep bruxism (SBx) activity is classically identified by capturing masseter and/or 
temporalis masticatory muscles electromyographic activity (EMG-MMA) during in- 
laboratory polysomnography (PSG). We aimed to identify stereotypical mandibular jaw 
movements (MJM) in patients with SBx and to develop rhythmic masticatory muscles 
activities (RMMA) automatic detection using an artificial intelligence (AI) based approach.
Patients and Methods: This was a prospective, observational study of 67 suspected 
obstructive sleep apnea (OSA) patients in whom PSG with masseter EMG was performed 
with simultaneous MJM recordings. The system used to collect MJM consisted of a small 
hardware device attached on the chin that communicates to a cloud-based infrastructure. An 
extreme gradient boosting (XGB) multiclass classifier was trained on 79,650 10-second 
epochs of MJM data from the 39 subjects with a history of SBx targeting 3 labels: 
RMMA episodes (n=1072), micro-arousals (n=1311), and MJM occurring at the breathing 
frequency (n=77,267).
Results: Validated on unseen data from 28 patients, the model showed a very good epoch-by 
-epoch agreement (Kappa = 0.799) and balanced accuracy of 86.6% was found for the MJM 
events when using RMMA standards. The RMMA episodes were detected with a sensitivity 
of 84.3%. Class-wise receiver operating characteristic (ROC) curve analysis confirmed the 
well-balanced performance of the classifier for RMMA (ROC area under the curve: 0.98, 
95% confidence interval [CI] 0.97–0.99). There was good agreement between the MJM 
analytic model and manual EMG signal scoring of RMMA (median bias −0.80 events/h, 
95% CI −9.77 to 2.85).
Conclusion: SBx can be reliably identified, quantified, and characterized with MJM when 
subjected to automated analysis supported by AI technology.
Keywords: masticatory muscular activities, machine learning, jaw movement

Introduction
Recent progress in biosensor technology and digital health are speeding up digitiza-
tion in sleep medicine.1,2 Artificial intelligence has provided new tools for auto-
mated scoring and interpretation of complex biological signals to characterize sleep 
architecture in various sleep disorders.3–5 These innovations are beginning to offer 
patients the possibility of monitoring their sleep with simplified devices, in ecolo-
gical conditions at home. These digital medicine solutions will also enable long- 
term follow-up and personalized expert guidance coaching.

Repetitive jaw muscle activity may lead to development of sleep bruxism (SBx) in 
some individuals, which is characterized by tooth clenching or grinding and/or 
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mandible bracing or thrusting.6–9 The estimated prevalence 
of SBx is primarily based on reports by parents or a sleep 
partner and is highest in childhood, varying from 14% to 
20%.10 SBx prevalence then stabilizes at about 8–12% in 
teenagers and adults, and declines to ~3% in older 
individuals.7,8,10

Not all individuals with SBx present tooth grinding, 
but all SBx patients display rhythmic masticatory muscles 
activities (RMMA) during sleep.7,11,12 Clinical SBx with 
an RMMA frequency of at least 2 episodes per hour of 
sleep is frequently found in the general population, as well 
as in patients with sleep comorbidities such as obstructive 
sleep apnea (OSA) and insomnia.13–15

RMMA occurs as a result of an involuntary trigeminal 
motor-neuronal discharge detected through stereotypical and 
repetitive EMG activities recorded at the surface of the 
related muscles.6 Conventional in-laboratory type 1 poly-
somnography (PSG) remains the gold standard for SBx 

diagnosis in complex or severe cases.16 However, the PSG 
montage has to be supplemented by the surface EMG elec-
trodes applied over the masseter and/or anterior temporal 
jaw muscles to record underlying RMMAs (EMG-MMA).17

Until now, the size and discomfort imposed by jaw 
tracking recording devices have been a major limitation 
for human sleep studies in a natural home 
environment.18,19 Recent noninvasive and easy to use 
technological innovation has made possible the contin-
uous data collection during sleep of mandibular jaw 
movements (Figure 1). This technological advance sup-
ported by artificial intelligence analyses confers the 
opportunity to collect accurate information on sleep- 
wake transitions, cortical arousals and respiratory effort 
in the presence of sleep-related breathing disorders.20 

Additionally, preliminary data have demonstrated the 
feasibility of such technology to assess SBx EMG- 
MMA.21 Artificial intelligence (AI) methods have been 

Figure 1 Jaw mandibular sensing and overview of data analysis plan.
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developed to automate and enhance the scoring of sleep 
mandibular jaw movements (MJM) to characterize SBx 
episodes, respiratory efforts and micro-arousals.

The objective of the present study was to test if 
a machine learning AI automated analysis of MJM 
recorded with a mandibular sensor provided concordant 
results with the classical SBx metric, EMG-MMA, in 
patients undergoing overnight PSG for suspected OSA.

Patients and Methods
Study Subjects and Design
Sixty-seven consecutive patients, clinically suspected of 
suffering from OSA, were referred for in-laboratory 
PSG. Among these, 61 SBx subjects were recruited 
based on positive self-report of awareness of jaw clench-
ing and/or tooth grinding, and/or sleep partner report of 
tooth grinding, and/or dentist report of high probability of 
SBx.9 Their sleep was recorded in a dedicated room with 
a specific EMG montage for collection of jaw muscle 
activities (masseter) and MJM with the Sunrise device. 
All recordings were done at a single sleep centre (CHU 
UCL Namur, Sainte Elisabeth site, Namur, Belgium) 
between February 2018 and November 2019.

The study has been performed in accordance with the 
principles stated in the Declaration of Helsinki. Prior to 
starting the study, ethical approval has been obtained from 
the local ethics committee (Comité d’Ethique Hospitalo- 
Facultaire-Universitaire de Liège, Belgium) to confirm the 
study meets national and international guidelines for 
research on humans. Each participant provided written 
informed consent to be part of the study (IRB 00004890 
- number B707201523388). Preliminary results of this 
study were presented at the 2020 virtual Sleep meeting 
(August 27–30, 2020).21

The study design was a prospective, cross-sectional 
observational study, whereby 2 subgroups of consecutive 
suspected OSA patients participated in a training set to 
develop an AI analytic model, and in a clinical indepen-
dent validation study.

Sleep Study
In-laboratory type 1 PSG was recorded with a digital 
acquisition system (Somnoscreen Plus, Somnomedics, 
Germany). Classical monitored parameters were comple-
mented with bilateral surface masseter electromyograms 
(see Online Supplement).

PSG data were manually scored by two experienced 
investigators (V.C. and an experienced sleep technologist; 
both trained in the same sleep laboratory used the same 
scoring software [Domino version 3.0.0.1]) and achieved 
>90% scoring agreement. All sleep stages, EEG arousals, 
and sleep-related respiratory events were visually scored 
in accordance with the current American Academy of 
Sleep Medicine (AASM) criteria.22,23 Hypopneas were 
scored using the AASM-recommended hypopnea 1A defi-
nition, requiring a ≥30% decrease in airflow lasting ≥10 
seconds and associated with a ≥3% decrease in oxygen 
saturation or an EEG arousal.23,24

SBx was diagnosed based on the criteria defined in the 
third edition of the International Classification of Sleep 
Disorders (ICSD-3) and the recent version of the AASM 
manual for the scoring of sleep.13,22

RMMA scoring during polysomnography includes the 
following classifications: masseter contractions that are 
phasic (˃3 electromyogram [EMG] bursts lasting 0.25– 
2.0 s each) and/or tonic (sustained for ˃2 s) and/or 
a mixture of both.13,25

In this study, we used the definition provided by an 
international consensus where SBx self-reports and clinical 
examination are not mandatorily required if EMG-MMA 
data are recorded.4 According to the AASM manual for the 
scoring of sleep, SBx was scored if the RMMA was asso-
ciated with the presence of ≥2 recorded audio-video epi-
sodes/sleep period of obvious undisputable grinding. The 
concomitant bursts of activity at the masseter surface EMG 
could be phasic, tonic, or mixed according to ICSD-3.13

The RMMA associated to SBx is produced at a typical 
frequency around 1 Hz. By contrast artifacts due to 
scratching, swallowing or coughing are not occurring at 
a predictable frequency. Differences in signal amplitudes 
are also displayed ie, very large movement in case of 
swallowing, very sharp when coughing. During the data 
preparation for model training and labeling, we did 
remove the epochs including these artifacts (less than 1% 
of the total amount of the studied epochs).

MJM Recordings and Description of the 
Movement Sensor (Figure 1)
As indicated above, bilateral masseter surface EMG was 
added to the PSG montage as the reference method for 
detecting RMMA. A blinded comparison was done with 
simultaneous MJM recordings using the MJM sensor 
system.
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MJM was recorded with the Sunrise system (Namur, 
Belgium), a light-weighted device (3 gr - 42×17 mm) 
taped with an adhesive to the patient’s chin (in the mento-
labial sulcus) (Figure 1) and synchronized with the clock 
of the PSG acquisition system. The device includes an 
inertial measurement unit that enables jaw movement sen-
sing, and communicates with a smartphone application for 
external control. This unit encodes the linear acceleration 
and rotational velocities of the mandible, measured at the 
mentolabial sulcus (and therefore MJM) during respiratory 
and non-respiratory activation of the masseters and the 
submental muscles.26,27 MJM data are automatically trans-
ferred to a cloud-based infrastructure at the end of the 
night.

The MJM sensor algorithm allows for automatic iden-
tification of obstructive and mixed apneas and hypopneas 
or respiratory effort-related arousals (RERAs) through 
stereotypical MJM patterns. It also identifies respiratory 
disturbances, as a period of change in respiratory effort 
ended by an arousal or an awakening. Respiratory effort is 
identified through oscillating MJM at the breathing fre-
quency and of increasing amplitude.20 During episodes of 
SBx, the mandible displays cyclical movements at 
a frequency and an amplitude that can be readily identified 
and differentiated from other sleep movements or arousals 
(closing or opening the mouth), or during periods of 
altered respiratory effort.30 All episodes of RMMA related 
to other masticatory muscle activity like chewing, swal-
lowing or facial scratching, or grimacing are discarded 
from the training set after audio/video examination during 
PSG.

Data Analysis
An individual data pack was acquired for each patient. 
This pack consists of: four PSG scoring sequences (sleep 
stages, micro-arousals, RMMA and respiratory effort- 
related events) synchronized with 6 channels of MJM 
raw signals acquired with the Sunrise device and 2 chan-
nels of surface masseter EMG signal.

Data pre-processing and preparation, plus model devel-
opment (training set) and the validation set were per-
formed using Python programming language.29 The data 
analysis plan included seven key steps (Figure 1):

1. Data splitting: Individual data from 61 patients with 
SBx were randomly split into training (n=39 [65%]) 
and validation testing (n=22 [35%]) subsets. Six 
individuals without SBx (true negative subjects) 

were added to the test subset, making a total of 28 
data packs in the final test set.

2. MJM signals pre-processing and features genera-
tion: Raw MJM sequential data (6 channels) were 
consecutively segmented into 10-seconds epochs. 
These segments were passed through a customized 
processing, labeling and feature generating module. 
This procedure produces time series from the 6 
MJM signals (sliding windows of 10 s each), syn-
chronized with PSG sleep scoring sequences.

3. Exploratory analysis: Before training a classification 
algorithm, we performed an exploratory analysis on 
a small subset of 3000 segments, randomly sampled 
from the training set, to verify how many target 
labels have to be considered for our classification 
approach, and the performance for each combination 
including: periods of oscillations of the mandible at 
the breathing frequency (respiratory mandibular 
movements), micro-arousals and RMMA events. 
The data visualization implied K-means clustering 
and Uniform Manifold Approximation and 
Projection (UMAP) algorithms.30

4. Training set size estimation: Once the classification 
problem was well determined, we performed an ad- 
hoc analysis to estimate the necessary size of the 
training set, which allows an extreme gradient 
boosting (XGB) classifier to achieve its best perfor-
mance using the extracted features.

5. Machine learning experiment: The learning objec-
tive was set as multiclass classification, which aims 
to classify three target labels: RMMA events, micro- 
arousals and other MJM at the breathing frequency 
with different amplitudes regarding the level of RE 
(BMM). The XGB classifier was adopted as the core 
algorithm. The model optimization procedure and 
a leave one out cross-validation at subject level are 
detailed in the online supplements.31

6. The final model was trained on the whole training 
set using only the most relevant features and the 
optimized hyperparameter setting.

7. Independent model validation: The classifier was 
independently validated on unseen datasets of 28 par-
ticipants (including six true negative subjects with 
RMMA index = 0). The validation aimed to: a) eval-
uate the overall agreement between model’s epoch-by 
-epoch prediction and the reference PSG scoring; and 
b) verify whether the automatic scoring algorithm 
could provide a reliable estimation of the RMMA 
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hourly index. The epoch-by-epoch agreement evalua-
tion consists of: 1) confusion matrix; 2) overall agree-
ment metrics (Cohen’s Kappa coefficient and 
balanced accuracy); 3) classwise performance analy-
sis, using precision, recall, F1 score and receiver oper-
ating characteristic area under the curve (ROC AUC).

The Bland Altman method was used for quantitative 
agreement analysis.

Results
Study Population
All sixty-one participants exhibited RMMA associated 
with grinding sounds and forced displacements of the 
jaw in a lateral or forward direction during PSG audio- 
video recordings (eTable 1). Of these, 39 were included in 
the training set and 22 in the validation study. All were 
SBx according to ICSD 3 criteria. 53/61 showed on oral 
inspection the presence of tooth wear consisting of ero-
sion, attrition, or abrasion of the dental enamel, and there-
fore highly suggestive and confirmatory of SBx. During 
the period of recruitment 6 other patients with no symp-
toms and a PSG-verified SBx absence were randomly 
selected and used to ensure proper representation of 
a true negative population in our sample (eTable 1).

Exploratory Analysis
Rationale to Formulate a Multiclass Classification 
Task
Three specific patterns of MJM signals could be visually 
identified using a 10-seconds sampling window 
(Figure 2): micro-arousals (n=1311; both respiratory effort 
induced or spontaneous); BMM with normal (n=71,663) 
or increased respiratory effort (n=5604); and typical sleep 
clonic or tonico-clonic RMMA evoking SBx (n=1072). 
MJM during episodes of RMMA are typically phasic 
and of large amplitude cyclically repeated at a frequency 
between 0.5 and 1.5 Hz. Spontaneous micro-arousals 
appear as brisk MJM of large amplitude, indicating abrupt 
closure of the mouth characteristic of cortical arousals. 
Respiratory effort was identified through oscillating MJM 
at the breathing frequency of increasing amplitude 
depending on the level of effort (BMM). Data from fea-
tures extracted from MJM signals after dimensionality 
reduction provided a clear clustering of three labels allow-
ing separate identification of typical RMMA, micro- 

arousals and respiratory effort-related MJM (BMM) 
(eFigure 1).

Training Set Size Estimation
For the chosen algorithm (XGB classifier with logarithmic 
loss-guided booster), the training curve based on cross- 
validation indicates that the model would achieve its high-
est possible performance at a training-set size of around 
2000 to 3000 epochs (randomly sampled and balanced for 
3 target labels) (eFigure 2), which correspond to a sample 
of 30 to 39 patients. Thus, our training sample size was 
adequate, and consequently, the model’s performance was 
not expected to improve by adding incremental data. The 
final model was trained on 79,649 10-seconds epochs of 
MJM data from all 39 subjects, targeting 3 labels: RMMA 
(n=1072), micro-arousals (n=1311) and other MJM related 
to respiration (BMM) (n=77,267). Using a learning rate of 
0.05, the model reached the optimal status after 87 training 
steps.

Model Performance
In the validation data set (n=28; 22 SBx plus 6 controls), 
the model achieved very good agreement (Kappa = 0.799) 
and high balanced accuracy (86.6%), detecting bruxism 
episodes with a sensitivity of 84.3%. The class-wise per-
formances of the model’s prediction are summarized in 
Table 1 and Figure 3. The results issued from the leave one 
out cross-validation at subject level agreed with the model 
performance in the validation set of 28 subjects (eTable 2, 
eFigures 3–8).

Temporal Agreement Between AI and 
Manual Scoring
The coincidence of prediction and true events (at 
a precision of 10 seconds) could also be evaluated by 
visual inspection. eFigure 7 shows the confusion matrix 
for the test set, and eFigure 8 shows the temporal agree-
ment and confusion matrix for the model compared with 
EMG scoring for three patients randomly selected from the 
validation set.

Quantitative Agreement Evaluation
This consists of evaluating disagreement between the algo-
rithmic analysis and the manual scoring of the EMGs to 
estimate RMMA hourly index for SBx. Bland-Altman 
analysis from the data test set showed a low median bias 
of −0.8 units of EMG-MMA index but an underestimation 
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at the highest values (>15) of the RMMA scale (95% CI 
+2.85; −9.77) (Figure 4).

Discussion
The present study demonstrates the capability of an auto-
mated RMMA recognition system to quantify SBx by 
measuring stereotypical MJM with a wireless sensor 
device integrated with a supporting analysis system 
based on AI. Our findings showed that: 1) MJM activity 
can accurately detect RMMA episodes with a very good 
agreement when compared to the gold standard, ie, PSG; 
and 2) scoring based on this classifier estimates the 
RMMA index (per hour of sleep) with a median bias of 
only 0.8 units, with the 95% confidence interval increasing 

A

B

Figure 2 Pattern of mandibular jaw movements. Specific patterns of mandibular jaw movement (MJM) tri-axial gyroscope (A) or masseter surface EMG reference (B) signals 
captured within a 10-seconds epoch during a typical rhythmic masticatory muscle activity (RMMA) event (left column), a micro-arousal (middle column) and a period of 
respiratory effort (right column). The fourth row shows the scaleogram from a continuous wavelet transform (CWT) on the abstracted gyroscopic signal (Gs, determined as 
(Gx

2 + Gy
2 + Gz

2)0.5).

Table 1 Class-Wise Performance

Performance 
Metrics

BMM 
(n=59,685)

Micro-Arousals 
(n=523)

RMMA 
(n=580)

Precision 0.935 0.837 0.823

Recall 0.955 0.800 0.843

F1 score 0.945 0.818 0.833
Accuracy 0.865 0.866 0.865

Abbreviations: BMM, mandibular movements at breathing frequency; RMMA, 
rhythmic masticatory muscle activity.
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only when the RMMA index exceeds 15/hour of sleep, 
a value that is infrequently observed in the SBx 
population.6,12 Thus, the combination of an innovative 
sensor coupled with an AI algorithm offers a reliable and 

simple solution for diagnosing and monitoring SBx in an 
ambulatory setting.

Despite being a prevalent and important issue, SBx 
remains underrecognized in the clinical setting due to the 

Figure 3 Class-wise receiver operating curve (ROC) curve analysis. Prediction scores for each target label (rhythmic masticatory muscle muscular activity [RMMA], micro- 
arousals and ventilatory patterns [BMM]) and for each patient were extracted, then the false and true positive rates of a binary one-versus-rest classification rule were 
estimated to establish the ROC curve. The 95% confidence intervals (CIs) of the area under the curve (AUC) and smoothing effect were obtained from empirical data 
(without using any resampling). The diagonal dotted line (reference) shows the performance if SBx detection was made randomly.

Figure 4 Agreement between MJM analytic model and manual EMG signal scoring of RMMA. Bland-Altman plot evaluating measurement bias of rhythmic masticatory muscle 
activity (RMMA) index in the 28 subjects of the validation study. The median dash line corresponds to a negative bias 0.8 unit of RMMA index. Upper and lower dashed lines 
correspond to 95% confidence interval, +2.85 and −9.77 RMMA index. The dots in green represent the 6 true negative subjects.
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lack of simple to use and noninvasive monitoring, and the 
need for visual, labor-intensive and time-consuming scor-
ing even when using diagnostic home sleep testing (HST) 
tools.32,33 Undiagnosed and untreated SBx can have multi-
ple adverse consequences.4 The most frequent complaints 
are alterations in sleep quality, tensional headaches, mas-
ticatory muscle pain or fatigue, and temporomandibular 
disorders, all of which have a significant negative impact 
on quality of life.34 Sleep comorbidities are frequent in 
SBx patients, and include OSA, insomnia, periodic limb 
movement disorder of sleep, gastroesophageal reflux, and 
in rare cases REM behavior disorder and sleep-associated 
epilepsy.6,14,15,35–37

RMMA events are associated with sleep arousals, and 
are characteristically accompanied by a surge of sympa-
thetic cardiac activity. This association is temporally 
related in 50–80% of RMMA events in otherwise healthy 
children and adults.11,14,37

Audio-video recordings during PSG are used to 
exclude atypical non-SBx-related orofacial activity and 
movement disorders, and to confirm the presence and the 
specificity of typical grinding sounds.7,16,38–40 However 
long waiting lists, access inequalities, overall costs, and 
patient acceptability issues, make the PSG as a less than 
optimal or cost-effective approach for numerous SBx 
patients, which has prompted the emergence of HST 
options, such as a single EMG recordings as a viable 
alternative to PSG.31,32,41–43 Similarly, MJM are under 
corticobulbar motor control, and can be tracked in animals 
and humans during sleep.18,19,44–46 However, all these 
methodologies have significant limitations, and suffer 
from lack of standardization for quantitative SBx assess-
ments, particularly in the presence of sleep 
comorbidities.7,9,33,44

The majority of current alternatives to PSG use one or 
more sensors to capture EMG activities of the jaw mus-
cles, but some have also used interdental pressure and 
accelerometers, all of which present different levels of 
discomfort.47–51 Furthermore, none of these technologies 
has been sufficiently validated to date to allow implemen-
tation in clinical practice and endorsement by professional 
evidence-based guidelines. In addition, current diagnostic 
tools are contingent on expert human resources and suffer 
from interobserver reproducibility. Application of decision 
tree algorithms applied to EMG signals has only been 
undertaken recently, and not yet translated into clinical 
practice.52

The rationale of our study was based on previous 
observations that periods of teeth grinding could be char-
acterized by specific behaviors of the mandible.28 The 
adoption of the MJM signal provides an alternative to 
masseter surface EMG for detecting RMMA. During epi-
sodes of SBx, the mandible displays cyclical movements 
at a frequency and an amplitude that can be readily dis-
tinguished from other mandibular sleep movements occur-
ring concurrently with arousals (closing or opening the 
mouth) or typically reflecting normal or abnormal ventila-
tory patterns.53 Thus, the MJM signal has the potential to 
collect information not only about RMMA but also its 
consequences (micro-arousal) as well as potential under-
lying precipitating factors (eg, OSA).53 However, it 
remains to be demonstrated whether both entities are coin-
cidental, causally related, linked to arousal reactivity, or 
relate to a physiological state, which involves the trigger-
ing of one or the other.54,55

Detected SBx episodes were analyzed in time series of 
MJM where variations in morphology can identify related 
cortical arousal and possible changes in respiratory effort 
(eg, increased respiratory effort during episodes of OSA or 
RERA before the SBx episode and/or periods of decreased 
respiratory effort during central apnea-hypopnea after 
a SBx episode). Using this technology, time series of 
clustered MJM remain editable for manual review and 
analysis in expert centers. However, the automated detec-
tion of the stereotypical MJM based on AI could prevent 
human error or drift, as observed during visual and manual 
PSG scoring.56

MJM recordings over several nights have potential 
future use in physiological, epidemiological and clinical 
studies of SBx, thereby amplifying our understanding of 
this condition, and optimizing its treatment.

Limitations
The large amplitude of movements during RMMA could 
potentially be confused with micro-arousal amplitudes; 
therefore, some misclassifications of these events might 
occur when an RMMA episode ends with a micro-arousal. 
While our OSA study population was typical of those 
referred to a sleep laboratory, generalization of data to 
SBx real life and in absence of OSA requires additional 
studies. Finally, the AI algorithms will require external 
validation, especially in other sleep cohorts.

In this pilot study, we set the trained machine learning 
algorithms with fragments of MJM in comparison to 
RMMA collected from masseter EMG. We recognize 
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that our algorithms may have underestimate the occur-
rence of sustained-tonic contractions, a less dominant but 
co-occurring type of EMG activities in presence of SBx. 
Most sleep bruxism EMG events associate to phasic pat-
tern, tonic and mixed contractions; these in otherwise 
healthy SBx individuals and in the ones with painful 
temporomandibular disorders whereas tonic phenotype 
could be prominent.57,58

Conclusion
This study shows that automated analysis of MJM 
recorded with an inertial unit integrated with a machine 
learning-derived algorithmic set can identify and quantify 
SBx episodes. The study shows very good agreement with 
PSG. Informative sleep MJM provides a unique opportu-
nity to easily detect RMMA and confirm a clinical diag-
nosis of SBx in conjunction with clinical history, and more 
importantly when OSA is a comorbid condition.
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