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Abstract: The treatment of patients with advanced non-small-cell lung cancer (NSCLC) in 
recent years has been increasingly guided by biomarker testing. Testing has centered on 
driver genetic alterations involving the epidermal growth factor receptor (EGFR) and 
anaplastic lymphoma kinase (ALK) rearrangements. The presence of these mutations is 
predictive of response to targeted therapies such as EGFR tyrosine kinase inhibitors (TKIs) 
and ALK TKIs. However, there are substantial challenges for the implementation of bio-
marker testing, particularly in emerging countries. Understanding the barriers to testing in 
NSCLC will be key to improving molecular testing rates worldwide and patient outcomes as 
a result. In this article, we review EGFR mutations and ALK rearrangements as predictive 
biomarkers for NSCLC, discuss a selection of appropriate tests and review the literature with 
respect to the global uptake of EGFR and ALK testing. To help improve testing rates and 
unify procedures, we review our experiences with biomarker testing in China, South Korea, 
Russia, Turkey, Brazil, Argentina and Mexico, and propose a set of recommendations that 
pathologists from emerging countries can apply to assist with the diagnosis of NSCLC. 
Keywords: non-small-cell lung cancer, EGFR testing, ALK testing, immunohistochemistry, 
FISH, next-generation sequencing

Introduction
Lung cancer continues to be the leading cause of cancer mortality worldwide due to 
late diagnoses and limited treatment interventions.1–3 In 2020, lung cancer 
accounted for 11.4% of all newly diagnosed cancers (approximately 2.2 million) 
and was responsible for an estimated 1.8 million deaths (18% of all cancer-related 
deaths).4 Despite ongoing small declines in lung cancer-related mortality in indus-
trialized nations, such as the United States (US) and the United Kingdom (UK), 
mortality rates continue to rise in emerging nations, including Brazil, Russia, China, 
South Korea and Turkey.2 The reasons for these patterns are complex and multi-
factorial but include cigarette smoking, unequal access to healthcare leading to 
delayed diagnosis and treatment, environmental contamination and sociocultural 
barriers.5

Non-small-cell lung cancer (NSCLC) accounts for 85% of all lung cancers and is 
a histologically and genetically heterogeneous disease.6 NSCLC includes two major 
types: (1) non-squamous cell carcinoma (non-SCC), including adenocarcinoma 
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(AdC), large-cell carcinoma and other subtypes; and (2) 
squamous cell carcinoma (SCC). SCC was the most fre-
quent histological subtype until the 1980s, when it was 
superseded by AdC, probably due to the introduction of 
cigarette filters and the rising number of women with lung 
cancer, who tend to be mostly affected by AdC.7,8 In the 
past decade, significant advances have been made in under-
standing the molecular profiles of lung cancer, and the 
identification of specific disease characteristics has paved 
the way for targeted therapies for neoplasms harboring 
oncogenic driver mutations or gene rearrangements.9

Biomarker Testing for NSCLC
Several biomarkers predictive of therapeutic efficacy have 
emerged for NSCLC, including epidermal growth factor 
receptor (EGFR) mutations, alterations in the anaplastic 
lymphoma kinase (ALK) gene, ROS1 rearrangements, 
BRAF V600E point mutations and programmed cell 
death ligand-1 (PD-L1) expression levels.10 The most 
established of these are EGFR mutations11 and ALK 
rearrangements.12,13 This review only focuses on the prog-
nostic role of these two biomarkers in NSCLC and the 
challenges in global uptake of EGFR and ALK testing, 
especially in emerging markets. Other biomarkers are 
beyond the scope of this review.

In patients who harbor these biomarkers, targeted 
therapies with EGFR tyrosine kinase inhibitors (TKIs) 
and ALK inhibitors are now standard treatment, based on 
dramatic improvements observed in clinical trials.10,14,15 

In recent studies of ALK inhibitors (eg alectinib, brigati-
nib, ceritinib, and lorlatinib), tumors were demonstrated to 
respond positively to treatment. These newer ALK inhibi-
tors offer greater potency against resistance mutations to 
crizotinib and improved central nervous system (CNS) 
penetration, which is crucial in the treatment of ALK- 
positive brain metastases.16

Similarly, first-line therapy with an EGFR TKI (eg 
erlotinib, gefitinib and afatinib) significantly prolongs pro-
gression-free survival (PFS) and is associated with a sig-
nificantly higher tumor response rate than first-line 
standard chemotherapy for patients with EGFR exon 18 
to 21 mutations. In general, patients with activating muta-
tions, such as exon 19 deletions and exon 21 mutations 
(L858R), are more responsive to TKIs. Conversely, 
acquired resistance mutations, such as the exon 20 
T790M substitution, which is detected using circulating 
tumor DNA (ctDNA),17 is associated with poorer response 
to TKIs and disease progression within the first year of 

TKI treatment.18 Osimertinib is a recent EGFR TKI which 
was developed in response to the resistant exon 20 T790M 
substitution.19 Unlike newer EGFR TKIs that target spe-
cific mutations, older EGFR TKIs are less effective in 
treating emerging mutations, such as EGFR exon 20 inser-
tions (ex20ins).20

Given the potential benefits of targeted therapy, timely 
and accurate classification of NSCLC subtypes has 
become fundamental in patients with advanced NSCLC. 
Indeed, most international guidelines recommend that all 
patients with advanced-stage non-SCC NSCLC should be 
tested for both EGFR mutations and ALK rearrangements 
before initiation of first-line treatment, with a maximum 
turnaround time (TAT) of 10 working days.10,14,15 Despite 
this, diagnostic testing for predictive biomarkers in 
patients with NSCLC requires substantial resources and 
effort, and implementation of guideline recommendations 
in routine practice is not always applicable, especially in 
emerging countries where local health policies, drug 
approval, reimbursement issues, logistical constraints and 
lack of awareness can result in barriers to testing. The 
objective of this article is to review EGFR mutations and 
ALK rearrangements as predictive biomarkers for NSCLC 
diagnosis, discuss a selection of appropriate tests for these 
biomarkers and identify trends in the uptake of molecular 
testing for EGFR mutations and ALK rearrangements in 
both developed and emerging countries. Finally, we review 
our experiences in China, South Korea, Russia, Turkey, 
Brazil, Argentina and Mexico, and propose a set of recom-
mendations that pathologists from emerging countries can 
apply to implement effective biomarker testing to assist 
with the diagnosis of NSCLC.

EGFR Mutations and ALK 
Rearrangements in Advanced 
NSCLC
EGFR mutations and ALK rearrangements are involved in 
NSCLC pathogenesis by stimulation of downstream signal 
transduction that leads to cell proliferation and inhibition 
of apoptosis.21,22 TKIs act by blocking cross-phosphoryla-
tion, leading to reduced activity of intracellular signaling 
pathways and cell proliferation.22,23 Historically, EGFR 
mutations and ALK rearrangements were thought to be 
mutually exclusive.24 However, several recent reports 
have described these events occur concomitantly in 0.1– 
2.4% of patients with NSCLC.25–30 Cases with alterations 
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of two oncogenic drivers remain rare, and the best man-
agement approach is still unclear.

EGFR Mutations
The most common EGFR mutations in patients with 
NSCLC are deletions in exon 19 (Exon 19del in 45% of 
all patients with EGFR mutations) and a point mutation in 
exon 21 (L858R in 40% of all patients).14,31 Because the 
presence of EGFR exon 19 deletions or exon 21 L858R 
mutations is predictive of treatment benefit from EGFR 
TKI therapy, these mutations are referred to as sensitizing 
EGFR mutations. Current guidelines suggest that patients 
without sensitizing EGFR mutations should not be treated 
with EGFR TKIs in any line of therapy.10,14 Exon 18 and 
20 insertion mutations are less common and comprise the 
remaining 10% of EGFR mutants in NSCLC.31 The exon 
20 T790M point mutation, and most EGFR ex20ins muta-
tions, are predictive of treatment resistance to first- and 
second-generation EGFR TKI therapies.14,19

Designed in response to acquired T790M resistance, 
osimertinib is a third-generation EGFR TKI that irreversi-
bly binds to the tyrosine kinase domain with lower toxicity 
than second-generation EGFR TKIs.19 Osimertinib has 
demonstrated significant activity in salvage treatment of 
T790M-positive Japanese patients (n=147), with an objec-
tive response rate (ORR) and median PFS of 55.6% and 
17.2 months, respectively.32 Using osimertinib to treat 
patients with EGFR ex20ins has yielded inconclusive effi-
cacy results. A retrospective study reported an ORR of 5% 
and median PFS of 3.6 months,33 whereas a Phase II study 
(where osimertinib was administered at double the 
approved dose) reported an ORR of 24% and median 
PFS of 9.6 months.34

Recently, the FDA granted approval for amivantamab,35 

a novel bispecific EGFR-MET antibody, administered via 
intravenous infusion for the treatment of patients with 
EGFR ex20ins NSCLC whose disease has progressed dur-
ing or after treatment with platinum-based chemotherapy. 
Amivantamab showed an ORR of 36% per investigator 
assessment (IA) and 40% per independent review commit-
tee (IRC). Both IA and IRC assessments for median PFS 
were 8.3 months, median overall survival (OS) was 22.8 
months and median duration of response per IRC was 11.1 
months.36,37 Other emerging treatments such as mobocerti-
nib, an oral EGFR TKI with selective activity against EGFR 
ex20ins, demonstrated rapid and durable responses in plati-
num-pretreated patients with EGFR ex20ins metastatic 
NSCLC. In these patients, an ORR of 28%, median PFS 

of 7.3 months, median OS of 24.0 months and median 
duration of response of 17.5 months, according to IRC 
assessment, were reported.38,39

The overall prevalence of sensitizing EGFR mutations 
varies significantly according to ethnicity.11,40–46 Recently, 
Graham et al determined the frequency of sensitizing 
EGFR mutations detected in 170 clinical laboratories 
from 20 countries participating in the College of 
American Pathologists (CAP) proficiency testing 
program.43 The highest activating EGFR mutation fre-
quency was seen in southern Asia (4260/9337; 46%), and 
the lowest mutation frequencies in South and North 
America (113/1439; 8% and 7926/86,654; 9%, respec-
tively) among patients tested for EGFR. However, inter-
pretation of survey-led data should be treated with caution, 
as the information provided is limited to participating 
centers only.43 For example, the frequency reported for 
South America in the study by Graham et al only exam-
ined cases in Brazil,43 while another dedicated study of 
EGFR mutations in 5738 patients with NSCLC in Latin 
America that included Argentina, Mexico, Colombia, 
Peru, Panama and Costa Rica, reported a frequency of 
26% – a rate between that observed in Asian (40%) and 
Caucasian populations (15%).47 Similarly, a US-based 
cancer registry study (2009–2015) reported a higher fre-
quency of EGFR mutations in black (35/98, 35.7%), and 
non-black patients (63/98, 64.2%) compared with figures 
observed by Graham et al highlighting the limitations of a 
small patient population.43,46 Interestingly, Cheng et al 
reported significantly shorter survival outcomes among 
black patients presenting with EGFR mutations, with 2- 
year survival rates almost half those of non-black patients 
(p=0.001). No racial disparity in survival was observed 
among patients with wild-type EGFR (p=0.774), suggest-
ing the need for improved, tailored management in this 
patient population.46

In general, patients with sensitizing EGFR mutations 
are more likely to be non-smokers or former light smokers 
with AdC histology. However, these characteristics alone 
should not be used for selecting patients for EGFR 
testing.14

Most patients with EGFR sensitizing mutations treated 
with first- and second-generation TKI therapy experience 
disease progression after approximately 12 months.48,49 A 
variety of mechanisms are involved in acquired resistance 
to EGFR TKIs; however, an estimated 50–60% of cases 
can be attributed to the EGFR T790M exon 20 substitution 
mutation.48,49 Sensitive assays have detected the T790M 
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mutation in patients prior to initiation of a first-generation 
TKI. This shows T790M could also be a de novo mutation 
and provides one explanation for intrinsic resistance.50–53 

It is critical to detect this mutation in patients who have 
developed acquired resistance against first- or second-line 
EGFR TKIs, as third-generation EGFR TKIs can effec-
tively target T790M-positive cancers.54–58 Observational 
medical record data from the US (n=308) suggest that 80% 
of patients receive a first-line TKI-based treatment with or 
without combination chemotherapy for EGFR-positive 
Stage IV NSCLC. Only 26% of patients received TKI 
therapy in the second line, whereas over half of patients 
stopped first-line TKI and presented no subsequent treat-
ment record.59

ALK Rearrangements
In NSCLC, the ALK gene rearrangement results in a fusion 
protein containing a dysregulated, constitutively active 
ALK kinase domain.24,60–64 Although evidence of ALK 
rearrangement is present in only 2–12% of all NSCLC 
cases,42,65–67 approximately 60% of patients will respond 
to targeted ALK inhibition17 using therapies such as alec-
tinib, brigatinib, ceritinib, crizotinib and lorlatinib.68–74 

Clinical characteristics associated with the ALK gene rear-
rangement include AdC histology, never-/light-smoking 
history and younger age.71,75–77 However, these character-
istics alone should not be used to determine the need for 
ALK testing; ALK fusion has also been detected in older 
patients (>70 years of age) with a smoking history and in 
patients with SCC.78,79

Testing for EGFR Mutations and ALK 
Rearrangements
There is general consensus among international guidelines 
(National Comprehensive Cancer Network [NCCN], 
European Society for Medical Oncology [ESMO], CAP, 
International Association for the Study of Lung Cancer 
[IASLC], Association for Molecular Pathology [AMP]) 
that all patients with advanced non-SCC NSCLC, regard-
less of clinical characteristics (such as age, race or smok-
ing status, and including some patients with SCC, such as 
non-smokers or those <40 years of age), should undergo, 
at a minimum, testing for EGFR mutation, ALK and ROS1 
rearrangements, BRAF mutation and PD-L1 expression. 
Moreover, if next-generation sequencing (NGS) is avail-
able, additional alterations in genes such as RET, MET, 
HER2 and KRAS should also be assessed.10,14,15,80,81

In practice, EGFR and ALK testing is usually per-
formed upon request by the medical oncologist. 
However, several consensus statements and local policies 
advocate reflex molecular testing (by pathologists) upon 
diagnosis of non-SCC NSCLC, regardless of clinical 
stage.82,83 This policy has been shown to increase the 
rate of molecular testing by approximately one-third in 
some settings84 and reduce the time to initiating 
treatment.82,85 In a recent study from Toronto, Canada, 
Cheema et al compared outcomes during routine and reflex 
biomarker testing among 306 patients with newly diag-
nosed NSCLC. Reflex EGFR/ALK testing was associated 
with a significant improvement in time to optimal systemic 
therapy, as defined by published guidelines (from 36 to 24 
days).82

EGFR Testing
Advanced polymerase chain reaction (PCR)-based meth-
ods, such as amplified refractory mutation system 
(ARMS)-PCR, real-time or quantitative PCR (qPCR), 
reverse transcriptase PCR (RT-PCR), Sanger sequencing 
(ideally paired with tumor enrichment) and NGS are the 
most common methodologies for examining EGFR muta-
tion status (Tables 1 and 2).14,17 Guidelines issued by CAP, 
IASLC and AMP strongly recommend against using total 
EGFR expression by immunohistochemistry (IHC) testing 
to select patients for EGFR-targeted TKI therapy.81

The gold standard for analyzing mutations is direct 
sequencing. However, direct DNA sequencing without a 
mutation enrichment step has a lower limit of detection of 
10–25% of total DNA, meaning that the use of samples 
with low tumor cellularity can result in false-negative 
outcomes.86 In contrast, qPCR-based methods show high 
sensitivity, and testing can be performed relatively quickly 
on small quantities of tissue (eg one day on average for one 
sample).81,87 FDA-approved companion diagnostic tests 
(CDx) include the Roche Cobas® EGFR Mutation test V2 
(a real-time PCR test for erlotinib and osimertinib) and the 
Qiagen therascreen EGFR rotor-gene Q (RGQ) PCR kit (for 
gefitinib and afatinib) (Table 3).88,89 However, several stu-
dies have shown that commercially available PCR kits may 
not detect 50% or more of the patients with ex20ins 
NSCLC identified by NGS89–92 and may only detect 
known or a limited number of mutations.93,94 This could 
mostly be due to the design of the primers in the PCR 
kits.95 This suggests NGS has greater sensitivity than PCR 
in detecting EGFR mutations.96 However, newer PCR kits 
are designed to overcome this limitation and increase 
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Table 1 Mutation-Detection Assays (Eg EGFR, BRAF)

Assay Advantage Disadvantage

Sanger sequencing 
(direct DNA 

sequencing)

● Identification of all known and previously unknown mutations 
within the studied region

● High tumor content required (mutation detected 
when allele frequency >25% total DNA [50% 

tumor content])
● Low sensitivity

Allele-specific real- 

time PCR (targeted 
assays)

● Allows rapid multiplex genotyping of specific known hotspot 

mutations
● More sensitive than Sanger (requires 5–10% of the starting 

tumor DNA)

● Designed only to detect most frequent mutations
● Unable to detect mutations different from those 

included in the assay (low frequency or novel 
mutations)

NGS (massive 
parallel sequencing 

technology)

● Detection of multiple genetic alterations (mutations, gene 

fusions, CNV), allowing the sequencing of large regions of the 
genome with higher sensitivity

● Can be performed by FFPE extraction and freshly collected 

tissue specimens

● Effective implementation of NGS requires good- 

quality DNA and RNA (not always present in 
FFPE samples)

● Validation of panels can be expensive and difficult 

for some laboratories in low- or mid-income 
countries

Note: Data from Mok et al.98  

Abbreviations: CNV, copy-number variation; FFPE, formalin-fixed paraffin-embedded; NGS, next-generation sequencing; PCR, polymerase chain reaction; TAT, turnaround time.

Table 2 Rearrangement-Detection Assays (Eg ALK, ROS1 Fusion)

Assay Advantage Disadvantage

RT- 
PCR

● High sensitivity
● High specificity
● Can be used on mRNA/cDNA to directly detect fusion genes

● Not applicable for unknown partners
● High-quality of RNA is required (difficult to apply in 

long-term stored tissue and FFPE samples)
● Multiplexed assays are required to cover the large 

variety of fusion transcripts185,186

FISH ● Sensitive and specific
● Detects fusions irrespective of the fusion partner
● Break Apart assay Vysis CDx was established as a ‘gold standard’ to 

detect ALK fusion in NSCLC
● Allows use of archived FFPE tissue samples and all cytology samples187–189

● Unable to identify the specific gene fusion partner
● Interpretation requires specialized training
● The ‘break apart’ can be difficult to identify due to 

small physical separation of ALK or ROS1 fragments
● Testing is relatively costly and time-consuming
● Samples may not contain enough assessable cells to 

be properly interpreted
● The 15% cutoff and potential false-positive and false- 

negative signaling profiles may challenge 

interpretation

IHC ● Widely available, relatively inexpensive
● Rapid TAT
● For ALK rearrangement, IHC is valid with any quantity and percentage of 

positive tumor cells (useful in biopsy) or cytology samples with a small 
amount of tumor cells190,191

● ROS1-positive IHC requires confirmation by FISH 
(≥15% tumor cells)

● LDT IHC tests require careful validation

NGS ● Same advantages as detailed for mutation studies
● There are some commercial lung cancer-specific fusion panels153,192

● Same disadvantages as detailed for mutation studies
● Good quality RNA is required

Note: Data from Tsao et al.105 

Abbreviations: ALK, anaplastic lymphoma kinase; cDNA, circulating DNA; CDx, companion diagnostic test; FFPE, formalin-fixed paraffin-embedded; FISH, fluorescence in 
situ hybridization; IHC, immunohistochemistry; LDT, laboratory-developed test; mRNA, messenger RNA; NGS, next-generation sequencing; NSCLC, non-small-cell lung 
cancer; RT PCR, reverse transcriptase polymerase chain reaction; TAT, turnaround time.

OncoTargets and Therapy 2021:14                                                                                                 https://doi.org/10.2147/OTT.S313669                                                                                                                                                                                                                       

DovePress                                                                                                                       
4675

Dovepress                                                                                                                                                         Dalurzo et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


coverage of detection for EGFR mutations.95 For example, 
one Japanese study demonstrated the Amoy 9-in-1 qPCR 
test had high concordance with the Oncomine comprehen-
sive assay 3.0 NGS test, with 99% overall agreement when 
detecting ex20ins.89 Pathologists should consider the avail-
able approaches and the advantages and disadvantages of 
each method, including analytical sensitivity and TAT. One 
testing platform is usually sufficient for EGFR testing. 
However, when the sample contains a small amount of 
DNA, testing for most frequent EGFR mutations, such as 
exon 19 deletions and L858R mutations, should be 
prioritized.10,15,97

In the setting of active disease progression while exposed 
to targeted therapy, retesting a tumor sample can shed light on 
the next appropriate therapeutic steps. Liquid biopsy analysis 
of ctDNA has become the recommended approach for detect-
ing EGFR T790M mutations.17 This technique assesses the 
release of DNA fragments from tumor cells into the peripheral 
circulation due to apoptosis and necrosis.17,98–100 Recent real- 
world data suggest droplet-digital PCR has high sensitivity and 
specificity for low-abundance T790M mutation.18 The NCCN 
and ESMO guidelines now recommend repeat genomic testing 
at progression to identify EGFR- and ALK-resistance targets.-
10,14 Newer applications for ctDNA, such as real-time therapy 
response monitoring, minimal residual disease (MRD) testing, 
and their use as a predictive biomarkers for immunotherapy, 
are currently under investigation.101,102 When there is no 

evidence of EGFR T790M, testing for alternate mechanisms 
of resistance (eg MET amplification, ERBB2 amplification) 
may be used to direct patients to additional therapies.14

ALK Testing
Testing for ALK rearrangement should be systematically car-
ried out in all patients with advanced non-SCC NSCLC.10,15 

There are currently three detection methods widely available 
in clinical practice, including fluorescence in situ hybridization 
(FISH), IHC and NGS technology. FISH is considered the 
'gold standard' and the most widely used assay for ALK 
rearrangement detection.10,15 The FISH assay (Vysis LSI 
ALK Break Apart Rearrangement Probe Kit; Abbott 
Molecular) is a US FDA-approved CDx for ALK rearrange-
ment detection for crizotinib, which received approval in 
2011.103 The newer ALK inhibitors, alectinib, brigatinib, cer-
itinib, and lorlatinib are also paired with this diagnostic test. 
However, in recent years NGS testing has gained increased use 
for ALK rearrangement detection, overtaking FISH testing 
(46.0% compared with 37.7%) in 2019.103

FISH has several limitations, including the need for 
expensive equipment, combined with technical and interpre-
tative expertise. Lung cancer cells may overlap with normal 
lung tissue, and confidently distinguishing between the two 
in a dark field can be a challenge. Furthermore, appropriate 
long-term storage conditions that control for light, heat and 
humidity, are necessary to preserve tissue samples and reduce 
signal decay.104,105 The type of ALK rearrangement can also 
affect the outcome of FISH testing, producing either false- 
negative or false-positive results. Although the FISH assay 
has been firmly validated, the potential for false-negatives 
highlights the importance of combining more than one test-
ing modality to achieve 100% accuracy with different ALK 
rearrangements in NSCLC.104 Other limitations of FISH 
include the requirement of ≥50 tumor cells for the determina-
tion of ALK status.104

IHC testing is routinely used in diagnostic pathology 
labs for a variety of reasons, including determination of 
tumor lineage and subtype. Several antibodies are cur-
rently available that detect ALK protein expression in 
NSCLC, using formalin-fixed paraffin-embedded (FFPE) 
tissue, including the mouse monoclonal antibody 5A4 
(Abcam) and the rabbit monoclonal antibody D5F3 
(Ventana Medical Systems Inc, Tucson, AZ, Cell 
Signaling Technology). In 2012, the Ventana ALK 
(D5F3) assay was approved in Europe as a CDx test to 
aid in the identification of ALK rearrangement in patients 

Table 3 US FDA-Approved Drugs and Companion Diagnostics 
for Advanced NSCLC

Targeted Agent Companion Diagnostic Test

EGFR

Erlotinib Cobas® EGFR Mutation Test v2
Gefitinib Therascreen EGFR RGQ PCR Kit

Afatinib Therascreen EGFR RGQ PCR Kit

Osimertinib Cobas® EGFR Mutation Test v2

ALK

Crizotinib Vysis ALK Break Apart FISH Probe Kit

Ceritinib Ventana ALK (D5F3) CDx Assay
Alectinib Ventana ALK (D5F3) CDx Assay

Lorlatinib Ventana ALK (D5F3) CDx Assay

Note: Adapted with permission from Schwartzberg L, Kim ES,  Liu D, Schrag D. 
Precision oncology: who, how, what, when, and when not? Am Soc Clin Oncol Educ 
Book. 2017;37:160–16988 with data from these studies.106,193 

Abbreviations: ALK, anaplastic lymphoma kinase; CDx, companion diagnostic 
test; EGFR, epidermal growth factor receptor; FDA, Food and Drug 
Administration; FISH, fluorescence in situ hybridization; NSCLC, non-small-cell 
lung cancer; PCR, polymerase chain reaction; RGQ, Rotor-Gene Q.
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with NSCLC. The assay was approved by the National 
Medical Products Administration (NMPA, formerly 
known as the Chinese Food and Drug Administration) in 
2013104 and by the US FDA in 2015.106

There are technical challenges in detecting ALK rear-
rangement effectively by IHC in a spectrum of tissue 
types. Therefore, it is important for positive/negative con-
trols to ensure accurate interpretation of staining intensity 
without subjectivity.104 Until recently, there was consider-
able debate over testing algorithms for ALK detection, and 
previous guidelines recommended that all ALK-IHC-posi-
tive results should be confirmed by ALK FISH.107–109 

However, given the cost-effectiveness and rapid TAT of 
IHC, combined with the accuracy of the technique when 
combined with high-performance antibodies, IHC is now 
considered to be an equivalent alternative to FISH for ALK 
testing in patients with NSCLC.10,14,15,80,81

Next-Generation Sequencing
In response to the ever-growing list of predictive biomar-
kers, NGS technology has emerged as a preferred method 
for comprehensive testing in NSCLC. NGS enables the 
simultaneous assessment of many DNA or RNA alterations 
beyond EGFR and ALK that are rapidly becoming clinically 
relevant. Targeted testing provides higher coverage of geno-
mic regions of interest to improve detection of relevant 
alterations and to allow critical molecular information to 
be available for therapeutic decisions in an adequate time 
frame. Performed in an optimized way, NGS can result in 
improved tissue use and efficiency.110,111 The US FDA 
recently approved two DNA-based NGS platforms for 
molecular testing in advanced malignancies: the Memorial 
Sloan Kettering-Integrated Mutation Profiling of Actionable 
Cancer Targets and FoundationOne CDx.112

DNA is more stable than RNA, and for many clinical 
purposes, DNA-based sequencing using panels of specific 
disease-related genes is sufficient. However, at the DNA 
level, it is not always possible to detect gene-fusion expres-
sion, particularly if breakpoints involve long intronic 
regions that cannot be covered by hybridization-capture 
probes.113 To address this issue, targeted RNA-based NGS 
assays have been developed for gene-fusion detection, and 
emerging evidence suggests that these platforms can be 
more sensitive, efficient and functionally definitive, consid-
ering that many DNA variants (eg multiple intronic break-
points) give rise to the same oncogenic transcript.114–116 

One potential drawback to this approach is that it requires 
good-quality RNA, which is sometimes difficult to obtain 

from FFPE specimens.99 Although RNA-based assays can 
be based on hybrid-capture or amplicon-based methods, 
most use the latter.99

International Patterns of Biomarker 
Testing
To better understand patterns of uptake for biomarker 
testing in advanced NSCLC, we searched the PubMed 
and Embase databases for articles published in English 
with abstracts between 01 January 2000 and 24 May 
2021. Articles were selected by combining search results 
generated with exploded medical subject headings 
(MeSH)  or keywords from the following categories: (1) 
NSCLC (ie non-small-cell lung cancer, carcinoma, non- 
small-cell lung, etc), (2) ALK (ie anaplastic lymphoma 
kinase), (3) EGFR (ie epidermal growth factor receptor) 
and (4) testing (ie molecular testing, molecular diagnosis, 
testing patterns, testing frequency, diagnostic testing, diag-
nostic patterns, etc). We hand-searched the reference lists 
of retrieved articles for additional studies. Abstracts only 
and/or conference proceedings were excluded.

We identified 24 articles incorporating data from 45 
countries. Articles are presented in Table 4 according to 
region (to account for ethnic differences in molecular pro-
files) and in chronological order (eg oldest to most recent). 
Among the articles retrieved, 14 were retrospective 
reviews,42,117–129 eight were based on data from surveys 
and/or interviews with healthcare professionals,130–137 and 
two were observational studies.138,139

Despite general consensus that biomarker testing is 
necessary for patients with NSCLC, our review demon-
strates this is not being translated into clinical practice, 
given that testing is highly variable. Although EGFR test-
ing has been recognized as standard practice since 2011, 
the implementation of this assessment can still be incon-
sistent. However, biomarker testing for EGFR mutations 
and ALK rearrangements appear to have increased in most 
regions over time. In the largest real-world assessment of 
ALK-testing patterns in patients with NSCLC from the US, 
ALK testing rates increased over time from 32% in 2011 to 
62% in 2016.119 Similarly, in a study from the Netherlands 
by Sluga et al the rate of performing molecular diagnostic 
testing for NSCLC increased from 11% in 2008 to 75% in 
2014.127

Several international studies have also identified vari-
able rates of testing between different countries. In the 
PiVOTAL study, a multinational retrospective study 
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conducted in Italy, Spain, Germany, Australia, Japan, 
South Korea, Taiwan and Brazil, a total of 1440 patients 
with newly diagnosed advanced NSCLC were enrolled 
from 78 centers in eight countries.121 The EGFR testing 
rate ranged between 43% in Brazil to 85% in Taiwan. 
Molecular testing rates (non-specific to NGS/PCR) were 
similar in Spain, South Korea and Japan (76%, 76% and 
74%, respectively).121 In the same study, the proportion of 
patients with ALK testing ranged from 41% in Germany to 
97% in Taiwan.121 In a more recent survey of oncologists 
from multiple developed countries, the proportion of phy-
sicians who requested EGFR testing before first-line ther-
apy was 80%.133 In Asia, EGFR mutation testing was 
ordered before first-line therapy in 92% and 84% of 
patients in 2015 and 2016, respectively. In Europe, rates 
of EGFR testing for the same periods were 77% and 81%, 
whereas in North America, 76% of patients with advanced 
NSCLC were assessed for EGFR mutations in 2015 com-
pared with 77% in 2016.133 A global survey by the IASLC 
of their members and allied healthcare professionals 
(n=2537) across 102 countries suggested that fewer than 
50% of patients received molecular testing.140 Many 
respondents expressed dissatisfaction with the current 
state of molecular testing in their country, including 41% 
of those performing and interpreting assays, with identified 
issues including difficulties in understanding results (37%) 
and the quality of the samples (23% reported a >10% 
rejection rate). Despite concerns regarding the quality of 
testing, 47% of respondents involved in performing and 
interpreting assays stated there was no policy or strategy to 
improve quality in their country.140

Several studies reported survival differences between 
cohorts who were tested for molecular biomarkers and, if 
appropriate, received targeted therapy, versus those who 
never received a molecular test. In a study from 
Switzerland involving 718 patients, OS was 10 months 
(interquartile range [IQR] 4‒23 months) for tested patients 
compared with 3 months (IQR 1‒8 months) in patients 
who were not tested.42 Similarly, in the PiVOTAL study, 
patients who were tested had longer OS than patients who 
were not tested: the median OS from start of first-line 
therapy ranged from 10.0 (Japan) to 26.7 (Taiwan) months 
for patients who were tested, and 7.6 (Australia/Brazil) to 
19.3 (Taiwan) months for those who were not.121 

Additional studies have found that the probability of mole-
cular testing varies according to practice (eg private versus 
public),124 de novo versus subsequent-line therapy,141 the 
degree of life expectancy (<1 month versus ≥1 month),42 

patient age,126 rural versus urban practice,142 and the pre-
sence of ≥2 comorbidities.42

Direct comparisons of testing uptake between regions 
should be treated with caution. The rate of biomarker 
testing uptake depends on many factors, not least of 
which is the availability of targeted therapies. For exam-
ple, in the PiVOTAL study, Taiwan had the highest rate of 
biomarker testing (85%), driven largely by the reimburse-
ment of gefitinib. However, Brazil had the lowest testing 
rate (43%), mainly because the necessary assays were not 
covered by the public healthcare system during the study 
period.121 Other possible explanations for the different 
rates of uptake may relate to higher detection rates for 
EGFR mutations in certain populations (eg Asia). Because 
many clinical trials demonstrating the superiority of EGFR 
TKIs over cytotoxic chemotherapy were conducted in 
Asia, it is reasonable to expect that the experience gained 
by clinicians and pathologists in those countries has led to 
more efficient diagnostic services and an increase in the 
likelihood of testing and treating patients with NSCLC in 
accordance with guidelines.133

Barriers to Biomarker Testing
Barriers to the uptake of biomarker testing are multifactor-
ial and often country-specific. However, access to targeted 
therapies and absence of reimbursement for testing and/or 
availability of testing facilities are the main barriers cited 
in the literature (Table 5);120,121,132,136,138,139,143,144 assay 
quality and standards, awareness, and TAT have also been 
highlighted as additional hurdles to testing.140 As 
expected, testing for a specific driver mutation tends to 
be associated with access to the associated drug,121,143 and 
in general, targeted treatments are more accessible for 
clinicians in the US and Europe than for their colleagues 
in Africa, non-European countries and South 
America.132,144 On a similar note, limited and/or absent 

Table 5 Potential Barriers to Biomarker Testing

Access to targeted therapies118,135,137–139,143

Reimbursement for testing133,138

Tissue sample quality98,143

TAT for test results42,120,131

Coordination among multiple specialist groups126

Accurate interpretation of results/physician education118

Abbreviation: TAT, turnaround time.
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reimbursement is a significant barrier to biomarker testing 
and a disincentive to reflex testing.132,136,143 In an interna-
tional survey of medical oncologists, 38% of respondents 
noted that biomarker tests were paid for by patients, 
whereas in 29% and 23% of cases, the expenses were 
covered by insurance or hospital funds, respectively.132 

Another study of biomarker testing practices in Eastern 
European countries found that pharmaceutical sponsorship 
was necessary in order to subsidize the cost of testing in 
Hungary, Poland and Slovenia. Furthermore, the study 
reported that in Bulgaria and Croatia, pharmaceutical 
sponsorship was the only source of financial support for 
testing.136 In these situations, creative discussions with all 
interested parties are critical to finding new solutions. One 
potential strategy is the development of policies to pro-
mote access to testing by establishing links between health 
systems, and science and technology offices with active 
participation from the pharmaceutical industry.144

Use of validated models for estimating EGFR mutation 
status has been proposed for patients with non-SCC.145 

Based on retrospective patient cohort data in New 
Zealand, logistical regression modeling of recognized 
risk factors (including sex, ethnicity, and smoking status) 
has enabled predictive mutation modeling that may assist 
clinical decision-making in patients where tissue-based 
mutation testing is difficult, or as a supplement to mutation 
testing.145

Nonetheless, obtaining adequate tissue for diagnosis, 
tissue subtyping and molecular profiling are imperative for 
treatment planning in patients with advanced NSCLC. 
However, tissue samples from biopsies are often insuffi-
cient or inadequate for biomarker testing,86,122,133,136,146 

necessitating repeat biopsies and delays in treatment.100 

Optimizing tissue handling after biopsies are obtained to 
maximize available material for molecular studies is 
essential, and standardized algorithms for diagnostic pro-
cedures should be defined in routine practice. These 
should involve reflex testing for biomarker testing, which 
will shorten TAT and preserve tissue.135,147 Quality control 
is also essential to ensure internal reproducibility and the 
validity of biomarker results. All laboratories should be 
certified and participate regularly in established quality- 
control programs.147

As mentioned, reflex testing can reduce the time to 
initiating targeted treatment.82,85 Indeed, the reliance 
solely on clinician judgment decreases the likelihood of 
full adherence to testing guidelines.118 For example, in one 
study, only 21% of patients had biomarker test results 

available at the time of the oncology consultation, leading 
to significant delays in treatment initiation.122 Moreover, 
19% of patients (eligible for targeted therapy) started first- 
line chemotherapy before biomarker results became avail-
able. Avoiding the need for clinicians to specify each 
biomarker test, through a testing policy that groups tests 
as a set of common requests, could help ensure testing 
occurs consistently and rapidly.122

Poor cooperation between pathology and molecular 
testing laboratories has been cited as a potential barrier 
to biomarker testing.128 With rapid progress in the mole-
cular profiling of NSCLC and its increasing complexity, 
collaboration and frequent communication between clini-
cians obtaining tumor samples, oncologists and patholo-
gists (ie a multidisciplinary team) are essential to 
successful and timely biomarker testing. Although the 
ideal approach will vary by country and region, the multi-
disciplinary team should endeavor to create a center-spe-
cific diagnostic and therapeutic plan.148 The pathologist’s 
input is fundamental to ensure that the appropriate collec-
tion method will be used and that sufficient tissue will be 
collected to allow for morphological, IHC and molecular 
studies to be conducted.6 Collectively, the multidisciplin-
ary team should provide individual centers with “steward-
ship” regarding tissue collection and biomarker testing.149

Although many barriers to successful biomarker testing 
exist at institutional and regional levels, initiatives are 
often necessary at the individual level. Knowledge transla-
tion in this area has demonstrated significant improve-
ments in specialist understanding about tissue sampling, 
molecular testing and treatment in lung cancer.150 

Furthermore, education of clinicians involved in obtaining 
diagnostic tumor specimens and reporting pathologists can 
increase the likelihood of reporting biomarker results by 
the time of initial oncology assessment.122 Wherever pos-
sible, approaching and educating individuals involved in 
lung cancer diagnosis and molecular testing, including 
interventional radiologists, respiratory physicians, pathol-
ogy technicians and pathologists, should be considered in 
the context of increasing biomarker testing rates.110

Testing for EGFR Mutations and ALK 
Rearrangements: Experiences from 
South Korea, Russia, Turkey, Brazil, 
Mexico, Argentina and China
Lack of medical and clinical infrastructure complicates the 
ability to collect country-specific statistics on incidence 
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and prevalence of NSCLC, including standard practices 
and outcomes. However, the paucity of available data 
emphasizes the clear need to develop evidence and correct 
the “unbalance” of country-level information.

South Korea
Biomarker testing for EGFR mutations is considered stan-
dard practice in South Korea, provided tissue samples are 
adequately collected. Both EGFR testing and EGFR TKIs 
are subsidized under the national reimbursement policy. 
Two real-time PCR-based assays, Cobas® EGFR Mutation 
Test v2 and PANAMutyper™ EGFR, have been approved 
by the Ministry of Food and Drug Safety (formerly known 
as the Korea FDA). The assays are also approved for 
ctDNA-based EGFR testing, and their use is evenly dis-
tributed between laboratories. Recently, a droplet digital 
PCR-based assay, the GenesWell™ ddEGFR Mutation 
Test, has been approved by the Ministry of Food and 
Drug Safety. All three methods are reimbursed in South 
Korea. Regarding the detection of ALK rearrangements in 
patients with NSCLC, the Ventana ALK (D5F3) assay was 
approved as a CDx by the Ministry of Food and Drug 
Safety in 2018. Most laboratories in South Korea have 
subsequently changed their method for ALK testing from 
FISH to Ventana ALK CDx D5F3. Both ALK testing and 
ALK inhibitors are subsidized under the national reimbur-
sement policy.

Russia
Improving the diagnosis of malignant neoplasms, particu-
larly in patients with NSCLC, is a priority area for the 
modernization of cancer care in the Russian Federation. 
Clinical guidelines issued by the Russian Federation 
Ministry of Health advocate testing for mutations in the 
EGFR gene and ALK and ROS1 translocations, enabling 
the administration of effective targeted therapy. However, 
in practice, molecular testing faces several challenges. 
First, testing requires highly qualified and experienced 
technicians. Four large laboratories based at national med-
ical research centers are currently responsible for molecu-
lar testing, together with 30 reference laboratories 
supported by the Russian Society of Clinical 
Oncology.151 A second limitation is the transportation of 
samples from remote regions of the Russian Federation to 
suitably qualified laboratories. A federal project, titled 
“Fight against oncological diseases,” is currently working 
to increase the number of reference laboratories, replace 

obsolete equipment and establish new laboratories in 
regional centers.

Biomarker testing for EGFR mutations is predominantly 
conducted using the Cobas® EGFR Mutation Test v2 or 
Sanger sequencing.152 NGS is not used for routine testing 
due to its high cost. In most centers, IHC is used for the 
detection of ALK rearrangements. However, the presence of 
artifacts, and 5–10% of doubtful cases, requires the use of 
alternative methods (eg FISH) for confirmation.146 At the 
time of writing, PCR-based methods for the identification of 
ALK translocations have not been registered in the Russian 
Federation. The methods described above for the detection 
of EGFR mutations and ALK rearrangements are funded by 
the Obligatory Medical Insurance Fund.

Turkey
In Turkey, routine qPCR assessment of EGFR mutation 
status is conducted by most centers and is reimbursed by 
government-held healthcare insurance. Despite this, an 
insufficient amount of tumor cells in the biopsy specimen 
and poor tissue quality remain significant issues in 
approximately 5–25% of cases.136 FISH assessment of 
ALK rearrangements is reimbursed for all patients with 
NSCLC.136 IHC is commonly used as a pre-screening 
method by most centers, with subsequent confirmation by 
FISH analysis.136 RT-PCR or NGS methods are used in 
cases where no signal can be obtained with FISH, or 
where there is discordance between IHC and FISH 
results.153

In ALK+ NSCLC patients treated with lorlatinib, one- 
year OS rate was estimated at 65%. In response-evaluable 
patients (n=55), the ORR and disease control rate were 
68.6% and 87.0%, respectively; ALK+ patient responses 
were 69.6% and 87.0%, respectively.154 Patients receiving 
erlotinib therapy had significantly improved OS rates com-
pared with patients who received non-TKI treatments (288 
versus 119 weeks; p=0.004), whereas PFS rates were not 
significantly different in patients who did and did not 
receive erlotinib (32±5 versus 33±3 weeks; p=0.755). 
Patients expressing both EGFR and KRAS mutations 
reported the lowest OS rate. Erlotinib therapy was asso-
ciated with increased survival in these patients.155

The overall frequency of all EGFR mutations in Turkish 
patients with NSCLC is estimated at over 16%,156,157 with 
32% and 20% of cases expressing exon 19 and 21 mutations, 
respectively.158 Frequency estimates were significantly 
higher in female patients and non-smokers.159 Following 
lung surgery, EGFR driver mutations have been reported in 
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up to 40% of patients.160 Data from Turkish patients with 
Stage III NSCLC suggest neoadjuvant chemotherapy with 
three agents prior to surgery is associated with outcome 
benefits.161

Brazil
Although no formal surveys exist, an estimated 70% of 
all AdC NSCLC cases in Brazil undergo molecular 
testing.124,162,163 There are no national outcome or survi-
val statistics, as local data collection is variable or simply 
not performed across several states. In addition, testing 
practices vary between centers: several laboratories have 
adopted reflex testing policies, whereas others approach 
molecular testing as an on-demand service. Similarly, 
some laboratories prefer NGS technologies,162–164 

sequencing 14–20 genes at one time,124,162,165 whereas 
others have adopted strategies to improve TAT by using 
RT-PCR assays for EGFR and BRAF mutations,162,164–166 

and IHC/FISH for ALK, ROS1 and PD-L1 
rearrangements.163,164,167

In the absence of government reimbursement for mole-
cular testing, several pharmaceutical companies have 
recently established a national “Lung Mapping” consor-
tium. The consortium provides oncologists with access to 
a subsidized NGS-based test using the FoundationOne® 

platform and has considerably improved access to testing 
in several Brazilian centers. This ongoing project has yet 
to report national detection rates of important driver genes.

Mexico
In Mexico, lung cancer accounts for 10% of all cancer- 
related mortality,168 and only 56.5% of NSCLC cases have 
a history of tobacco smoking, which suggests that other 
environmental factors such as hydrocarbons, metals, air 
pollution, and wood-smoke exposure could have a greater 
impact in the development of lung cancer.169,170 The pre-
valence of EGFR mutations and ALK rearrangements 
among patients with NSCLC has been estimated at 
34.3% and 7.6%, respectively.47,171

Approximately 90% of EGFR mutations are exon 19 
deletions and L858R mutations in exon 21, although 
20.5% of patients express rare mutations in exons 
18–21.172 The most frequent EGFR mutations in patients 
from Mexico are Q787 (15.6%), exon 19 deletions 
(11.1%), L858R mutation in exon 21 (7.8%), and T790M 
mutation in exon 20 (1.1%). Other mutations have been 
identified, such as in KRAS, MET and PDGFRA (20%), 
HNF1A (14.4%), APC (12.2%), HER2 (11.1%), and MSH6 

(10%), as well as alterations of lower frequency in 
PIK3CA, GUSB, ALK rearrangements, KSR1, KIT, 
STK11, FLT3, ERBB4, VHL, NOTCH1, GNAS, FGFR3, 
CDH1, BRAF, ABL1 and RB1.173 In addition, the preva-
lence of ALK rearranged NSCLC is estimated at 7.6% in 
Mexico. Although there is a country and continental varia-
bility of ALK rearrangement frequency, the overall inci-
dence of ALK rearranged NSCLC in Latin America does 
not differ from the rest of the word.171

However, the uptake of molecular testing as part of the 
standard diagnostic pathway in NSCLC remains variable. 
Access to EGFR TKIs is restricted due to cost, and in turn, 
molecular testing for patients with NSCLC is not reim-
bursed by the healthcare system. Apart from several large 
diagnostic centers, such as the Instituto Nacional de 
Cancerología, very few laboratories have the financial 
means or adequate infrastructure to undertake testing on 
a regular basis. Current testing methods available in 
Mexico include FISH, RT-PCR and IHC. Unfortunately, 
the FISH test can be expensive, especially for low-income 
countries, requires experience for accurate interpretation, 
and does not identify specific fusion transcript variants. In 
some cases, pharmaceutical companies with novel mole-
cular therapies will pay for the cost of genomic testing as a 
means of recruiting patients to clinical trials. Although 
these settings may help a subset of eligible patients in 
the short term, they benefit only a restricted number of 
patients and come with substantial burdens.

Argentina
Access to, and reimbursement of, molecular testing for 
patients with NSCLC remains a major issue in 
Argentina. Approximately 90% of all testing is concen-
trated in a handful of private laboratories and large aca-
demic centers in major cities. In general, molecular tests 
are ordered by the treating oncologists; testing following 
surgical resection is very infrequent (approximately 1% of 
all samples). However, reflex testing protocols are possible 
in large academic centers with dedicated pathology ser-
vices. There are no comprehensive studies on patient 
access to testing. In larger centers, an estimated 60–80% 
of all patients with AdC NSCLC undergo molecular test-
ing, whereas the average TAT for EGFR/BRAF and ALK/ 
ROS1 tests is 5–7 days and 1–2 days, respectively. 
Depending on the type of test and the platform used, 
approximately 5–10% of cases are rejected due to inade-
quate samples.
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Molecular testing for NSCLC follows the IASLC and 
NCCN guidelines, whereby EGFR, BRAF, ALK and ROS1 
are routinely assessed. Of all EGFR mutations, uncommon 
EGFR mutations (excluding L858R and ex19del) are 
detected in 10–20% of cases.174 Cobas® EGFR Mutation 
Test v2 or Therascreen® qPCR is commonly used to assess 
EGFR and BRAF mutations. IHC with the D5F3 Ventana 
IHC kit is used for the assessment of ALK, whereas ROS1 
status is determined using the D4D6 signaling antibody. 
ROS1 IHC-positive cases are confirmed by FISH. NGS, 
such as the Oncomine Focus Assay for solid tumors, is 
available in a few laboratories. In the absence of reimburse-
ment for clinical application, occasionally patients pay pri-
vately for the assay; however, the technique is more 
frequently used for research-based activities. Liquid biopsy 
is also available and frequently used in patients with resis-
tance to EGFR TKIs. In some instances, it is ordered for first- 
line testing when the tissue sample is insufficient.

Analysis of clinical and pathologic data from two aca-
demic centers in Buenos Aires suggests that KRAS muta-
tions occur in approximately 23% of patients with 
NSCLC, a higher frequency than that reported across 
Latin America.175 There was a higher proportion of male 
patients (65%) and smoking history (94%); mean patient 
age was 66 years (IQR: 61–72.5 years). In total, 94% of 
tumor histology samples were identified as adenocarci-
noma. Of patients with metastatic disease, 90% received 
treatment. First-line treatment included chemotherapy 
(94%) or immunotherapy (6%). Subsequently, half of all 
patients received second-line treatment, of which 75% 
received immunotherapy. With a follow-up of 38 months, 
median OS of patients with metastatic disease was 14.2 
months (95% confidence interval [CI], 7.7–30.3).175

When considering uncommon EGFR mutations (other 
than L858R and exon 19 deletion), distribution of tumors 
comprised exon 18 G719X (46.7%), exon 21 L861Q 
(24.4%), exon 20 T790M (20%), exon 20 S768I (11.1%), 
exon 20 insertion (4.4%), and exon 19 
pLys745_Ala750del (2.2%).174 Among patients included 
in the database review, the most frequent EGFR TKI regi-
men received was afatinib, followed by erlotinib/gefitinib, 
and osimertinib. Overall, 22% of tumors were considered 
complex, defined as ≥2 coexisting and distinct EGFR 
mutations, and were associated with a significantly better 
response to first-line EGFR TKI (ORR 90%) than those 
with single, non-resistant uncommon EGFR mutations 
(ORR 52%) (p=0.06). Similarly, patients with complex 

mutations showed a better OS (median not reached versus 
20.3 months [95% CI, 8.7–31.9], respectively; p=0.04).174

Private and academic laboratories have different reim-
bursement systems. Approximately 90% of all molecular 
tests conducted by private laboratories are supported by 
the pharmaceutical industry. In academic hospitals, phar-
maceutical support is more variable and often confined to 
the largest centers in Buenos Aires. In those institutions, 
approximately 50% of molecular tests receive pharmaceu-
tical support, with the remaining tests supported by health 
insurance and/or privately paying patients. To date, estab-
lishing laboratories with the expertise to undertake mole-
cular testing in regional healthcare facilities has been 
hampered by the absence of a clear and dedicated reim-
bursement system.

China
The National Medical Products Administration of China 
has approved genetic testing platforms for EGFR muta-
tions, including PCR-based methods, Sanger sequencing, 
Luminex liquid chip and NGS. In China, not all hospitals 
have the ability or equipment to perform genetic testing 
and analysis, and so the frequency of EGFR testing for 
NSCLC varies between regions. In Northern China, Cheng 
et al reported a screening rate of 42.5%.176 PCR-based 
methods, such as ARMS (72.1%), Sanger sequencing 
(5.36%) and Luminex liquid chip (5.10%), were the most 
frequently used platforms.176 The median time from tumor 
diagnosis to EGFR or ALK status confirmation was 7 and 5 
days, respectively.177

The efficacy of targeted therapies in NSCLC has been 
analyzed using a network meta-analysis of 128 clinical 
trials with 39,501 participants across 14 therapeutic 
groups. Compared with chemotherapy, ORR was signifi-
cantly improved for afatinib, alectinib and crizotinib. 
Cabozantinib and alectinib showed the highest probability 
for first-line treatment ranking in ORR (62.5%).178 

Targeted therapies have varying effects on OS in NSCLC 
patients with different gene mutations.179–181 For example, 
Yang et al found that OS was increased in patients with 
EGFR exon 19 deletion compared with the exon 21 L858R 
point mutation (92 versus 65 months; p<0.001).180 

Compared with chemotherapy, ALK-targeted treatment 
was associated with a significantly higher PFS (hazard 
ratio [HR]=0.48; 95% CI, 0.42–0.55), but not significantly 
higher OS (HR=0.88; 95% CI, 0.72–1.07) in five eligible 
studies (n=1404).181
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Several centers in China have adopted reflex testing 
policies to help streamline the time between pathological 
diagnosis of NSCLC and identification of molecular mar-
kers. Once a sample is diagnosed as NSCLC, a second 
sample is prepared, and the process of DNA extraction/ 
molecular identification initiated. Using this process, the 
molecular report can be sent out at the same time as the 
routine pathology report. The typical driver genes detected 
include receptor tyrosine kinases (RTKs), EGFR, HER2, 
DDR2 (mutation), ALK, ROS1, RET (gene rearrangement), 
MET, FGFR1, PDGFRA (gene amplification), KRAS, 
BRAF, PIK3CA, and PTEN.182

In the case of lung biopsy specimens, unstained slices or 
wax rolls are pre-cut at the same time as the pathology 
sample. When staining or IHC results are indicative of 
NSCLC, the unstained slices or wax rolls are used for DNA 
extraction/molecular detection, and the molecular pathology 
report is available 1–2 days after routine diagnosis. Recent 
analyses of neoadjuvant targeted therapy suggest significant 
improvements in radiographic response rates compared with 
conventional chemotherapy regimens, resulting in longer 
disease-free survival in real-world settings.183,184

All countries indicated above are based on the experi-
ences and perspectives of the authors in their respective 
countries.

Conclusion
In summary, the selection of patients with advanced 
NSCLC based on their EGFR and ALK status is vital, on 
account of the high response rates observed with the 
EGFR- and ALK-targeted agents. Despite this, the uptake 
of biomarker testing varies substantially between coun-
tries, and the translation of guideline recommendations 
into clinical practice remains challenging. Inequitable 
access to targeted therapies and the absence of reimburse-
ment for biomarker testing are commonly cited as barriers 
to uptake. Tissue sample quality, delayed TAT and the 
accurate interpretation of test results create additional bar-
riers. Strategies to address these issues will necessarily be 
context- and country-dependent but could include the 
development of multidisciplinary tumor boards to ensure 
tissue and testing stewardship, standard operating proce-
dures (SOPs) for routine biomarker screening in newly 
diagnosed patients and further education of specialists 
who obtain diagnostic cancer specimens.

Clinical Practice Points
Clinical Governance

● Close working relationships between physicians 
obtaining tumor samples, oncologists and pathologists 
are essential, and where possible, multidisciplinary 
tumor boards should be considered to optimize the 
diagnosis and treatment of lung cancer.

● Center-specific SOPs should be established as part of 
routine clinical practice to streamline the NSCLC 
diagnostic pathway.

Infrastructure and Quality Control

● From a laboratory perspective, adequate infrastructure 
and staffing are necessary to facilitate rapid TAT for 
biomarker testing.

● Quality control is essential to ensure consistent and 
reliable diagnostic results. All laboratories that under-
take biomarker testing should participate in external 
quality assessment programs.

Education

● Guidance and education of physicians involved in 
diagnostic tumor specimens and reporting can increase 
the likelihood of reporting biomarker test results by 
the time of the initial oncology consultation.

Biomarker Testing

● Biomarker testing is necessary for determining the optimal 
treatment of patients newly diagnosed with NSCLC. 
Biomarker testing for EGFR mutation, ALK and ROS1 
rearrangements, BRAF mutation and PD-L1 should be 
initiated as soon as a pathological diagnosis on non-SCC 
NSCLC is confirmed (or SCC NSCLC, in selected cases).

● If NGS is available, alterations in genes such as RET, 
MET, HER2 and KRAS should also be assessed.

● Reflex biomarker testing at the level of the pathologist 
should be part of SOPs for confirmed non-SCC 
NSCLC. This bypasses the time delay for oncology 
consultation and allows prioritization of sample pro-
cessing for biomarker testing.

● Timely feedback from pathologists to clinicians 
acquiring lung cancer diagnostic samples regarding 
sample adequacy is important.
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● Sanger sequencing, pyrosequencing, real-time PCR, and 
NGS are recommended for EGFR testing, and validated 
tests, including FISH and IHC, may be used for ALK 
testing. NGS can result in a dramatic reduction in cost 
and should be considered as a means of addressing the 
financial burden associated with biomarker testing.

● Repeat biomarker testing at the time of disease pro-
gression is recommended to identify EGFR- and ALK- 
resistance targets.
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